• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 9
  • 8
  • 3
  • 2
  • 2
  • Tagged with
  • 85
  • 26
  • 25
  • 21
  • 16
  • 14
  • 13
  • 13
  • 13
  • 13
  • 11
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Targeting the mevalonate pathway for pharmacological intervention

Tsoumpra, Maria January 2011 (has links)
Farnesyl pyrophosphate synthase (FPPS) is a key branch point enzyme in the mevalonate pathway and the main molecular target of nitrogen-containing bisphosphonates (N-BPs), potent inhibitors of osteoclastic activity and the leading drug of choice for conditions characterized by excessive bone resorption. The main aim of this thesis is to investigate the interaction of N-BPs with FPPS in order to gain further insights into the mechanism of drug inhibition. Kinetic and crystallographic studies following site-directed mutagenesis of FPPS reveal key residues involved in stabilization of carbocation intermediate, substrate binding and formation of a tight enzyme-inhibitor complex. The aromatic ring of Tyr204 is involved in N-BP binding but not in the catalytic mechanism, where the hydroxyl moiety plays an important role. Lys200 is implicated in regulation of substrate binding, product specificity and enzyme isomerization which leads to a tight binding inhibition. Phe239 is considered important for the FPPS C-terminal switch which stabilizes substrate binding and promotes the inhibitor induced isomerized state. The highly conserved Arg112, Asp103 and Asp107 are pivotal for catalysis. Successful purification of the full length of Rab geranylgeranyl transferase (RGGT) complex downstream of the FPPS in the mevalonate pathway was achieved and may lead to co-crystallization with BP analogues and identification of the putative site of drug binding. Investigation of the in vitro effect of N-BPs on osteoclastogenesis suggest a correlation with FPPS inhibition kinetics for the most potent N-BPs but indicate an alternative mechanism of the disruption of bone resorption by alendronate. Together these results highlight the importance of the multiple interactions of N-BPs with side-chain residues of FPPS which dictate their strength of binding and advance the understanding of their pharmacophore effect.
72

La petite GTPase Rab11 et ses interacteurs orchestrent la migration cellulaire collective et la cytocinèse chez la Drosophile

Laflamme, Carl 05 1900 (has links)
Le trafic vésiculaire permet un échange coordonné de molécules entre les différents organites de la cellule et dépend largement des petites GTPases de la famille des Rabs dont le nombre varie entre 27 chez la Drosophile et 70 chez l’Homme. Un des prochains défis consiste donc à élucider les mécanismes cellulaires qui coordonnent l’activité de ces Rabs, laquelle garantit un transport vésiculaire ordonné au sein de la cellule. Les Rabs agissent comme des interrupteurs moléculaires grâce à leur capacité à cycler entre un état actif et inactif. L’activité des Rabs est contrôlée par des protéines régulatrices puis des effecteurs en aval coordonnent leurs différentes fonctions. La petite GTPase Rab11 est essentielle au développement de plusieurs organismes incluant la Drosophile, C. elegans et la souris puisqu’elle se retrouve au cœur de différentes voies de transport. D’ailleurs, le trafic de molécules dépendant de Rab11 est perturbé dans plusieurs pathologies. Malgré son rôle central dans le trafic vésiculaire, la régulation de Rab11 reste peu comprise in vivo. Cette thèse se penche sur les mécanismes moléculaires contrôlant les fonctions de Rab11 et de ses effecteurs lors de la migration cellulaire collective et lors de la cytocinèse. Nous avons identifié Evi5 comme un nouvel acteur clé de la migration cellulaire collective, et nous montrons qu’elle possède une activité Rab11-GAP essentielle pour maintenir les récepteurs de guidance actifs de façon polarisée au front de migration. Nous avons ensuite déterminé que Rab11 régule la communication cellulaire lors de la migration collective par l’entremise de son interaction avec la Moésine. Une question reste toutefois en suspens : sachant que Rab11 compte plus de 13 effecteurs, quels sont les mécanismes assurant la spécificité de l’interaction entre cette GTPase et un effecteur particulier? Une partie de la réponse provient peut-être de nos observations que les membres des Rab11-FIPs de classe I, une famille d’effecteurs de Rab11, interagissent avec les protéines d’échafaudage 14-3-3. Chez la Drosophile, Rip11 est le seul représentant des Rab11-FIPs de classe I et nous montrons que Rip11 aurait des fonctions inattendues durant la cytocinèse qui seraient coordonnées par 14-3-3. Nos recherches permettent de dresser un portrait plus authentique des mécanismes moléculaires régulant les différentes fonctions de Rab11 et de ses effecteurs in vivo. / Vesicle trafficking allows coordinated exchange of molecules between the cell organelles and depends largely on small GTPases of the Rab family which contains 27 members in Drosophila and 70 in Human. One challenge is to identify the cellular mechanisms which coordinate Rab activity to ensure ordered vesicle transport within the cell. Rab proteins act like molecular switch by cycling between an active and an inactive state. Rab activity is regulated by helper proteins, whereas downstream effector proteins coordinate the Rab functions. The small GTPase Rab11 is crucial for Drosophila, C. elegans and mouse development since Rab11 is at the heart of different transport routes. Thus, Rab11-dependent trafficking of molecules is perturbed in different pathologies. Despite its central role during vesicle trafficking, the regulation of Rab11 in vivo is poorly characterized. This thesis focus on the molecular mechanisms controlling the function of Rab11 and its effectors during collective cell migration and cytokinesis. We identify Evi5 as a novel key regulator of collective cell migration and we show that Evi5 has Rab11-GAP activity essential for maintaining active guidance receptors at the leading edge. We then show that Rab11 regulates cell communication during collective cell movement through its interaction with Moesin. A question still remained unanswered: knowing that Rab11 has more than 13 effectors, which mechanisms assure the specificity of interaction between this small GTPase and a particular effector? Part of the answer might come from our observation that class I Rab11-FIPs, known Rab11 effectors, are able to bind to the 14-3-3 scaffolding proteins. In Drosophila, Rip11 is the sole member of the class I Rab11-FIPs and we show that Rip11 has unexpected functions during cytokinesis which are coordinated by 14-3-3. Our research allows us to better understand the molecular mechanisms regulating Rab11 and its effectors in vivo.
73

Rab Proteins and Alzheimer's: A Current Review of Their Involvement in Amyloid Beta Generation with Focus on Rab10 Expression in N2A-695 Cells

Arano Rodriguez, Ivan 01 March 2015 (has links)
This thesis work describes the role of Rab proteins in amyloid processing and clearance in different cell pathways. It also describes an experimental approach used to analyze the expression effects of Rab10 in amyloid beta production. Since the main theory behind neurodegeneration in Alzheimer's disease claims that high levels of amyloid beta 42 (Aβ42) molecules trigger widespread neuronal death, control of Aβ42 has been a main target in Alzheimer's disease research. In addition, several studies show increased levels of particular Rab proteins in Alzheimer's pathogenesis. However, no review consolidates current findings in neurodegeneration of Alzheimer's with Rab protein dysfunction. The first chapter of this thesis aims to address this need by providing a current review of Rab proteins associated with APP and neurodegeneration. The second chapter constitutes an experimental approach used to characterize the effects of Rab10 and Sar1A GTPases in APP and amyloid processing. We found that Rab10 expression does not affect APP production but significantly changes Aβ generation, particularly the toxic Aβ42 and Aβ42:40 ratio. On the other hand, we found no significant effect of Sar1A expression on either APP or amyloid beta generation. These findings partially confirm the work done by Kauwe et al (2015) and provide preliminary evidence for two potential targets for protective effects in neurodegeneration.
74

Genetic analysis of grinder formation in Caenorhabditis elegans: regulation by RAB-6.2 and its GTPase activating protein EAT-17

Anselmo, Sarah Straud. January 2004 (has links) (PDF)
Thesis (Ph. D.) -- University of Texas Southwestern Medical Center at Dallas, 2004. / Vita. Bibliography: 106-117.
75

The genetic regulation and subcellular dynamics of secretory and endolysosomal organelles of Drosophila secondary cells

Kroeger, Benjamin Robert January 2017 (has links)
Secretory processes underpin the emergence of cellular diversity in complex multicellular organisms. However, our understanding of the basic mechanisms controlling the different secretory and endosomal compartments involved remains surprisingly incomplete. During my DPhil I have studied a specialised epithelial cell type in the male Drosophila accessory glands, the secondary cell, which contains unusually large intracellular compartments that are accessible to detailed morphological study. I characterise the organisation, ultrastructure and molecular composition of this cell's secretory and endosomal compartments, and I employ specific Rab GTPases, conserved coordinators of membrane trafficking and identity, to define multiple compartmental subtypes. By developing super-resolution and time-lapse microscopy approaches in these cells, I show that numerous intraluminal vesicles (ILVs) are formed within Rab11-labelled secretory compartments and released into the accessory gland lumen as exosomes, the first clear demonstration in eukaryotic cells of exosome biogenesis within a non-late endosomal compartment. Biogenesis of these ILVs is dependent on evolutionarily conserved Endosomal Sorting Complexes Required for Transport (ESCRT) 0-III genes and involves loading of compartment-specific cargoes. Work by others, some in collaboration with me, has shown that these novel mechanisms are conserved in human cells. I show that dense-core granules, the structures employed to package proteins and other molecules destined for regulated secretion, form within large non-cored Rab6- positive compartments, in a process that seems to involve inputs from both the Golgi and recycling endosomal pathways. Further analysis has revealed roles for specific Rabs, for ILVs, and for the conserved fibrillar protein Mfas/TGFBI in different aspects of DCG formation. I also show that DCGs are not only secreted, but can also be degraded by fusion to acidic endosomal compartments. Remarkably, there is evidence that mammalian cells may employ all of these mechanisms and defects in these processes may be linked to diseases like cancer, diabetes and neurodegenerative disorders. Hence my work has established a new system to study complex secretory mechanisms, which can now be developed to model specific disease processes in the future. In summary, I have discovered several novel cell biological mechanisms controlling exosome biology, dense-core granule biogenesis, regulated secretion, and endolysosomal trafficking. Some of these already appear relevant to human health and disease, suggesting that the secondary cell system has considerable further potential for unravelling the fundamental processes underlying eukaryotic secretion in the future.
76

Understanding the Role of Rab22A in Recycling Endosome Biogenesis and Melanocyte Pigmentation

Shakya, Saurabh January 2017 (has links) (PDF)
Recycling embosoms (REs) are transient intermediates of endosomal network, constantly generated from early/sorting endosomes (EEs/SEs). Conventionally, these organelles function in recycling of many growth/nutrient/signalling receptors from SEs to the cell surface and maintain the cellular homeostasis in all cell types. Recent studies have shown that REs slightly diverted their function in specialized cells such as melanocytes for the delivery of melanogenic cargo to a set of lysosome-related organelles (LROs) called melanosomes. However, it is unknown how melanocytes modulate the trafficking routes of REs towards the biogenesis of melanosomes. Any alterations in this process result in occulocutaneous albinism, commonly observed in autosomal recessive disorder, Hermansky-Pudlak Syndrome (HPS). HPS is caused by mutations in nine genes in human and fifteen genes in mouse and the protein products of these genes were grouped in multiple endosomal protein complexes; BLOC (Biogenesis of Lysosome-related Organelles Complex)-1, -2, -3, AP (Adaptor Protein)-3 and HOPS (homotypic fusion and protein sorting). Studies from our laboratory and others have shown that REs deliver the melanin-synthesizing enzymes to melanosome in BLOC-1 and BLOC-2 dependent manner. On the other side, studies in fibroblasts have shown that the adaptor AP-1 and microtubule-dependent motor, KIF13A also regulates the formation of REs. In these studies, it was proposed that AP-1 binds to the cargo tails and interacts with motor KIF13A to generate the RE tubules, where BLOC-1 initiates the biogenesis. Nevertheless, the mechanism behind the biogenesis of REs and how these molecules synergistically control these processes is largely unknown. Additionally, the role of BLOC-2 in REs biogenesis never been implicated. Here we have attempted to study the mechanism of RE biogenesis and their role in pigment granule formation using HeLa and mouse melanocytes as model systems. In general, Rab GTPases (Rabs) regulate the several process of membrane trafficking including cargo sorting, membrane domain organization, tethering and fusion. We hypothesized that the biogenesis of RE is also regulated by one of the endosome localized Rab GTPases. Our RNAi screening against Rabs involved in regulating the RE length/number showed Rab22A as a potential candidate. Thus, we aim to study the role of Rab22A in RE biogenesis and its regulation in melanocyte pigmentation. The current study entitled as “Understanding the role of Rab22A in recycling endosome biogenesis and melanocyte pigmentation” is divided into five chapters. Chapter-I outlines the review of literature on cell biology of intracellular organelles such as endocytic network and melanosomes. Chapter-II details the experimental procedures used in the study. Chapter-III to Chapter-V describes the results and discussion. Chapter-III: Identification of endosomal Rab GTPases required for the dynamics of recycling endosomes Endosomal Rabs are known to regulate various functions such as vesicle biogenesis, transport, tethering and fusion, but their role in generation of tubulo-vesicular carriers of endocytic system, REs is unknown. It has been shown that REs possibly derived from EEs/SEs and characterized by the association/localization of multiple proteins such as transferrin receptor (TfR), SNARE STX13, Rab11 and motor KIF13A. In this study, we have used YFP-KIF13A as a marker to label the REs. YFP-KIF13A in HeLa cells localized to long tubular structures throughout the cell and also to the clusters of peripheral endosomes. To identify the endosomal Rabs that regulate the RE dynamics (both length and number), we have transfected the HeLa cells with shRNA against endosomal Rabs such as Rab4A, Rab5A, Rab5B, Rab5C, Rab7A, Rab9A, Rab11A, Rab14A and Rab22A. Post transfection and shRNA selection, cells were transfected with YFP-KIF13A, analyzed and quantified the RE dynamics using ImageJ. Here, we have measured two parameters for the identification of Rab/s that potentially regulates the REs biogenesis: first, average number of tubules per cell and second, average length of tubules per cell. These studies identified Rab22A as a potential candidate, depletion of this Rab affects both number and average length of KIF13A-positive tubules. As described above, REs deliver several melanocyte specific cargoes to melanosomes in melanocytes. However, the function of Rab22A in controlling these transport steps to melanosome/its biogenesis or pigmentation has not been addressed. Thus, we have studied the mechanism of Rab22A in RE biogenesis and its role in pigmentation in the following sections. Chapter-IV: Characterization of Rab22A function in regulating the recycling endosomes Initially, we tested whether Rab22A localizes to the REs. Our co-expression studies show that Rab22A localizes to KIF13A- or STX13-positive RE compartments in HeLa or melanocytes, respectively. In general, Rab GTPases mediate their function through cycling between GTP (membrane bound) and GDP (cytosol) bound state. These states can be achieved by point mutation of active site residues in the protein. We have generated Rab22A constitutive active mutant (Rab22AQ64L, defective in GTP hydrolysis) and dominant negative mutant (Rab22AS19N, defective in GTP binding) to understand the role of Rab22A in regulating REs. Interestingly, overexpression of Rab22AQ64L mutant in HeLa cells increases the average number of KIF13A-positive REs relative to the wild-type Rab22A (Rab22AWT). As predicted, overexpression of Rab22AS19N mutant reduces the number as well as length of RE tubules relative to the control HeLa cells. Consistent to these studies, Rab22A-knockdown did not affect the endogenous KIF13A protein levels or its recruitment to endosomes, however recycling of TfR (measured through Tf-Alexa 594) was significantly affected in these cells. These studies suggest that Rab22A possibly regulates the formation or function of REs. Likewise, overexpression of Rab22AQ64L and Rab22AS19N mutants in melanocytes resulted in reduction of total melanin content in the cells. To confirm these results, we have performed immunofluorescence microscopy (IFM) analysis, which showed Rab22AQ64L localized to the enlarged vacuolar structures, positive for melanosomal cargo TYRP1 (tyrosinase-related protein 1), whereas Rab22AS19N localized to the cytosol. Further, Rab22A depletion in melanocytes causes the hypopigmentation in the cells concurrently reduces the stability of TYRP1 but not other melanocyte specific proteins, indicating a role for Rab22A in regulating TYRP1 transport to melanosomes. Altogether, our studies suggests that Rab22A regulates the TfR recycling in HeLa cells and TYRP1 transport in melanocytes by controlling the RE dynamics. Chapter-V: Molecular mechanism of recycling endosome biogenesis: a role for Rab22A Rabs perform their function by recruiting specific effector/s to the membrane upon Rab activation. It is unknown, how Rab22A regulates REs through its effectors. We hypothesize that Rab22A may regulate the recruitment and function of BLOC-1 and BLOC-2 complexes during RE formation. To validate these hypothesis, we carried out the knockdown of individual BLOC-1 and -2 subunits (destabilize the entire complex) separately in HeLa and studied the dynamics of RE through YFP-KIF13A expression. As expected, the length and number of KIF13A-postive tubules were significantly reduced in both BLOC-1- and BLOC-2-deficient HeLa cells and was phenocopying the Rab22A knockdown cells. Moreover, subcellular fractionation in HeLa, co-fractionated Rab22A with BLOC-1 (Muted) or BLOC-2 (HPS6) subunits along with KIF13A. Additionally, endogenous subunit levels of BLOC-1 and BLOC-2 were moderately reduced in Rab22A knockdown HeLa cells. Consistent to these results, recycling kinetics of Transferrin (Tf) was altered in Rab22A depleted cells as similar to BLOC-1- or BLOC-2-deficient cells as reported earlier. Likewise, Rab22A knockdown in melanocytes affected STX13-positive tubules and also the stability of endogenous BLOC-1 subunit, Pallidin, suggesting that Rab22A possibly works with BLOC-1 and BLOC-2 independent of cell types. To understand the regulation among these molecules, we overexpressed Rab22A in BLOC-1-deficient cells and analyzed the cells for BLOC-1-deficient rescue phenotypes such as pigmentation and cargo localization. However, Rab22A could not compensate the BLOC-1 function, suggesting that Rab22A possibly functions upstream of BLOC-1. Our subcellular and membrane associated fractionation studies of homogenates depleted with Rab22A, BLOC-1 and BLOC-2 showed that subunit levels of BLOC-1 and BLOC-2 in the membrane pool were significantly reduced upon Rab22A depletion compared to control cells. However, membrane association of Rab22A in BLOC-1 deficient cells was not affected. Further, our biochemical interaction studies showed that Rab22A interacts physically with BLOC-1 and BLOC-2 subunits as well as with KIF13A. Thus, these studies indicate that Rab22A possibly recruits and interacts with BLOC-1 and BLOC-2 for the generation of REs. We have summarized the study by proposing a model wherein Rab22A localizes to the limiting membrane of endosomes that are positive for KIF13A and then recruits and associates with BLOC-1 and BLOC-2 complexes which subsequently pulled by KIF13A for the generation of RE tubules.
77

THE EFFECTS OF AGING AND ALZHEIMER’S DISEASE ON RETROGRADE NEUROTROPHIN TRANSPORT IN BASAL FOREBRAIN CHOLINERGIC NEURONS / RETROGRADE NEUROTROPHIN TRANSPORT IN BASAL FOREBRIAN NEURONS

Shekari, Arman January 2021 (has links)
Basal forebrain cholinergic neurons (BFCNs) are critical for learning and memory. Profound and early BFCN degeneration is a hallmark of aging and Alzheimer’s disease (AD). BFCNs depend for their survival on the retrograde axonal transport of neurotrophins, proteins critical for neuronal function. Neurotrophins like brain derived neurotrophic factor (BDNF) and pro-nerve growth factor (proNGF) are retrogradely transported to BFCNs from their synaptic targets. In AD, neurotrophin levels are increased within BFCN target areas and reduced in the basal forebrain, implicating dysfunctional neurotrophin transport in AD pathogenesis. However, neurotrophin transport within this highly susceptible neuronal population is currently poorly understood. We began by establishing protocols for the accurate quantification of axonal transport in BFCNs using microfluidic culture. We then determined the effect of age on neurotrophin transport. BFCNs were left in culture for up to 3 weeks to model aging in vitro. BFCNs initially displayed robust neurotrophin transport, which diminished with in vitro age. We observed that the levels of proNGF receptor tropomyosin-related kinase-A (TrkA) were reduced in aged neurons. Additionally, neurotrophin transport in BFCNs derived from 3xTg-AD mice, an AD model, was also impaired. Next, we sought to determine a mechanism for these transport deficits. First, we determined that proNGF transport was solely contingent upon the levels of TrkA. We then found that elevation of oxidative stress, an established AD contributor, significantly reduced both TrkA levels and proNGF retrograde transport. TrkA levels are partially regulated by protein tyrosine phosphatase-1B (PTP1B), an enzyme whose activity is reduced by oxidation. PTP1B antagonism significantly reduced TrkA levels and proNGF retrograde transport in BFCNs. Treatment of BFCNs with PTP1B-activating antioxidants rescued TrkA levels, proNGF transport, and proNGF-mediated axonal degeneration. Our results suggest that oxidative stress contributes to BFCN degeneration in aging and AD by impairing retrograde neurotrophin transport via oxidative PTP1B-mediated TrkA loss. / Thesis / Doctor of Philosophy (PhD) / During aging and Alzheimer’s disease (AD), the connections between neurons, a type of brain cell, break down, causing memory loss. This breakdown begins in a brain area called the basal forebrain. Basal forebrain neurons rely upon the transport of nutrients along their connections with other neurons, called axons, for proper function. This transport process becomes impaired in AD. Our goal was to understand why this happens. First, we determined that axonal transport was impaired with age and in basal forebrain neurons of mice genetically predisposed to develop AD. We recreated these impairments by increasing the levels of harmful molecules called reactive oxidative species (ROS). ROS levels increase with age and become abnormally high during AD. We found that increased ROS impair axonal transport and contribute to the breakdown of basal forebrain neurons. Our work suggests that reducing ROS will help prevent the breakdown of basal forebrain neurons in AD.
78

Étude des réseaux neuronaux et des mécanismes cognitifs impliqués dans les déficiences intellectuelles liées au chromosome X / Study of neuronal networks and cognitive mecanisms involved in X linked intellectual disability

Curie, Aurore 08 April 2011 (has links)
Grâce aux progrès de la génétique moléculaire qui ont permis d’identifier de nouveaux gènes de déficience intellectuelle liée à l’X, il nous a été possible de travailler sur des groupes homogènes de malades présentant une mutation dans le même gène. Nous avons d’une part, pu mettre en évidence un dysfonctionnement du circuit cérébello-thalamo-préfrontal grâce à une étude en IRM morphométrique réalisée chez des patients ayant une mutation dans le gène Rab-GDI. D’autre part, nous avons identifié un phénotype tout à fait spécifique lié aux mutations du gène ARX, tant clinique que neuropsychologique, et cinématique, associant une atteinte très particulière de la motricité distale des membres supérieurs et du langage. La préhension des patients est pathognomonique, avec une préférence pour la pince pouce-majeur, une difficulté accrue pour l’utilisation du bord cubital de la main, et un trouble de la pronosupination. Sur le plan neuroanatomique, il existe une diminution de volume des noyaux gris centraux et des épaisseurs corticales des régions contrôlant la motricité, bien corrélées au paramètres de cinématique. Enfin, nous avons exploré les stratégies de raisonnement des patients déficients intellectuels atteints du syndrome de l’X fragile, d’une mutation du gène ARX ou de trisomie 21 en élaborant un paradigme de raisonnement visuel analogique issu des matrices de Raven. Nous en avons établi la trajectoire développementale. Les stratégies utilisées par les patients (étude en eyetracking) sont différentes de celles des contrôles y compris de même âge mental, avec un défaut d’inhibition majeur, encore plus franc chez les patients X fragiles que ceux porteurs de trisomie 21 / Thanks to progress in molecular genetics, that allowed identification of new genes responsible for X linked intellectual disability, we studied on homogeneous groups of patients presenting with a mutation in one or the other gene. In the first section, we showed dysfunction of cerebello-thalamo-prefrontal networks, thanks to morphological MRI study performed on patients with a mutation in the Rab-GDI gene. In the second section, we highlighted a very specific phenotype related to ARX gene mutations, clinically, neuropsychologically, and kinematically, with a very peculiar impairment of upper limbs distal motricity, and language disorder. Patients hand-grip is pathognomonic, with a preference for the middle finger instead of the index for the grip of object, major impairment of fourth finger use, and lack of pronation movements. Neuroimaging study showed decreased volume of basal ganglia, and cortical thickness of motor regions, well correlated to kinematic parameters. In the third section, we explored reasoning strategies in three groups of patients with intellectual deficiency: fragile X, ARX mutated and Down syndrome patients and controls (both chronological and mental age-matched subjects). We notably elaborated a visual analogical reasoning paradigm, inspired from Raven’s matrices. We established a developmental trajectory of this paradigm. The strategy used by patients (eyetracking study) was different from the one used by controls, with a huge lack of inhibition, even greater for fragile X patients than for Down syndrome patients
79

Dense-core vesicle maturation at the Golgi-endosomal interface in Caenorhabditis elegans / Reifung von

Hannemann, Mandy 17 April 2012 (has links)
No description available.
80

Characterisation of Novel Rab5 Effector Proteins in the Endocytic Pathway / Charakterisierung neuer Rab5-Effektoren in der Endozytose

Schnatwinkel, Carsten 25 December 2004 (has links) (PDF)
Endocytosis, a process of plasma membrane invaginations, is a fundamental cellular mechanism, ensuring uptake of nutrients, enhanced communication between cells, protective functions against invasive pathogens and remodelling of the plasma membrane composition. In turn, endocytic mechanisms are exploited by pathogens to enter their host cells. Endocytosis comprises multiple forms of which our molecular understanding has mostly advanced with respect to clathrin-mediated endocytosis and phagocytosis. Studies on the small GTPase Rab5 have provided important insights into the molecular mechanism of endocytosis and transport in the early stages of the endocytic pathways. Rab5 is a key regulator of clathrin-mediated endocytosis, but in addition, localises to several distinct endocytic carriers including phagosomes and pinocytic vesicles. On early endosomes, Rab5 coordinates within a spatially restricted domain enriched in phosphatidylinositol-3 phosphate PI(3)P a complex network of effectors, including PI3-Kinase (PI3-K), the FYVE-finger proteins EEA1 and Rabenosyn-5 that functionally cooperate in membrane transport. Moreover, Rab5 regulates endocytosis from the apical and basolateral plasma membrane in polarised epithelial cells. During my PhD thesis, I investigated the molecular mechanisms of endocytosis both in polarised and non-polarised cells. I obtained new insights into the molecular mechanisms of endocytosis and their coordination through the functional characterization of a novel Rab5 effector, termed Rabankyrin-5. I could demonstrated that Rabankyrin-5 is a novel PI(3)P-binding Rab5 effector that localises to early endosomes and stimulates their fusion activity in vitro. The latter activity depends on the oligomerisation of Rabankyrin-5 on the endosomal membrane via the N-terminal BTB/POZ domain. In addition to early endosomes, however, Rabankyrin-5 localises to large vacuolar structures that correspond to macropinosomes in epithelial cells and fibroblasts. Overexpression of Rabankyrin-5 increases the number of macropinosomes and stimulates fluid phase uptake whereas its downregulation through RNA interference inhibits these processes. In polarised epithelial cells, the function of Rabankyrin-5 is primarily restricted to the apical membrane. It localises to large pinocytic structures underneath the apical surface of kidney proximal tubule cells and its overexpression in polarised MDCK cells specifically stimulates apical but not basolateral, non-clathrin mediated pinocytosis. In demonstrating a regulatory role in endosome fusion and (macro)-pinocytosis, my studies suggest that Rab5 regulates and coordinates different endocytic mechanisms through its effector Rabankyrin-5. Furthermore, the active role in apical pinocytosis in epithelial cells suggests an important function of Rabankyrin-5 in the physiology of polarised cells. The results obtained in this thesis are central not only for our understanding of the basic principles underlying the regulation of multiple endocytic mechanisms. They are also relevant for the biomedical field, since actin-dependent (macro)-pinocytosis is an important mechanism for the physiology of cells and organisms and is upregulated under certain pathological conditions (e.g. cancer).

Page generated in 0.0372 seconds