Spelling suggestions: "subject:"recommandation"" "subject:"recommandations""
21 |
Systèmes de recommandation dans des contextes industrielsMeyer, Frank 25 January 2012 (has links) (PDF)
Cette thèse traite des systèmes de recommandation automatiques. Les moteurs de recommandation automatique sont des systèmes qui permettent, par des techniques de data mining, de recommander automatiquement à des clients, en fonction de leurs consommations passées, des produits susceptibles de les intéresser. Ces systèmes permettent par exemple d'augmenter les ventes sur des sites web marchands : le site Amazon a une stratégie marketing en grande partie basée sur la recommandation automatique. Amazon a popularisé l'usage de la recommandation automatique par la célèbre fonction de recommandation que nous qualifions d'item-to-items, le fameux : " les personnes qui ont vu/acheté cet articles ont aussi vu/acheté ces articles. La contribution centrale de cette thèse est d'analyser les systèmes de recommandation automatiques dans le contexte industriel, et notamment des besoins marketing, et de croiser cette analyse avec les travaux académiques.
|
22 |
Vers une approche comportementale de recommandation : apport de l'analyse des usages dans un processus de personnalisationEsslimani, Ilham 11 December 2010 (has links) (PDF)
Internet met à la disposition des utilisateurs une large variété d'items dont le volume est sans cesse croissant. Devant cette surcharge d'items, l'utilisateur peine à repérer les items qui correspondent à ses besoins. C'est dans ce contexte que les systèmes de recommandation se sont développés, dans la mesure où ils permettent de faciliter l'accès aux items susceptibles d'intéresser l'utilisateur. Néanmoins, malgré le succès des systèmes de recommandation, certaines questions de recherche restent soulevées telles que : le manque de données, l'identification de voisins fiables, la précision des recommandations et la recommandation de la nouveauté. En vue de répondre à ces questions, nous avons proposé à travers cette thèse une nouvelle approche de recommandation inspirée du web usage mining et du filtrage collaboratif. Cette approche repose sur l'observation du comportement de l'utilisateur et sur l'analyse de ses usages en vue de générer des recommandations. En outre, nous nous sommes inspirés des techniques utilisées dans le domaine de l'analyse des réseaux sociaux afin de prédire les liens à travers un réseau d'utilisateurs construit sur la base des similarités de comportement. L'objectif est de pallier le manque de données et d'améliorer l'identification de voisins fiables. De plus, dans la perspective d'atténuer le problème de démarrage à froid (concernant les nouveaux items), nous avons proposé une approche de recommandation qui repose sur la détection de leaders pour la recommandation de la nouveauté.
|
23 |
Modeling and mining of Web discussionsStavrianou, Anna 01 February 2010 (has links) (PDF)
Le développement du Web 2.0 a donné lieu à la production d'une grande quantité de discussions en ligne. La fouille et l'extraction de données de qualité de ces discussions en ligne sont importantes dans de nombreux domaines (industrie, marketing) et particulièrement pour toutes les applications de commerce électronique. Les discussions de ce type contiennent des opinions et des croyances de personnes et cela explique l'intérêt de développer des outils d'analyse efficaces pour ces discussions. L'objectif de cette thèse est de définir un modèle qui représente les discussions en ligne et facilite leur analyse. Nous proposons un modèle basé sur des graphes. Les sommets du graphe représentent les objets de type message. Chaque objet de type message contient des informations comme son contenu, son auteur, l'orientation de l'opinion qui y été exprimée et la date où il a été posté. Les liens parmi les objets message montrent une relation de type "répondre à". En d'autres termes, ils montrent quels objets répondent à quoi, conséquence directe de la structure de la discussion en ligne. Avec ce nouveau modèle, nous proposons un certain nombre de mesures qui guident la fouille au sein de la discussion et permettent d'extraire des informations pertinentes. Il existe des mesures centrées sur l'analyse de l'opinion qui traitent de l'évolution de l'opinion au sein de la discussion. Nous définissons également des mesures centrées sur le temps, qui exploitent la dimension temporelle du modèle, alors que les mesures centrées sur le sujet peuvent être utilisées pour mesurer la présence de sujets dans une discussion. La présence de l'utilisateur dans des discussions en ligne peut être exploitée soit par les techniques des réseaux sociaux, soit à travers notre nouveau modèle qui inclut la connaissance des auteurs de chaque objet message. De plus, une liste de messages clés est recommandée à l'utilisateur pour permettre une participation plus efficace au sein de la discussion.
|
24 |
HELP : localisation et recommandation d'experts pour le développement d'un système d'aide collaborativeSaleman, Anita January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
25 |
UMAKE : adaptation et recommandation d'outils d'aide d'un quiz pour l'auto-évaluationMabrouk, Moez January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
26 |
Factorisation de matrices et analyse de contraste pour la recommandation / Matrix Factorization and Contrast Analysis Techniques for RecommendationAleksandrova, Marharyta 07 July 2017 (has links)
Dans de nombreux domaines, les données peuvent être de grande dimension. Ça pose le problème de la réduction de dimension. Les techniques de réduction de dimension peuvent être classées en fonction de leur but : techniques pour la représentation optimale et techniques pour la classification, ainsi qu'en fonction de leur stratégie : la sélection et l'extraction des caractéristiques. L'ensemble des caractéristiques résultant des méthodes d'extraction est non interprétable. Ainsi, la première problématique scientifique de la thèse est comment extraire des caractéristiques latentes interprétables? La réduction de dimension pour la classification vise à améliorer la puissance de classification du sous-ensemble sélectionné. Nous voyons le développement de la tâche de classification comme la tâche d'identification des facteurs déclencheurs, c'est-à-dire des facteurs qui peuvent influencer le transfert d'éléments de données d'une classe à l'autre. La deuxième problématique scientifique de cette thèse est comment identifier automatiquement ces facteurs déclencheurs? Nous visons à résoudre les deux problématiques scientifiques dans le domaine d'application des systèmes de recommandation. Nous proposons d'interpréter les caractéristiques latentes de systèmes de recommandation basés sur la factorisation de matrices comme des utilisateurs réels. Nous concevons un algorithme d'identification automatique des facteurs déclencheurs basé sur les concepts d'analyse par contraste. Au travers d'expérimentations, nous montrons que les motifs définis peuvent être considérés comme des facteurs déclencheurs / In many application areas, data elements can be high-dimensional. This raises the problem of dimensionality reduction. The dimensionality reduction techniques can be classified based on their aim: dimensionality reduction for optimal data representation and dimensionality reduction for classification, as well as based on the adopted strategy: feature selection and feature extraction. The set of features resulting from feature extraction methods is usually uninterpretable. Thereby, the first scientific problematic of the thesis is how to extract interpretable latent features? The dimensionality reduction for classification aims to enhance the classification power of the selected subset of features. We see the development of the task of classification as the task of trigger factors identification that is identification of those factors that can influence the transfer of data elements from one class to another. The second scientific problematic of this thesis is how to automatically identify these trigger factors? We aim at solving both scientific problematics within the recommender systems application domain. We propose to interpret latent features for the matrix factorization-based recommender systems as real users. We design an algorithm for automatic identification of trigger factors based on the concepts of contrast analysis. Through experimental results, we show that the defined patterns indeed can be considered as trigger factors
|
27 |
Modéliser la diversité au cours du temps pour comprendre le contexte de l'utilisateur dans les systèmes de recommandation / Modeling diversity over time to understand user context in recommender systemsL'huillier, Amaury 20 November 2018 (has links)
Les systèmes de recommandation se sont imposés comme étant des outils indispensables face à une quantité de données qui ne cesse chaque jour de croître depuis l'avènement d'Internet. Leur objectif est de proposer aux utilisateurs des items susceptibles de les intéresser sans que ces derniers n'aient besoin d'agir pour les obtenir. Après s'être majoritairement focalisés sur la précision de la prédiction d'intérêt, ces systèmes ont évolué pour prendre en compte d'autres critères dans leur processus de recommandation, tels que les facteurs humains inhérents à la prise de décision, afin d'améliorer la qualité et l'utilité des recommandations. Cependant, la prise en compte de certains facteurs humains tels que la diversité et le contexte demeure critiquable. Alors que le contexte des utilisateurs est inféré sur la base d'informations collectées à l'insu de leur vie privée, la prise en compte de la diversité est quant à elle réduite à une dimension qu'un système se doit de maximiser. Or, certains travaux récents démontrent que la diversité correspond à un besoin évoluant dynamiquement au cours du temps, et dont la proportion à insuffler dans les recommandations est dépendante de la tâche effectuée (i.e du contexte). Partant du postulat inverse selon lequel l'analyse de l'évolution de la diversité au cours du temps permet de définir le contexte de l'utilisateur, nous proposons dans ce manuscrit une nouvelle approche de modélisation contextuelle basée sur la diversité. En effet, nous soutenons qu'une variation de diversité remarquable peut être la conséquence d'un changement de contexte et qu'il faut alors adapter la stratégie de recommandation en conséquence. Nous présentons la première approche de la littérature permettant de modéliser en temps réel l'évolution de la diversité, ainsi qu'une nouvelle famille de contextes dits implicites n'exploitant aucune donnée sensible. La possibilité de remplacer les contextes traditionnels (explicites) par les contextes implicites est confirmée de plusieurs manières. Premièrement, nous démontrons sur deux corpus issus d'applications réelles qu'il existe un fort recouvrement entre les changements de contextes explicites et les changements de contextes implicites. Deuxièmement, une étude utilisateur impliquant de nombreux participants nous permet de démontrer l'existence de liens entre les contextes explicites et les caractéristiques des items consultés dans ces derniers. Fort de ces constats et du potentiel offert par nos modèles, nous présentons également plusieurs approches de recommandation et de prise en compte des besoins des utilisateurs / Recommender Systems (RS) have become essential tools to deal with an endless increasing amount of data available on the Internet. Their goal is to provide items that may interest users before they have to find them by themselves. After being exclusively focused on the precision of users' interests prediction task, RS had to evolve by taking into account other criteria like human factors involved in the decision-making process while computing recommendations, so as to improve their quality and usefulness of recommendations. Nevertheless, the way some human factors, such as context and diversity needs, are managed remains open to criticism. While context-aware recommendations relies on exploiting data that are collected without any consideration for users' privacy, diversity has been coming down to a dimension which has to be maximized. However recent studies demonstrate that diversity corresponds to a need which evolves dynamically over time. In addition, the optimal amount of diversity to provide in the recommendations depends on the on-going task of users (i.e their contexts). Thereby, we argue that analyzing the evolution of diversity over time would be a promising way to define a user's context, under the condition that context is now defined by item attributes. Indeed, we support the idea that a sudden variation of diversity can reflect a change of user's context which requires to adapt the recommendation strategy. We present in this manuscript the first approach to model the evolution of diversity over time and a new kind of context, called ``implicit contexts'', that are respectful of privacy (in opposition to explicit contexts). We confirm the benefits of implicit contexts compared to explicit contexts from several points of view. As a first step, using two large music streaming datasets we demonstrate that explicit and implicit context changes are highly correlated. As a second step, a user study involving many participants allowed us to demonstrate the links between the explicit contexts and the characteristics of the items consulted in the meantime. Based on these observations and the advantages offered by our models, we also present several approaches to provide privacy-preserving context-aware recommendations and to take into account user's needs
|
28 |
Système de recommandation basé sur les réseaux pour l'interprétation de résultats de métabolomique / Metabolic network based recommender system for metabolic result interpretationFrainay, Clément 26 June 2017 (has links)
La métabolomique permet une étude à large échelle du profil métabolique d'un individu, représentatif de son état physiologique. La comparaison de ces profils conduit à l'identification de métabolites caractéristiques d'une condition donnée. La métabolomique présente un potentiel considérable pour le diagnostic, mais également pour la compréhension des mécanismes associés aux maladies et l'identification de cibles thérapeutiques. Cependant, ces dernières applications nécessitent d'inclure ces métabolites caractéristiques dans un contexte plus large, décrivant l'ensemble des connaissances relatives au métabolisme, afin de formuler des hypothèses sur les mécanismes impliqués. Cette mise en contexte peut être réalisée à l'aide des réseaux métaboliques, qui modélisent l'ensemble des transformations biochimiques opérables par un organisme. L'une des limites de cette approche est que la métabolomique ne permet pas à ce jour de mesurer l'ensemble des métabolites, et ainsi d'offrir une vue complète du métabolome. De plus, dans le contexte plus spécifique de la santé humaine, la métabolomique est usuellement appliquée à des échantillons provenant de biofluides plutôt que des tissus, ce qui n'offre pas une observation directe des mécanismes physiologiques eux-mêmes, mais plutôt de leur résultante. Les travaux présentés dans cette thèse proposent une méthode pour pallier ces limitations, en suggérant des métabolites pertinents pouvant aider à la reconstruction de scénarios mécanistiques. Cette méthode est inspirée des systèmes de recommandations utilisés dans le cadre d'activités en ligne, notamment la suggestion d'individus d'intérêt sur les réseaux sociaux numériques. La méthode a été appliquée à la signature métabolique de patients atteints d'encéphalopathie hépatique. Elle a permis de mettre en avant des métabolites pertinents dont le lien avec la maladie est appuyé par la littérature scientifique, et a conduit à une meilleure compréhension des mécanismes sous-jacents et à la proposition de scénarios alternatifs. Elle a également orienté l'analyse approfondie des données brutes de métabolomique et enrichie par ce biais la signature de la maladie initialement obtenue. La caractérisation des modèles et des données ainsi que les développements techniques nécessaires à la création de la méthode ont également conduit à la définition d'un cadre méthodologique générique pour l'analyse topologique des réseaux métaboliques. / Metabolomics allows large-scale studies of the metabolic profile of an individual, which is representative of its physiological state. Metabolic markers characterising a given condition can be obtained through the comparison of those profiles. Therefore, metabolomics reveals a great potential for the diagnosis as well as the comprehension of mechanisms behind metabolic dysregulations, and to a certain extent the identification of therapeutic targets. However, in order to raise new hypotheses, those applications need to put metabolomics results in the light of global metabolism knowledge. This contextualisation of the results can rely on metabolic networks, which gather all biochemical transformations that can be performed by an organism. The major bottleneck preventing this interpretation stems from the fact that, currently, no single metabolomic approach allows monitoring all metabolites, thus leading to a partial representation of the metabolome. Furthermore, in the context of human health related experiments, metabolomics is usually performed on bio-fluid samples. Consequently, those approaches focus on the footprints left by impacted mechanisms rather than the mechanisms themselves. This thesis proposes a new approach to overcome those limitations, through the suggestion of relevant metabolites, which could fill the gaps in a metabolomics signature. This method is inspired by recommender systems used for several on-line activities, and more specifically the recommendation of users to follow on social networks. This approach has been used for the interpretation of the metabolic signature of the hepatic encephalopathy. It allows highlighting some relevant metabolites, closely related to the disease according to the literature, and led to a better comprehension of the impaired mechanisms and as a result the proposition of new hypothetical scenario. It also improved and enriched the original signature by guiding deeper investigation of the raw data, leading to the addition of missed compounds. Models and data characterisation, alongside technical developments presented in this thesis, can also offer generic frameworks and guidelines for metabolic networks topological analysis.
|
29 |
Déterminant du comportement de recommandation d'un site web / The Determinants of Website Recommending BehaviorVo, Quang-Tri 19 December 2013 (has links)
Bien que les recommandations d’un site web soit fréquentes et importantes, le marketing ne précise pas les raisons pour lesquelles une personne recommande un site web plus que d’un autre, ni les déterminants de ce comportement. En se basant sur une littérature interdisciplinaire comprenant le Marketing, les Systèmes d’Information et la Gestion des Connaissances, cette thèse présente un modèle du comportement de recommandation d’un site web. Le modèle proposé a été validé auprès de 776 internautes vietnamiens. Les résultats obtenus mettent en évidence l’importance de l’influence des bénéfices utilitaires et hédonistes procurés par le site web pour les deux interlocuteurs sur le comportement de recommandation par l’émetteur. / Despite of the increasing importance and the high frequency of the action of recommending websites, marketing has not specified reasons for which a person recommends a website more than others, and the determinants of this behavior. Based on an interdisciplinary literature including Marketing, Information Systems and Knowledge Management, this thesis presents a model of website recommending behaviors. The proposed model has been validated on a sample of 776 Vietnamese web users. The results highlight the impact of utilitarian and hedonistic benefits of the website for interlocutors on the transmitter’s decision and behavior.
|
30 |
Développement d'applications Web avec des composants tiers / Web application development with third-party componentsCao, Hanyang 05 February 2019 (has links)
Les applications Web sont très populaires et l'utilisation de certaines d'entre elles (p. ex. Facebook, Google) fait de plus en plus partie de nos vies. Les développeurs sont impatients de créer diverses applications Web pour répondre à la demande croissante des gens. Pour construire une application Web, les développeurs doivent connaître quelques technologies de programmation de base. De plus, ils préfèrent utiliser certains composants tiers (tels que les bibliothèques côté serveur, côté client, services REST) dans les applications web. En incluant ces composants, ils pourraient bénéficier de la maintenabilité, de la réutilisabilité, de la lisibilité et de l'efficacité. Dans cette thèse, nous proposons d'aider les développeurs à utiliser des composants tiers lorsqu'ils créent des applications web. Nous présentons trois obstacles lorsque les développeurs utilisent les composants tiers: Quelles sont les meilleures bibliothèques JavaScript à utiliser? Comment obtenir les spécifications standard des services REST? Comment s'adapter aux changements de données des services REST? C'est pourquoi nous présentons trois approches pour résoudre ces problèmes. Ces approches ont été validées par plusieurs études de cas et données industrielles. Nous décrivons certains travaux futurs visant à améliorer nos solutions et certains problèmes de recherche que nos approches peuvent cibler. / Web applications are highly popular and using some of them (e.g., Facebook, Google) is becoming part of our lives. Developers are eager to create various web applications to meet people's increasing demands. To build a web application, developers need to know some basic programming technologies. Moreover, they prefer to use some third-party components (such as server-side libraries, client-side libraries, REST services) in the web applications. By including those components, they could benefit from maintainability, reusability, readability, and efficiency. In this thesis, we propose to help developers to use third-party components when they create web applications. We present three impediments when developers using the third-party components: What are the best JavaScript libraries to use? How to get the standard specifications of REST services? How to adapt to the data changes of REST services? As such, we present three approaches to solve these problems. Those approaches have been validated through several case studies and industrial data. We describe some future work to improve our solutions, and some research problems that our approaches can target.
|
Page generated in 0.1059 seconds