Spelling suggestions: "subject:"RNA interactome capture"" "subject:"RNA interactome apture""
1 |
RNA-based regulation of pluripotency and differentiationKastelic, Nicolai 24 October 2022 (has links)
RNA-bindende Proteine sind zentrale Regulatoren der Genexpression, aber ihre Funktionen bei der Koordinierung von Zellschicksalsentscheidungen sind unzureichend verstanden. In dieser Studie haben wir RNA interactome capture angewandt, um die globalen Dynamiken des RNA-gebundenen Proteoms während der Auflösung der Pluripotenz und neuronaler Differenzierung zu bestimmen. Wir haben entdeckt, dass 30-40% der RNA-bindenden Proteine sehr dynamisch während der Zellschicksalentscheidungen sind, die Abundanzdynamiken dieser Proteine aber nicht hauptursächlich dafür zu sein scheinen. Basierend auf unseren Daten haben wir ZAP (ZC3HAV1) als einen Faktor identifiziert, der mit Pluripotenz assoziiert ist. Um die Rolle von ZAP in der Stammzellbiologie zu analysieren, haben wir PAR-CLIP, SLAMseq und einen Differenzierungsassay angewandt. Unsere Daten haben gezeigt, dass ZAP mehr als 2,000 mRNA-Transkripte innerhalb des murinen Stammzelltranskriptoms in Abhängigkeit von CG-Dinukleotiden bindet. Zieltranskripte sind angereichert mit Genfunktionen in Zell-Zell-Interaktionen, Gewebemorphogenese und Pluripotenzregulation und werden in Abwesenheit von ZAP stabilisiert. Auβerdem haben wir herausgefunden, dass Depletion von ZAP zu flacherer und breiterer Koloniemorphologie von Stammzellen bei gleichzeitiger Fehlexpression von hunderten von Genen inklusive Lineage-Faktoren führt. Desweiteren führt Abwesenheit von ZAP zu erhöhter Geschwindigkeit bei der Auflösung der Pluripotenz. Zusammengefasst stellen wir die These auf, dass ZAP ein multi-modaler Regulator der Pluripotenz ist. ZAP agiert als positiver Regulator während Aufrechterhaltung der Pluripotenz, während es am Anfang der Pluripotenzauflösung pluripotenz-fördernde Faktoren herunterreguliert. Schlussendlich demonstriert diese Studie, wie die Erforschung von Dynamiken des RNA-gebundenen Proteoms während Zellschicksalsentscheidungen neue Wege öffnet, um die Funktion von RNA-bindenden Proteinen im entwicklungsbiologischen Kontext zu analysieren. / RNA-binding proteins are key regulators of gene expression, but their functions in coordinating cell fate transitions are poorly understood. In this study, we applied RNA interactome capture to determine the global dynamics of the RNA-bound proteome during dissolution of pluripotency and neuronal differentiation. We discovered that 30-40% of RNA-binding proteins are highly dynamic during cell fate transitions and that these dynamics do not appear to be predominantly governed by alterations in their abundance. Based on our data, we identified ZAP (ZC3HAV1) as a factor highly associated with pluripotency. In order to dissect the role of ZAP in mESC biology, we applied a variety of approaches including PAR-CLIP, SLAMseq and pluripotency exit reporter assays. We found that ZAP binds more than 2,000 mRNAs in the mESC transcriptome in a CG dinucleotide-dependent manner. Targets are enriched for transcripts encoding cell-cell adhesion, tissue morphogenesis and pro-pluripotency regulators and stabilized in absence of ZAP. Furthermore, we found that ZAP depletion leads to flattened and spreading stem cell colony morphology, concomitant misexpression of hundreds of transcripts including lineage factors and accelerated early dissolution of pluripotency. In conclusion, we propose that ZAP is a multi-modal stem cell RNA-binding protein acting as a positive regulator in maintenance of pluripotency while aiding downregulation of pro-pluripotent factors at the onset of differentiation. Ultimately, this study demonstrates how exploration of RNA-bound proteome dynamics during cell fate transitions can open paths to dissecting functions of RNA-binding proteins in a developmental context.
|
2 |
Quantitative investigation of protein-RNA interactions and regulation by phosphorylationVieira e Vieira, Carlos Henrique 25 March 2022 (has links)
Phosphorylierung modulieren. Obwohl heute bereits Tausende von Phosphorylierungsstellen annotiert sind, sind entsprechende funktionelle Informationen begrenzt. Dies ist zum Teil darauf zurückzuführen, dass es keine Hochdurchsatzmethoden zur Erforschung der Funktion einer Phosphorylierungsstelle gibt. Um dieser Herausforderung zu begegnen, habe ich eine auf Shotgun-Proteomik basierende Strategie zur Messung der RNA-Bindungsaktivität von RBPs und ihren phosphorylierten Proteoformen entwickelt, die 'quantitative RNA-Interactome Capture (qRIC)' genannt wird.
QRIC quantifiziert die Pull-Down-Effizienz von RBPs, die mit Oligo(dT)-Magnetbeads isoliert werden. Diese Effizienz korreliert mit der Anzahl der RNA-Bindungsstellen und der Spezifität der Motivbindung, und spiegelt so die RNA-Bindung in vivo wieder.
In einer Gegenüberstellung der Pull-Down-Effizienz verschiedener Proteoformen in unbehandelten Zellen, habe ich qRIC als unvoreingenommenes Screening von regulatorischen Phosphorylierungsstellen in RBPs eingesetzt. Für jede einzelne Phosphorylierungsstelle wurde ein Delta-Effizienzwert berechnet, der den Einfluss auf die RNA-Bindung in vivo reflektiert. Die Effizienzunterschiede spiegelten das erwartete Verhalten von RBPs während der Phasentrennung von membranlosen Organellen und die Ladungsabstoßung zwischen Phosphorylierungsstellen und Nukleotiden bei physiologischem pH-Wert wider. Mithilfe des Delta-Effizienzwertes identifizierte ich mehrere bereits bekannte regulatorische Phosphorylierungsstellen in SF3B1, UPF1 und ELAVL1, sowie neue, bisher unbekannte und möglicherweise regulatorische Phosphorylierungsstellen in SERBP1, LARP1 und RBM20. Phosphomimetische Mutationsvarianten dieser Phosphorylierungsstellen wurden analysiert, um den molekularen Einfluss auf die Regulation der RBP-Funktion zu untersuchen. Es konnte gezeigt werden, dass die Phosphorylierung bestimmter Stellen im Spleißregulator RBM20 dessen nukleo-zytoplasmatische Lokalisierung, die Assoziation mit zytosolischen RNA-Granula und die Spleißfunktion beeinflusst. Diese Erkenntnisse könnten sich beispielsweise auf die Entwicklung neuer Behandlungsmethoden für Patienten mit dysfunktionalen RBM20-Mutationen auswirken, die zu dilatativer Kardiomyopathie führen. QRIC kann als Hochdurchsatzverfahren dazu beitragen, unser Wissen über die Regulierung von Protein-RNA-Interaktionen durch Phosphorylierung zu erweitern. / Post-transcriptional regulation of gene expression is fundamental in health and disease. RNA-binding proteins (RBPs) directly bind and govern the fate of RNAs in cells. At the same time, cell signaling cascades control RBP functions by modulating their physicochemical properties through post-translational modifications, like phosphorylation. Although thousands of phosphorylation sites have been annotated, functional information is limited. This, in part, is due to the lack of high-throughput methods that measure function. To tackle this challenge I developed a shotgun proteomics-based strategy for measuring the RNA-binding activity of RBPs and their phosphorylated proteoforms, named quantitative RNA-interactome capture (qRIC). In qRIC, pull-down efficiency of RBPs isolation with oligo(dT) magnetic beads is quantified in cells at steady state and correlates with the number of RNA-binding sites and motif binding specificity, reflecting a link to RNA-binding in vivo. By contrasting pull-down efficiency of different proteoforms in the cells, I applied qRIC as an unbiased screening of regulatory phosphorylation sites in RBPs affecting pull-down efficiency. A delta efficiency score was calculated for each individual phosphorylation site to denote its influence on RNA-binding in vivo. Efficiency differences globally reflected the expected behavior of RBPs during phase separation of membraneless organelles and charge repulsion between phosphorylation sites and nucleotides in physiological pH. Using the delta efficiency score, I identified several previously known regulatory phosphorylation sites in SF3B1, UPF1 and ELAVL1, plus novel candidate regulatory sites in SERBP1, LARP1 and RBM20. Phosphomimetic mutant variants of these sites were analysed to investigate the molecular mechanism of regulation. Importantly, I show that phosphorylation of candidate sites in the splicing regulator RBM20 affects its nucleo-cytoplasmic localization, association with cytosolic RNA granules, and splicing function. These findings could have implications for the development of novel treatments based on kinase activity for patients with dysfunctional RBM20 mutations leading to congenital dilated cardiomyopathy. I anticipate that qRIC, as a high throughput approach, will help to expand our knowledge about the regulation of protein-RNA interactions and their regulation by phosphorylation.
|
Page generated in 0.0927 seconds