• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 39
  • 14
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes

Kunert, Gerd 30 March 1999 (has links) (PDF)
Many physical problems lead to boundary value problems for partial differential equations, which can be solved with the finite element method. In order to construct adaptive solution algorithms or to measure the error one aims at reliable a posteriori error estimators. Many such estimators are known, as well as their theoretical foundation. Some boundary value problems yield so-called anisotropic solutions (e.g. with boundary layers). Then anisotropic finite element meshes can be advantageous. However, the common error estimators for isotropic meshes fail when applied to anisotropic meshes, or they were not investigated yet. For rectangular or cuboidal anisotropic meshes a modified error estimator had already been derived. In this paper error estimators for anisotropic tetrahedral or triangular meshes are considered. Such meshes offer a greater geometrical flexibility. For the Poisson equation we introduce a residual error estimator, an estimator based on a local problem, several Zienkiewicz-Zhu estimators, and an L_2 error estimator, respectively. A corresponding mathematical theory is given.For a singularly perturbed reaction-diffusion equation a residual error estimator is derived as well. The numerical examples demonstrate that reliable and efficient error estimation is possible on anisotropic meshes. The analysis basically relies on two important tools, namely anisotropic interpolation error estimates and the so-called bubble functions. Moreover, the correspondence of an anisotropic mesh with an anisotropic solution plays a vital role. AMS(MOS): 65N30, 65N15, 35B25
22

Models for Persistence and Spread of Structured Populations in Patchy Landscapes

Alqawasmeh, Yousef January 2017 (has links)
In this dissertation, we are interested in the dynamics of spatially distributed populations. In particular, we focus on persistence conditions and minimal traveling periodic wave speeds for stage-structured populations in heterogeneous landscapes. The model includes structured populations of two age groups, juveniles and adults, in patchy landscapes. First, we present a stage-structured population model, where we divide the population into pre-reproductive and reproductive stages. We assume that all parameters of the two age groups are piecewise constant functions in space. We derive explicit formulas for population persistence in a single-patch landscape and in heterogeneous habitats. We find the critical size of a single patch surrounded by a non-lethal matrix habitat. We derive the dispersion relation for the juveniles-adults model in homogeneous and heterogeneous landscapes. We illustrate our results by comparing the structured population model with an appropriately scaled unstructured model. We find that a long pre-reproductive state typically increases habitat requirements for persistence and decreases spatial spread rates, but we also identify scenarios in which a population with intermediate maturation rate spreads fastest. We apply sensitivity and elasticity formulas to the critical size of a single-patch landscape and to the minimal traveling wave speed in a homogeneous landscape. Secondly, we use asymptotic techniques to find an explicit formula for the traveling periodic wave speed and to calculate the spread rates for structured populations in heterogeneous landscapes. We illustrate the power of the homogenization method by comparing the dispersion relation and the resulting minimal wave speeds for the approximation and the exact expression. We find an excellent agreement between the fully heterogeneous speed and the homogenized speed, even though the landscape period is on the same order as the diffusion coefficients and not as small as the formal derivation requires. We also generalize this work to the case of structured populations of n age groups. Lastly, we use a finite difference method to explore the numerical solutions for the juveniles-adults model. We compare numerical solutions to analytic solutions and explore population dynamics in non-linear models, where the numerical solution for the time-dependent problem converges to a steady state. We apply our theory to study various aspects of marine protected areas (MPAs). We develop a model of two age groups, juveniles and adults, in which only adults can be harvested and only outside MPAs, and recruitment is density dependent and local inside MPAs and fishing grounds. We include diffusion coefficients in density matching conditions at interfaces between MPAs and fishing grounds, and examine the effect of fish mobility and bias movement on yield and fish abundance. We find that when the bias towards MPAs is strong or the difference in diffusion coefficients is large enough, the relative density of adults inside versus outside MPAs increases with adult mobility. This observation agrees with findings from empirical studies.
23

Analyse asymptotique d'équations intégro-différentielles : modèles d'évolution et de dynamique des populations / Asymptotic Analysis of Integro-differential Equations : populations dynamics and evolutionary models

Patout, Florian 27 September 2019 (has links)
Cette thèse est consacrée à l’étude de phénomènes de propagation et de concentration dans des modèles d’équations intégro-différentielles venant de la écologie. On étudie certaines équations de réaction-diffusion non locales apparaissant en dynamique de populations, ainsi que des modèles représentant l’évolution Darwinienne avec un mode de reproduction sexué.Dans une première partie, nous étudions la propagation spatiale pour une équation de réaction-diffusion ou la dispersion opère via un noyau de convolution à queue lourde. Nous mesurons de manière précise l’accélération du front de propagation de la solution. Nous proposons également une échelle adaptée pour mesurer les «petites» mutations. Dans les deux cas nous utilisons le formalisme des équations de Hamilton-Jacobi.Dans un second temps nous étudions un modèle de génétique quantitative, avec un mode de reproduction sexuée. Un petit paramètre mesure la déviation entre le trait des descendants est la moyenne des traits des parents. Dans le régime où ce paramètre est petit nous étudions l’existence de solutions stationnaires, puis le problème de Cauchy lié à ce modèle. Les solutions se concentrent autour des optima de sélection, sous la forme de perturbations de distributions Gaussiennes avec petite variance fixée par le paramètre. Notre analyse généralise le cas linéaire de la reproduction asexuée en utilisant des outils d’analyse perturbative. Enfin dans une dernière partie nous fournissons des simulations numériques et des méthodes mathématiques pour étudier la dynamique interne des équilibres dans le régime de petite variance, pour les deux modes de reproduction : asexué et sexué. / This manuscript tackles propagation and concentration phenomena in different integro-differential equations with a background in ecology. We study non local reaction-diffusion equations from population dynamics, and models for Darwinian evolution with a sexual or asexual mode of reproduction, with a preference for the former.In a first part, we study spatial propagation for a reaction diffusion equation where dispersion acts through a fat tailed kernel. We measure accurately the acceleration of the propagation front of the population. We propose as well a scaling well adapted to “small mutations” when we consider the model in the context of adaptative dynamics. This scaling is very natural following the previous spatial investigation. In both cases we look at the long time behavior and we use the Hamilton-Jacobi framework. Then we turn our attention towards a quantitative genetics model, with a sexual mode of reproduction, imposed by the “infinitesimal operator”. In this non-linear setting, a small parameter tunes the deviation between the phenotypic trait of the offspring and the mean of the traits of the parents. In the regime where this parameter is small, we prove existence of stationary solutions, and their local uniqueness. We also provide an example of non-uniqueness in the case where the selection function admits several extrema. We prove that the solution concentrates around the points of minimum of the selection function. The analysis is carried by the small perturbations of special profiles : Gaussian distributions with small variance fixed by the parameter.We then study the stability of the Cauchy problem associated to the previous model. This time we prove that at all times, for a well prepared initial data, the solutions is arbitrary close to a Gaussian distribution with small variance. The proof follows the framework of the previous : we use perturbative analysis tools, but this time an even more precise description of the correctors is needed and we linearize the equation to obtain it. In a final part we show numerical simulations and different mathematical approaches to study inside dynamics of phenotypic lineages in the regime of small variance, with a moving environement.
24

Processus d’exclusion avec des sauts longs en contact avec des réservoirs / Exclusion process with long jumps in contact with reservoirs

Jiménez Oviedo, Byron 26 January 2018 (has links)
Non disponible / Non disponible
25

Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes

Kunert, Gerd 09 November 2000 (has links)
We consider a singularly perturbed reaction-diffusion problem and derive and rigorously analyse an a posteriori residual error estimator that can be applied to anisotropic finite element meshes. The quotient of the upper and lower error bounds is the so-called matching function which depends on the anisotropy (of the mesh and the solution) but not on the small perturbation parameter. This matching function measures how well the anisotropic finite element mesh corresponds to the anisotropic problem. Provided this correspondence is sufficiently good, the matching function is O(1). Hence one obtains tight error bounds, i.e. the error estimator is reliable and efficient as well as robust with respect to the small perturbation parameter. A numerical example supports the anisotropic error analysis.
26

Etude par microscopie optique des comportements spatio-temporels thermo- et photo-induits et de l’auto-organisation dans les monocristaux à transition de spin / Optical microscopy studies of thermo- and photo-induced spatiotemporal behaviors and self-organization in switchable spin crossover single crystal

Sy, Mouhamadou 15 June 2016 (has links)
Ce travail de thèse est dédié à la visualisation par microscopie optique des transitions de phases, thermo- et photo-induites dans des monocristaux à transition de spin. L’étude des cristaux du composé [{Fe(NCSe)(py)2}2(m-bpypz)] a permis de montrer la possibilité de contrôler la dynamique de l’interface HS/BS (haut spin/bas spin) par une irradiation lumineuse appliquée sur toute la surface du cristal ou de manière localisée. Les investigations expérimentales menées sur l’effet de l’intensité de la lumière sur la température de transition ont mis en évidence d’une part l’importance du couplage entre le cristal et le bain thermique, et d’autre part le rôle de la diffusion de la chaleur dans le monocristal. En parallèle, un modèle basé sur une description de type Ginzburg-Landau, a permis de mettre sur pied une description de type réaction diffusion des effets spatio-temporels accompagnant la transition de spin dans un monocristal. Celui-ci a permis d’identifier et de comprendre le rôle des paramètres pertinents entrant en jeu dans le contrôle du mouvement de l’interface HS/BS. Les résultats obtenus sont très encourageants et reproduisent avec une grande fidélité les données expérimentales. Cependant l’origine de l’orientation de l’interface HS/BS observée par microscopie optique dans les cristaux du composé [{Fe(NCSe)(py)2}2(m-bpypz)] était restée mystérieuse. Pour résoudre cette question, nous avons développé un modèle électro-élastique qui tient compte du changement de volume au cours de la transition de spin. Ce dernier nous a conduits à analyser l’effet de la symétrie du réseau cristallin et de la forme du cristal sur l’orientation de l’interface élastique. En l’appliquant au composé [{Fe(NCSe)(py)2}2(m-bpypz)], en tenant compte du caractère anisotrope du changement de la maille élémentaire lors du passage HSBS, nous avons réussi à retrouver quantitativement l’orientation du front observée expérimentalement en microscopie optique. Ceci confirme bien le rôle primordial de l’élasticité dans le comportement des matériaux à transition de spin. Des études sous lumière à très basse température nous ont donné la possibilité de suivre en temps réel, l’effet LIESST (Light Induced Excited Spin State Trapping), la re-laxation coopérative du cristal ainsi que l’instabilité photo-induite LITH (Light Induced Thermal Hysteresis). Un monde fascinant est apparu autour de cette dernière, avec la présence de comportements totalement inédits. Ainsi, et pour la première fois, nous avons mis en évidence l’existence de phénomènes d’auto-organisation et de comportements autocatalytiques du front de transition. Cette physique non-linéaire dénote un comportement actif du cristal, par suite d’une subtile préparation autour d’un état instable. Ces comportements rappellent les structures dissipatives de Turing et ouvrent des perspectives fascinantes pour cette thématique, tant sur le plan expérimental que théorique. / This thesis work is devoted to visualization by optical microscopy of thermo- and photo-induced phase transitions, in switchable spin transition single crystals. The study of crystals of the compound [{Fe (NCSe) (py) 2} 2 (m-bpypz)] showed the possibility to control reversibly the dynamics of the HS/LS interface through a photo-thermal effect generated by an irradiation of the whole crystal or using a spatially localized light spot on the crystal surface. The investigations of the effect of the light intensity on the transition temperature have highlighted the importance of the coupling between the crystal and the thermal bath in these experiments. Concomitantly, we developped a reaction diffusion model allowing to describe and iden-tify the relevant physical parameters involved in the control of the movement of HS/LS interface. The obtained results are very encouraging and reproduce the main features of the experimental data. However the origin of the interface orientation observed by the optical microscopy in the crystal of the compound [{Fe (NCSe) (py) 2} 2 (m-bpypz)] re-mained mysterious, and needed an elastic approach to be handled. At this end, an electro-elastic model including the volume change at the spin transition was developed. By taking into account for the anisotropy of the unit cell deformation at the transition, we were able to reproduce quantitatively the experimental HS/LS interface orientation. This result confirms the crucial role of the lattice symmetry and its elastic properties in the emergence of a stable interface orientation. The last part of the thesis is devoted to the investigation of photo-induced effects at very low temperatures (~10K). There, we visualized for the first time the real time transformation of a single crystal under LIESST (Light Induced Excited Spin State Trapping) effect as well as its subsequent relaxation at higher temperatures. We have also studied the light induced instabilities through investigation on the LITH (Light Induced Thermal Hysteresis) loops. Around the latter, a fascinating world made of nonlinear effects, and patterns formation emerged, recalled the well known Turing structures. These results lead to new horizons that will give access to new theories and original experimental observations that will enrich the topics opening the new avenues to study of nonlinear phenomena in spin crossover solids.
27

Analyse mathématique de modèles de dynamique des populations : équations aux dérivées partielles paraboliques et équations intégro-différentielles

Garnier, Jimmy 18 September 2012 (has links)
Cette thèse porte sur l'analyse mathématique de modèles de réaction-dispersion de la forme [delta]tu=D(u) +f(x,u). L'objectif est de comprendre l'influence du terme de réaction f, de l'opérateur de dispersion D, et de la donnée initiale u0 sur la propagation des solutions de ces équations. Nous nous sommes intéressés principalement à deux types d'équations de réaction-dispersion : les équations de réaction-diffusion où l'opérateur de dispersion différentielle est D=[delta]2z et les équations intégro-différentielles pour lesquelles D est un opérateur de convolution, D(u)=J* u-u. Dans le cadre des équations de réaction-diffusion en milieu homogène, nous proposons une nouvelle approche plus intuitive concernant les notions de fronts progressifs tirés et poussés. Cette nouvelle caractérisation nous a permis de mieux comprendre d'une part les mécanismes de propagation des fronts et d'autre part l'influence de l'effet Allee, correspondant à une diminution de la fertilité à faible densité, lors d'une colonisation. Ces résultats ont des conséquences importantes en génétique des populations. Dans le cadre des équations de réaction-diffusion en milieu hétérogène, nous avons montré sur un exemple précis comment la fragmentation du milieu modifie la vitesse de propagation des solutions. Enfin, dans le cadre des équations intégro-différentielles, nous avons montré que la nature sur- ou sous-exponentielle du noyau de dispersion J modifie totalement la vitesse de propagation. / This thesis deals with the mathematical analysis of reaction-dispersion models of the form [delta]tu=D(u) +f(x,u). We investigate the influence of the reaction term f, the dispersal operator D and the initial datum u0 on the propagation of the solutions of these reaction-dispersion equations. We mainly focus on two types of equations: reaction-diffusion equations (D=[delta]2z and integro-differential equations (D is a convolution operator, D(u)=J* u-u). We first investigate the homogeneous reaction-diffusion equations. We provide a new and intuitive explanation of the notions of pushed and pulled traveling waves. This approach allows us to understand the inside dynamics the traveling fronts and the impact of the Allee effect, that is a low fertility at low density, during a colonisation. Our results also have important consequences in population genetics. In the more general and realistic framework of heterogeneous reaction-diffusion equations, we exhibit examples where the fragmentation of the media modifies the spreading speed of the solution. Finally, we investigate integro-differential equations and prove that emph{fat-tailed} dispersal kernels J, that is kernels which decay slower than any exponentially decaying function at infinity, lead to acceleration of the level sets of the solution u.
28

Adaptivity in anisotropic finite element calculations

Grosman, Sergey 09 May 2006 (has links) (PDF)
When the finite element method is used to solve boundary value problems, the corresponding finite element mesh is appropriate if it is reflects the behavior of the true solution. A posteriori error estimators are suited to construct adequate meshes. They are useful to measure the quality of an approximate solution and to design adaptive solution algorithms. Singularly perturbed problems yield in general solutions with anisotropic features, e.g. strong boundary or interior layers. For such problems it is useful to use anisotropic meshes in order to reach maximal order of convergence. Moreover, the quality of the numerical solution rests on the robustness of the a posteriori error estimation with respect to both the anisotropy of the mesh and the perturbation parameters. There exist different possibilities to measure the a posteriori error in the energy norm for the singularly perturbed reaction-diffusion equation. One of them is the equilibrated residual method which is known to be robust as long as one solves auxiliary local Neumann problems exactly on each element. We provide a basis for an approximate solution of the aforementioned auxiliary problem and show that this approximation does not affect the quality of the error estimation. Another approach that we develope for the a posteriori error estimation is the hierarchical error estimator. The robustness proof for this estimator involves some stages including the strengthened Cauchy-Schwarz inequality and the error reduction property for the chosen space enrichment. In the rest of the work we deal with adaptive algorithms. We provide an overview of the existing methods for the isotropic meshes and then generalize the ideas for the anisotropic case. For the resulting algorithm the error reduction estimates are proven for the Poisson equation and for the singularly perturbed reaction-difussion equation. The convergence for the Poisson equation is also shown. Numerical experiments for the equilibrated residual method, for the hierarchical error estimator and for the adaptive algorithm confirm the theory. The adaptive algorithm shows its potential by creating the anisotropic mesh for the problem with the boundary layer starting with a very coarse isotropic mesh.
29

Mínimos locais de funcionais com dependência especial via Γ convergência: com e sem vínculo

Biesdorf, João 30 May 2011 (has links)
Made available in DSpace on 2016-06-02T20:27:39Z (GMT). No. of bitstreams: 1 3744.pdf: 1323892 bytes, checksum: 71a7a7180d61db167b8cbec4db2bbe8b (MD5) Previous issue date: 2011-05-30 / Universidade Federal de Sao Carlos / We address the question of existence of stationary stable solutions to a class of reaction-diffusion equations with spatial dependence in 2 and 3-dimensional bounded domains. The approach consists of proving the existence of local minimizer of the corres-ponding energy functional. For existence, it was enough to give sufficient conditions on the diffusion coefficient and on the reaction term to ensure the existence of isolated mi¬nima of the Γlimit functional of the energy functional family. In the second part we take the techniques developed in the first part to minimize functional in 2 and 3-dimensional rectangles, with and without constraint, solving in a more general form this problem, which was originaly proposed in 1989 by Robert Kohn and Peter Sternberg. / Na primeira parte deste trabalho, abordamos a existência de soluções estacioná-rias estáveis para uma classe de equações de reação-difusão com dependência espacial em domínios limitados 2 e 3-dimensionais. Esta abordagem foi feita via existência de míni¬mos locais dos funcionais de energia correspondentes. Para tal, foi suficiente encontrar condições no coeficiente de difusão e no termo de reação que garantam existência de míni¬mos isolados do funcional Γlimite da família de funcionais de energia. Na segunda parte, aproveitamos as técnicas desenvolvidas na primeira parte para minimizar funcionais em retângulos e paralelepípedos, com e sem vínculo, resolvendo de forma bem mais geral este problema, originalmente proposto em 1989 por Robert Kohn e Peter Sternberg.
30

Equations de réaction-diffusion dans un environnement périodique en temps - Applications en médecine / Reaction-diffusion equations in a time periodic environment - Applications in medical sciences

Contri, Benjamin 06 July 2016 (has links)
Cette thèse est consacrée à l'étude d'équations de réaction-diffusion dans un environnement périodique en temps. Ces équations modélisent l'évolution d'une tumeur cancéreuse en présence d'un traitement qui correspond à une immunothérapie dans la première partie du manuscrit, et à une chimiothérapie cytotoxique dans la suite.On considère dans un premier temps des nonlinéarités périodiques en temps pour lesquelles 0 et 1 sont des états d'équilibre linéairement stables. On étudie l'unicité, la monotonie et la stabilité de fronts pulsatoires. On exhibe également des cas d'existence et de non-existence de telles solutions. Dans la deuxième partie de la thèse, on commence par travailler sur des nonlinéarités périodiques en temps qui sont la somme d'une fonction positive traduisant la croissance de la tumeur et d'un terme de mort de cellules cancéreuses du au traitement. On s'intéresse aux états d'équilibres de telles nonlinéarités, et on va déduire de cette étude des propriétés de propagation de perturbations et l'existence de fronts pulsatoires. On raffine ensuite le modèle en considérant des nonlinéarités qui sont la somme d'une fonction asymptotiquement périodique en temps et d'un terme perturbatif. On prouve notamment que les propriétés relatives à la propagation de perturbations restent valables dans ce cadre là. Pour finir, on s'intéresse à l'influence du protocole de traitement. / This phD thesis investigates reaction-diffusion equations in a time periodic environment. These equations model the evolution of a cancerous tumor in the presence of a treatment that corresponds to an immunotherapy in the firs part of the manuscript, and to a cytotoxic chemotherapy after. We begin by considering time-periodic nonlinearities for which 0 and 1 are linearly stable equilibrium states. We study uniqueness, monotonicity and stability of pulsating fronts. We also provide some conditions for the existence and non-existence of such solutions.In the second part of the manuscript, we begin by working on time-periodic nonlinearities which are the sum of a positive function which stands for the growth of the tumor in the absence of treatment and of a death term of cancerous cells due to treatment. We are interested in equilibrium states of such nonlinearities, and we will infer from this study spreading properties and existence of pulsating fronts. We then refine the model by considering nonlinearities which are the sum of an asymptotic periodic nonlinearity and of a small perturbation. In particular we prove that the spreading properties remain valid in this case. To finish, we are interested in the influence of the protocol of the treatment.

Page generated in 0.1737 seconds