• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 844
  • 42
  • 35
  • 35
  • 35
  • 26
  • 20
  • 20
  • 19
  • 11
  • 9
  • 2
  • Tagged with
  • 882
  • 882
  • 882
  • 316
  • 262
  • 228
  • 188
  • 184
  • 144
  • 121
  • 110
  • 108
  • 96
  • 92
  • 91
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
871

Aplicação de inteligência computacional na resolução de problemas de sistemas elétricos de potência /

Lopez Sepulveda, Gloria Patricia. January 2017 (has links)
Orientador: Marcos Julio Rider Flores / Resumo: Nesta tese são utilizados algoritmos de Inteligência Computacional para resolver quatro problemas da área de sistemas elétricos de potência, com o intuito de automatizar a tomada de decisões em processos que normalmente são realizados por especialistas humanos ajudados de métodos computacionais clássicos. Nesta tese são utilizados os algoritmos de aprendizado de máquina: árvores de decisão, redes neurais artificiais e máquinas de vetor de suporte, para realizar o processo de aprendizado dos sistemas inteligentes e para realizar a mineração de dados. Estes algoritmos podem ser treinados a partir das medições disponíveis e ações registradas nos centros de controle dos sistemas de potência. Sistemas Inteligentes foram utilizados para realizar: a) o controle centralizado Volt-VAr em modernos sistemas de distribuição de energia elétrica em tempo real usando medições elétricas; b) a detecção de fraudes nas redes de distribuição de energia elétrica realizando um processo de mineração de dados para estabelecer padrões de consumo que levem a possíveis clientes fraudadores; c) a localização de faltas nos sistemas de transmissão de energia elétrica automatizando o processo de localização e ajudando para que uma ação de controle da falta seja realizada de forma rápida e eficiente; e d) a coordenação de carga inteligente de veículos elétricos e dispositivos de armazenamento em tempo real utilizando a tecnologia V2G, nos sistemas de distribuição de energia elétrica a partir de medições elé... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: In this thesis Computational Intelligence algorithms are used to solve four problems of the area of power electrical systems, in order to automate decision making in processes that are usually performed by human experts aided by classical computational methods. In this thesis the machine learning algorithms are used: decision trees, artificial neural networks and support vector machines to carry out the learning process of Intelligent Systems and to perform Data Mining. These algorithms are trained from the available measurements and actions recorded in the control centers of the systems. Intelligent Systems were used to perform: a) the centralized control Volt-VAr in modern systems of distribution of electrical energy in real time using electrical measurements; b) detection of fraud in electricity distribution networks by performing a data mining process to establish patterns of consumption that lead to possible fraudulent customers; c) fault location in electric power transmission systems by automating the localization process and helping to ensure that a fault control action is performed quickly and efficiently; and d) coordination of intelligent charging of electric vehicles and storage devices using V2G technology in real-time, in electric power distribution systems using electrical measurements. For the centralized control problem Volt-VAr was tested in 42-node distribution system, for the problem of loading electric vehicles and storage devices the tests were performed... (Complete abstract click electronic access below) / Doutor
872

Reconhecimento de padrões aplicados à identificação de patologias de laringe / Pattern recognition applied to the identification of pathologies laryngeal

Sodré, Bruno Ribeiro 23 February 2016 (has links)
As patologias que afetam a laringe estão aumentando consideravelmente nos últimos anos devido à condição da sociedade atual onde há hábitos não saudáveis como fumo, álcool e tabaco e um abuso vocal cada vez maior, talvez por conta do aumento da poluição sonora, principalmente nos grandes centros urbanos. Atualmente o exame utilizado pela endoscopia per-oral, direcionado a identificar patologias de laringe, são a videolaringoscopia e videoestroboscopia, ambos invasivos e por muitas vezes desconfortável ao paciente. Buscando melhorar o bem estar e minimizar o desconforto dos pacientes que necessitam submeter-se a estes procedimentos, este estudo tem como objetivo reconhecer padrões que possam ser aplicados à identificação de patologias de laringe de modo a auxiliar na criação de um novo método não invasivo em substituição ao método atual. Este trabalho utilizará várias configurações diferentes de redes neurais. A primeira rede neural foi gerada a partir de 524.287 resultados obtidos através das configurações k-k das 19 medidas acústicas disponíveis neste trabalho. Esta configuração atingiu uma acurácia de 99,5% (média de 96,99±2,08%) ao utilizar uma configuração com 11 e com 12 medidas acústicas dentre as 19 disponíveis. Utilizando-se 3 medidas rotacionadas (obtidas através do método de componentes principais), foi obtido uma acurácia de 93,98±0,24%. Com 6 medidas rotacionadas, o resultado obtido foi de acurácia foi de 94,07±0,29%. Para 6 medidas rotacionadas com entrada normalizada, a acurácia encontrada foi de 97,88±1,53%. A rede neural que fez 23 diferentes classificações, voz normal mais 22 patologias, mostrou que as melhores classificações, de acordo com a acurácia, são a da patologia hiperfunção com 58,23±18,98% e a voz normal com 52,15±18,31%. Já para a pior patologia a ser classificada, encontrou-se a fadiga vocal com 0,57±1,99%. Excluindo-se a voz normal, ou seja, utilizando uma rede neural composta somente por vozes patológicas, a hiperfunção continua sendo a mais facilmente identificável com uma acurácia de 57,3±19,55%, a segunda patologia mais facilmente identificável é a constrição ântero-posterior com 18,14±11,45%. Nesta configuração, a patologia mais difícil de se classificar continua sendo a fadiga vocal com 0,7±2,14%. A rede com re-amostragem obteve uma acurácia de 25,88±10,15% enquanto que a rede com re-amostragem e alteração de neurônios na camada intermediária obteve uma acurácia de 21,47±7,58% para 30 neurônios e uma acurácia de 18,44±6,57% para 40 neurônios. Por fim foi feita uma máquina de vetores suporte que encontrou um resultado de 67±6,2%. Assim, mostrou-se que as medidas acústicas precisam ser aprimoradas para a obtenção de melhores resultados de classificação dentre as patologias de laringe estudadas. Ainda assim, verificou-se que é possível discriminar locutores normais daqueles pacientes disfônicos. / Diseases that affect the larynx have been considerably increased in recent years due to the condition of nowadays society where there have been unhealthy habits like smoking, alcohol and tobacco and an increased vocal abuse, perhaps due to the increase in noise pollution, especially in large urban cities. Currently the exam performed by per-oral endoscopy (aimed to identify laryngeal pathologies) have been videolaryngoscopy and videostroboscopy, both invasive and often uncomfortable to the patient. Seeking to improve the comfort of the patients who need to undergo through these procedures, this study aims to identify acoustic patterns that can be applied to the identification of laryngeal pathologies in order to creating a new non-invasive larynx assessment method. Here two different configurations of neural networks were used. The first one was generated from 524.287 combinations of 19 acoustic measurements to classify voices into normal or from a diseased larynx, and achieved an max accuracy of 99.5% (96.99±2.08%). Using 3 and 6 rotated measurements (obtained from the principal components analysis method), the accuracy was 93.98±0.24% and 94.07±0.29%, respectively. With 6 rotated measurements from a previouly standardization of the 19 acoustic measurements, the accuracy was 97.88±1.53%. The second one, to classify 23 different voice types (including normal voices), showed better accuracy in identifying hiperfunctioned larynxes and normal voices, with 58.23±18.98% and 52.15±18.31%, respectively. The worst accuracy was obtained from vocal fatigues, with 0.57±1.99%. Excluding normal voices of the analysis, hyperfunctioned voices remained the most easily identifiable (with an accuracy of 57.3±19.55%) followed by anterior-posterior constriction (with 18.14±11.45%), and the most difficult condition to be identified remained vocal fatigue (with 0.7±2.14%). Re-sampling the neural networks input vectors, it was obtained accuracies of 25.88±10.15%, 21.47±7.58%, and 18.44±6.57% from such networks with 20, 30, and 40 hidden layer neurons, respectively. For comparison, classification using support vector machine produced an accuracy of 67±6.2%. Thus, it was shown that the acoustic measurements need to be improved to achieve better results of classification among the studied laryngeal pathologies. Even so, it was found that is possible to discriminate normal from dysphonic speakers.
873

Uma abordagem para detecção de pessoas em imagens de veículos aéreos não-tripulados / An approach to people detection in unmanned aerial vehicles images

Oliveira, Diulhio Candido de 14 June 2016 (has links)
CAPES / Este trabalho tem como objetivo propor um método reconhecimento de pessoas em imagens aéreas obtidas a partir de Veículos Aéreos Não Tripulados de pequeno porte. Esta é uma aplicação de grande interesse, pois pode ser inserida em diversas situações tanto civis quanto militares como, por exemplo, missões de busca e salvamento. O uso de Veículos Aéreos Não Tripulados autônomos tende a aumentar com o barateamento desta tecnologia. Assim, esta tecnologia pode sobressair sobre outras utilizadas atualmente, como satélites e voos com grandes aeronaves. Para o reconhecimento de pessoas em imagens aéreas de forma autônoma, este trabalho propõe métodos na forma de Sistemas de Reconhecimento de Padrões (SRP) aplicados ao reconhecimento de imagens. Para este métodos, foram testadas quatro técnicas de aprendizado de máquina: Redes Neurais Convolucionais, HOG+SVM, Cascata Haar e Cascata LBP. Além disso, a fim de possibilitar o reconhecimento de pessoas em imagens aéreas em tempo real, foram testadas e avaliadas técnicas de detecção e segmentação de objetos: Mapa de Saliências e o Processamento de Imagens Térmicas de baixa resolução (PIT). Neste trabalho foram avaliadas as taxas de reconhecimento dos SRPs, além do seu tempo de processamento em um sistema embarcado de baixo custo e em uma Base de Controle Móvel (BCM). Os resultados de reconhecimento mostraram a efetividade das Redes Neurais Convolucionais, com uma acurácia de 0,9971, seguido do HOG+SVM com 0,9236, Cascata Haar com 0,7348 e por fim, Cascata LBP com 0,6615. Em situações onde foi simulado a oclusão parcial, as Redes Neurais Convolucionais atingiram Sensibilidade média 0,72, HOG+SVM de 0,50 e as Cascatas 0,20. Nos experimentos com os SRPs (algoritmos de segmentação e detecção juntamente com as técnicas de reconhecimento), o Mapa de Saliências pouco afetou as taxas de reconhecimento, quais ficaram muito próximas das obtidas no experimentos de reconhecimento. Já o Processamento de Imagens Térmicas de baixa resolução apresentou dificuldades em executar uma segmentação precisa, obtendo imagens com variação na translação, prejudicando a precisão do sistema. Por fim, este trabalho propõe uma nova abordagem para implementação de um SRP para o reconhecimento de pessoas em imagens áreas, utilizando Processamento de Imagens Térmicas juntamente com as Redes Neurais Convolucionais. Este SRP une altas taxas de reconhecimento com desempenho computacional de ao menos 1 fps na plataforma BCM. / This work aims to propose a method for people recognition in Small Unmanned Aerial Vehicles aerial imagery. This is an application of high interest, it can be used in several situations, both civilian and military, as search and rescue missions. The use of Unmanned Aerial Vehicles autonomously tends to increase with the cheapening of this technology, supporting search and rescue missions. Thus, this technology can excel over others currently used, as satellites and flights with large aircraft. For autonomous people recognition, this work proposes new methods as Pattern Reconigition System (PRS) applied to image recognition, applying it in aerial images. Four Pattern Reconigition techniques were tested: Convolutional Neural Networks, HOG+SVM, Haar Cascade and LBP Cascade. Furthermore, in order to achieve recognition of people in aerial images in Real-Time target and detection techniques were tested and evaluated: Saliency Maps and Low-resolution Thermal Image Processing (TIP). In this work were considered recognition rates of the methods and their computational time in a low-cost embedded system and a Mobile Ground Control Station (MGCS). The recognition results shown the Convolutional Neural Network potential, where an accuracy of 0.9971 was achieved, followed by HOG + SVM with 0.9236, Haar Cascade with 0.7348 and LBP Cascade with 0.6615. In situations simulated partial occlusion, where was the CNNs achieved average Sensitivity of 0.72, HOG+SVM with 0.50 and both Cascades 0.20. In experiments with PRS (targeting and detection algorithms with the recognition techniques), the Saliency Map had little influence in recongition rates, it was close to the rates achieved in recognition experiments. While the Low-resolution Thermal Image Processing had difficulties in segmentation process, where translation variantions occured, it harmed the system precision. Lastly, this work proposes a new approach for PRS implementation for people recognition in aerial imagery, using TIP with CNN. This PRS combines high rates of recognition with an computational performace of, at least, 1 fps in MGCS plataform.
874

Reconhecimento de padrões aplicados à identificação de patologias de laringe / Pattern recognition applied to the identification of pathologies laryngeal

Sodré, Bruno Ribeiro 23 February 2016 (has links)
As patologias que afetam a laringe estão aumentando consideravelmente nos últimos anos devido à condição da sociedade atual onde há hábitos não saudáveis como fumo, álcool e tabaco e um abuso vocal cada vez maior, talvez por conta do aumento da poluição sonora, principalmente nos grandes centros urbanos. Atualmente o exame utilizado pela endoscopia per-oral, direcionado a identificar patologias de laringe, são a videolaringoscopia e videoestroboscopia, ambos invasivos e por muitas vezes desconfortável ao paciente. Buscando melhorar o bem estar e minimizar o desconforto dos pacientes que necessitam submeter-se a estes procedimentos, este estudo tem como objetivo reconhecer padrões que possam ser aplicados à identificação de patologias de laringe de modo a auxiliar na criação de um novo método não invasivo em substituição ao método atual. Este trabalho utilizará várias configurações diferentes de redes neurais. A primeira rede neural foi gerada a partir de 524.287 resultados obtidos através das configurações k-k das 19 medidas acústicas disponíveis neste trabalho. Esta configuração atingiu uma acurácia de 99,5% (média de 96,99±2,08%) ao utilizar uma configuração com 11 e com 12 medidas acústicas dentre as 19 disponíveis. Utilizando-se 3 medidas rotacionadas (obtidas através do método de componentes principais), foi obtido uma acurácia de 93,98±0,24%. Com 6 medidas rotacionadas, o resultado obtido foi de acurácia foi de 94,07±0,29%. Para 6 medidas rotacionadas com entrada normalizada, a acurácia encontrada foi de 97,88±1,53%. A rede neural que fez 23 diferentes classificações, voz normal mais 22 patologias, mostrou que as melhores classificações, de acordo com a acurácia, são a da patologia hiperfunção com 58,23±18,98% e a voz normal com 52,15±18,31%. Já para a pior patologia a ser classificada, encontrou-se a fadiga vocal com 0,57±1,99%. Excluindo-se a voz normal, ou seja, utilizando uma rede neural composta somente por vozes patológicas, a hiperfunção continua sendo a mais facilmente identificável com uma acurácia de 57,3±19,55%, a segunda patologia mais facilmente identificável é a constrição ântero-posterior com 18,14±11,45%. Nesta configuração, a patologia mais difícil de se classificar continua sendo a fadiga vocal com 0,7±2,14%. A rede com re-amostragem obteve uma acurácia de 25,88±10,15% enquanto que a rede com re-amostragem e alteração de neurônios na camada intermediária obteve uma acurácia de 21,47±7,58% para 30 neurônios e uma acurácia de 18,44±6,57% para 40 neurônios. Por fim foi feita uma máquina de vetores suporte que encontrou um resultado de 67±6,2%. Assim, mostrou-se que as medidas acústicas precisam ser aprimoradas para a obtenção de melhores resultados de classificação dentre as patologias de laringe estudadas. Ainda assim, verificou-se que é possível discriminar locutores normais daqueles pacientes disfônicos. / Diseases that affect the larynx have been considerably increased in recent years due to the condition of nowadays society where there have been unhealthy habits like smoking, alcohol and tobacco and an increased vocal abuse, perhaps due to the increase in noise pollution, especially in large urban cities. Currently the exam performed by per-oral endoscopy (aimed to identify laryngeal pathologies) have been videolaryngoscopy and videostroboscopy, both invasive and often uncomfortable to the patient. Seeking to improve the comfort of the patients who need to undergo through these procedures, this study aims to identify acoustic patterns that can be applied to the identification of laryngeal pathologies in order to creating a new non-invasive larynx assessment method. Here two different configurations of neural networks were used. The first one was generated from 524.287 combinations of 19 acoustic measurements to classify voices into normal or from a diseased larynx, and achieved an max accuracy of 99.5% (96.99±2.08%). Using 3 and 6 rotated measurements (obtained from the principal components analysis method), the accuracy was 93.98±0.24% and 94.07±0.29%, respectively. With 6 rotated measurements from a previouly standardization of the 19 acoustic measurements, the accuracy was 97.88±1.53%. The second one, to classify 23 different voice types (including normal voices), showed better accuracy in identifying hiperfunctioned larynxes and normal voices, with 58.23±18.98% and 52.15±18.31%, respectively. The worst accuracy was obtained from vocal fatigues, with 0.57±1.99%. Excluding normal voices of the analysis, hyperfunctioned voices remained the most easily identifiable (with an accuracy of 57.3±19.55%) followed by anterior-posterior constriction (with 18.14±11.45%), and the most difficult condition to be identified remained vocal fatigue (with 0.7±2.14%). Re-sampling the neural networks input vectors, it was obtained accuracies of 25.88±10.15%, 21.47±7.58%, and 18.44±6.57% from such networks with 20, 30, and 40 hidden layer neurons, respectively. For comparison, classification using support vector machine produced an accuracy of 67±6.2%. Thus, it was shown that the acoustic measurements need to be improved to achieve better results of classification among the studied laryngeal pathologies. Even so, it was found that is possible to discriminate normal from dysphonic speakers.
875

Uma abordagem para detecção de pessoas em imagens de veículos aéreos não-tripulados / An approach to people detection in unmanned aerial vehicles images

Oliveira, Diulhio Candido de 14 June 2016 (has links)
CAPES / Este trabalho tem como objetivo propor um método reconhecimento de pessoas em imagens aéreas obtidas a partir de Veículos Aéreos Não Tripulados de pequeno porte. Esta é uma aplicação de grande interesse, pois pode ser inserida em diversas situações tanto civis quanto militares como, por exemplo, missões de busca e salvamento. O uso de Veículos Aéreos Não Tripulados autônomos tende a aumentar com o barateamento desta tecnologia. Assim, esta tecnologia pode sobressair sobre outras utilizadas atualmente, como satélites e voos com grandes aeronaves. Para o reconhecimento de pessoas em imagens aéreas de forma autônoma, este trabalho propõe métodos na forma de Sistemas de Reconhecimento de Padrões (SRP) aplicados ao reconhecimento de imagens. Para este métodos, foram testadas quatro técnicas de aprendizado de máquina: Redes Neurais Convolucionais, HOG+SVM, Cascata Haar e Cascata LBP. Além disso, a fim de possibilitar o reconhecimento de pessoas em imagens aéreas em tempo real, foram testadas e avaliadas técnicas de detecção e segmentação de objetos: Mapa de Saliências e o Processamento de Imagens Térmicas de baixa resolução (PIT). Neste trabalho foram avaliadas as taxas de reconhecimento dos SRPs, além do seu tempo de processamento em um sistema embarcado de baixo custo e em uma Base de Controle Móvel (BCM). Os resultados de reconhecimento mostraram a efetividade das Redes Neurais Convolucionais, com uma acurácia de 0,9971, seguido do HOG+SVM com 0,9236, Cascata Haar com 0,7348 e por fim, Cascata LBP com 0,6615. Em situações onde foi simulado a oclusão parcial, as Redes Neurais Convolucionais atingiram Sensibilidade média 0,72, HOG+SVM de 0,50 e as Cascatas 0,20. Nos experimentos com os SRPs (algoritmos de segmentação e detecção juntamente com as técnicas de reconhecimento), o Mapa de Saliências pouco afetou as taxas de reconhecimento, quais ficaram muito próximas das obtidas no experimentos de reconhecimento. Já o Processamento de Imagens Térmicas de baixa resolução apresentou dificuldades em executar uma segmentação precisa, obtendo imagens com variação na translação, prejudicando a precisão do sistema. Por fim, este trabalho propõe uma nova abordagem para implementação de um SRP para o reconhecimento de pessoas em imagens áreas, utilizando Processamento de Imagens Térmicas juntamente com as Redes Neurais Convolucionais. Este SRP une altas taxas de reconhecimento com desempenho computacional de ao menos 1 fps na plataforma BCM. / This work aims to propose a method for people recognition in Small Unmanned Aerial Vehicles aerial imagery. This is an application of high interest, it can be used in several situations, both civilian and military, as search and rescue missions. The use of Unmanned Aerial Vehicles autonomously tends to increase with the cheapening of this technology, supporting search and rescue missions. Thus, this technology can excel over others currently used, as satellites and flights with large aircraft. For autonomous people recognition, this work proposes new methods as Pattern Reconigition System (PRS) applied to image recognition, applying it in aerial images. Four Pattern Reconigition techniques were tested: Convolutional Neural Networks, HOG+SVM, Haar Cascade and LBP Cascade. Furthermore, in order to achieve recognition of people in aerial images in Real-Time target and detection techniques were tested and evaluated: Saliency Maps and Low-resolution Thermal Image Processing (TIP). In this work were considered recognition rates of the methods and their computational time in a low-cost embedded system and a Mobile Ground Control Station (MGCS). The recognition results shown the Convolutional Neural Network potential, where an accuracy of 0.9971 was achieved, followed by HOG + SVM with 0.9236, Haar Cascade with 0.7348 and LBP Cascade with 0.6615. In situations simulated partial occlusion, where was the CNNs achieved average Sensitivity of 0.72, HOG+SVM with 0.50 and both Cascades 0.20. In experiments with PRS (targeting and detection algorithms with the recognition techniques), the Saliency Map had little influence in recongition rates, it was close to the rates achieved in recognition experiments. While the Low-resolution Thermal Image Processing had difficulties in segmentation process, where translation variantions occured, it harmed the system precision. Lastly, this work proposes a new approach for PRS implementation for people recognition in aerial imagery, using TIP with CNN. This PRS combines high rates of recognition with an computational performace of, at least, 1 fps in MGCS plataform.
876

Técnicas de inteligência artificial aplicadas ao método de monitoramento de integridade estrutural baseado na impedância eletromecânica para monitoramento de danos em estruturas aeronáuticas / Artificial intelligence techniques applied to the impedance-based structural health monitoring technique for monitoring damage in aircraft structures

Palomino, Lizeth Vargas 03 July 2012 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / The basic concept of impedance-based structure health monitoring is measuring the variation of the electromechanical impedance of the structure as caused by the presence of damage by using patches of piezoelectric material bonded on the surface of the structure (or embedded into). The measured electrical impedance of the PZT patch is directly related to the mechanical impedance of the structure. That is why the presence of damage can be detected by monitoring the variation of the impedance signal. In order to quantify damage, a metric is specially defined, which allows to assign a characteristic scalar value to the fault. This study initially evaluates the influence of environmental conditions in the impedance measurement, such as temperature, magnetic fields and ionic environment. The results show that the magnetic field does not influence the impedance measurement and that the ionic environment influences the results. However, when the sensor is shielded, the effect of the ionic environment is significantly reduced. The influence of the sensor geometry has also been studied. It has been established that the shape of the PZT patch (rectangular or circular) has no influence on the impedance measurement. However, the position of the sensor is an important issue to correctly detect damage. This work presents the development of a low-cost portable system for impedance measuring to automatically measure and store data from 16 PZT patches, without human intervention. One fundamental aspect in the context of this work is to characterize the damage type from the various impedance signals collected. In this sense, the techniques of artificial intelligence known as neural networks and fuzzy cluster analysis were tested for classifying damage of aircraft structures, obtaining satisfactory results. One last contribution of the present work is the study of the performance of the electromechanical impedance-based structural health monitoring technique to detect damage in structures under dynamic loading. Encouraging results were obtained for this aim. / O conceito básico da técnica de integridade estrutural baseada na impedância tem a ver com o monitoramento da variação da impedância eletromecânica da estrutura, causada pela presença alterações estruturais, através de pastilhas de material piezelétrico coladas na superfície da estrutura ou nela incorporadas. A impedância medida se relaciona com a impedância mecânica da estrutura. A partir da variação dos sinais de impedância pode-se concluir pela existência ou não de uma falha. Para quantificar esta falha, métricas de dano são especialmente definidas, permitindo atribuir-lhe um valor escalar característico. Este trabalho pretende inicialmente avaliar a influência de algumas condições ambientais, tais como os campos magnéticos e os meios iônicos na medição de impedância. Os resultados obtidos mostram que os campos magnéticos não tem influência na medição de impedância e que os meios iônicos influenciam os resultados; entretanto, ao blindar o sensor, este efeito se reduz consideravelmente. Também foi estudada a influencia da geometria, ou seja, do formato do PZT e da posição do sensor com respeito ao dano. Verificou-se que o formato do PZT não tem nenhuma influência na medição e que a posição do sensor é importante para detectar corretamente o dano. Neste trabalho se apresenta o desenvolvimento de um sistema de medição de impedância de baixo custo e portátil que tem a capacidade de medir e armazenar a medição de 16 PZTs sem a necessidade de intervenção humana. Um aspecto de fundamental importância no contexto deste trabalho é a caracterização do dano a partir dos sinais de impedância coletados. Neste sentido, as técnicas de inteligência artificial conhecidas como redes neurais e análises de cluster fuzzy, foram testadas para classificar danos em estruturas aeronáuticas, obtendo resultados satisfatórios para esta tarefa. Uma última contribuição deste trabalho é o estudo do comportamento da técnica de monitoramento de integridade estrutural baseado na impedância eletromecânica na detecção de danos em estruturas submetidas a carregamento dinâmico. Os resultados obtidos mostram que a técnica funciona adequadamente nestes casos. / Doutor em Engenharia Mecânica
877

MP-Draughts - Um Sistema Multiagente de Aprendizagem Automática para Damas Baseado em Redes Neurais de Kohonen e Perceptron Multicamadas

Duarte, Valquíria Aparecida Rosa 17 July 2009 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The goal of this work is to present MP-Draughts (MultiPhase- Draughts), that is a multiagent environment for Draughts, where one agent - named IIGA- is built and trained such as to be specialized for the initial and the intermediate phases of the games and the remaining ones for the final phases of them. Each agent of MP-Draughts is a neural network which learns almost without human supervision (distinctly from the world champion agent Chinook). MP-Draughts issues from a continuous activity of research whose previous product was the efficient agent VisionDraughts. Despite its good general performance, VisionDraughts frequently does not succeed in final phases of a game, even being in advantageous situation compared to its opponent (for instance, getting into endgame loops). In order to try to reduce this misbehavior of the agent during endgames, MP-Draughts counts on 25 agents specialized for endgame phases, each one trained such as to be able to deal with a determined cluster of endgame boardstates. These 25 clusters are mined by a Kohonen-SOM Network from a Data Base containing a large quantity of endgame boardstates. After trained, MP-Draughts operates in the following way: first, an optimized version of VisionDraughts is used as IIGA; next, the endgame agent that represents the cluster which better fits the current endgame board-state will replace it up to the end of the game. This work shows that such a strategy significantly improves the general performance of the player agents. / O objetivo deste trabalho é propor um sistema de aprendizagem de Damas, o MPDraughts (MultiPhase- Draughts): um sistema multiagentes, em que um deles - conhecido como IIGA (Initial/Intermediate Game Agent)- é desenvolvido e treinado para ser especializado em fases iniciais e intermediárias de jogo e os outros 25 agentes, em fases finais. Cada um dos agentes que compõe o MP-Draughts é uma rede neural que aprende a jogar com o mínimo possível de intervenção humana (distintamente do agente campeão do mundo Chinook). O MP-Draughts é fruto de uma contínua atividade de pesquisa que teve como produto anterior o VisionDraughts. Apesar de sua eficiência geral, o Vision- Draughts, muitas vezes, tem seu bom desempenho comprometido na fase de finalização de partidas, mesmo estando em vantagem no jogo em comparação com o seu oponente (por exemplo, entrando em loop de final de jogo). No sentido de reduzir o comportamento indesejado do jogador, o MP-Draughts conta com 25 agentes especializados em final de jogo, sendo que cada um é treinado para lidar com um determinado tipo de cluster de tabuleiros de final de jogo. Esses 25 clusters são minerados por redes de Kohonen-SOM de uma base de dados que contém uma grande quantidade de estado de tabuleiro de final de jogo. Depois de treinado, o MP-Draughts atua da seguinte maneira: primeiro, uma versão aprimorada do VisionDraughts é usada como o IIGA; depois, um agente de final de jogo que representa o cluster que mais se aproxima do estado corrente do tabuleiro do jogo deverá substituir o IIGA e conduzir o jogo até o final. Este trabalho mostra que essa estratégia melhorou, significativamente, o desempenho geral do agente jogador. / Mestre em Ciência da Computação
878

Imputação de dados faltantes via algoritmo EM e rede neural MLP com o método de estimativa de máxima verossimilhança para aumentar a acurácia das estimativas

Ribeiro, Elisalvo Alves 14 August 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Database with missing values it is an occurrence often found in the real world, beiging of this problem caused by several reasons (equipment failure that transmits and stores the data, handler failure, failure who provides information, etc.). This may make the data inconsistent and unable to be analyzed, leading to very skewed conclusions. This dissertation aims to explore the use of Multilayer Perceptron Artificial Neural Network (ANN MLP), with new activation functions, considering two approaches (single imputation and multiple imputation). First, we propose the use of Maximum Likelihood Estimation Method (MLE) in each network neuron activation function, against the approach currently used, which is without the use of such a method or when is used only in the cost function (network output). It is then analyzed the results of these approaches compared with the Expectation Maximization algorithm (EM) is that the state of the art to treat missing data. The results indicate that when using the Artificial Neural Network MLP with Maximum Likelihood Estimation Method, both in all neurons and only in the output function, lead the an imputation with lower error. These experimental results, evaluated by metrics such as MAE (Mean Absolute Error) and RMSE (Root Mean Square Error), showed that the better results in most experiments occured when using the MLP RNA addressed in this dissertation to single imputation and multiple. / Base de dados com valores faltantes é uma ocorrência frequentemente encontrada no mundo real, sendo as causas deste problema são originadas por motivos diversos (falha no equipamento que transmite e armazena os dados, falha do manipulador, falha de quem fornece a informação, etc.). Tal situação pode tornar os dados inconsistentes e inaptos de serem analisados, conduzindo às conclusões muito enviesadas. Esta dissertação tem como objetivo explorar o emprego de Redes Neurais Artificiais Multilayer Perceptron (RNA MLP), com novas funções de ativação, considerando duas abordagens (imputação única e imputação múltipla). Primeiramente, é proposto o uso do Método de Estimativa de Máxima Verossimilhança (EMV) na função de ativação de cada neurônio da rede, em contrapartida à abordagem utilizada atualmente, que é sem o uso de tal método, ou quando o utiliza é apenas na função de custo (na saída da rede). Em seguida, são analisados os resultados destas abordagens em comparação com o algoritmo Expectation Maximization (EM) que é o estado da arte para tratar dados faltantes. Os resultados obtidos indicam que ao utilizar a Rede Neural Artificial MLP com o Método de Estimativa de Máxima Verossimilhança, tanto em todos os neurônios como apenas na função de saída, conduzem a uma imputação com menor erro. Os resultados experimentais foram avaliados via algumas métricas, sendo as principais o MAE (Mean Absolute Error) e RMSE (Root Mean Square Error), as quais apresentaram melhores resultados na maioria dos experimentos quando se utiliza a RNA MLP abordada neste trabalho para fazer imputação única e múltipla.
879

Determinação de regimes de escoamento gás-líquido em leito fixo utilizando redes neurais artificiais / Determination of gas-liquid flow regimes in packed bed using artificial neural networks

Zeni, Lucas Maycon Hoff 24 February 2012 (has links)
Made available in DSpace on 2017-07-10T18:07:58Z (GMT). No. of bitstreams: 1 Lucas Maycon Hoff Zeni.pdf: 1421377 bytes, checksum: 75c6a9407a955e26c7fd4db2939b1b79 (MD5) Previous issue date: 2012-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Configuration of fixed bed that operates with biphasic flow is used in industrial operations such as the Fischer-Tropsch, hydrogenation, and residual water treatments. Vital information for the project and operation of this type of bed is in its characteristics fluid-dynamic and among these characteristics the flow regime because these have a direct influence transferring heat and mass present in the bed. In the two-phase flow with ascendant flow through fixed bed, three distinct regimes can be identified: the bubble regime, for low gas flow; pulsating regime, for moderate liquid and gas flow; and spray regime; for low flow of liquid and high flow rates of gas. Although there are different techniques to determine flow regimes, the most used is the visual identification. Thus, this research aims to develop, by using artificial neural networks (ANNs) a way to determine, for a given set of liquid-gas flow what out-flow regime the bed presents. To do so, firstly, the out-flow regime were identified by using water and air, respectively flux mass flowing varying from 2 to 16.5 kg.m-2.s-1 and from 0 to 0.6 kg.m-2.s-1, flowing up-words through a fixed bed packed with glass spheres measuring from 2.7 to 3.5 mm of diameter. The network proposed to identify the regimes contains Multiple Layers Perceptron architecture (PML) trained by the back propagation algorithm put together by applying the Multiple Back-Propagation (MBP) software, version 2.2.3 consistently with two input neurons, two intermediate layers, and four output neurons. The number of neurons of the intermediate layers was assorted to find out the best configuration. As activation of function, logistic, tangent, hyperbolic, and Gaussian were tested. Observed results showed that it is possible the identification of regimes through neural networks and among those tested the one that showed the best performance was the one that used the hyperbolic-tangent activation function; 10 neurons in the first hidden layer, and 12 neurons in the second hidden layer. / A configuração de leito fixo que opera com escoamento bifásico é muito utilizada em operações industriais, tais como síntese de Fischer-Tropsch, hidrogenação e tratamento de águas residuais. Uma informação vital para projeto e operação deste tipo de leito está nas características fluidodinâmicas, e dentre estas características podem ser citados os regimes de escoamento, pois estes influenciam diretamente nas transferências de calor e massa presentes no leito. No escoamento bifásico com fluxo ascendente através de leito fixo podem ser identificados três regimes distintos: regime bolha, para baixas vazões de gás; regime pulsante, para vazões moderadas de líquido e gás; e regime spray, para baixas vazões de líquidos e altas vazões de gás. Apesar de haver diferentes técnicas para a determinação dos regimes de escoamento, a mais empregada é a identificação visual. Sendo assim, esta pesquisa tem por objetivo desenvolver, por meio da utilização de redes neurais artificiais (RNA s), uma maneira de determinar, para um dado conjunto de vazões gás-líquido, qual regime de escoamento o leito apresenta. Para isto, os regimes de escoamento primeiramente foram identificados utilizando água e ar, respectivamente com fluxo mássico variando de 2 a 16,5 kg.m-2.s-1 e de 0 a 0,6 kg.m-2.s-1, escoando em fluxo ascendente por meio de um leito fixo recheado com esferas de vidro de diâmetro entre 2,7 e 3,5 mm. A rede proposta para a identificação dos regimes possui arquitetura perceptron de múltiplas camadas (MLP) treinada pelo algoritmo backpropagation e foi montada utilizando o programa freeware Multiple Back-Propagation (MBP) versão 2.2.3 sempre com dois neurônios de entrada, duas camadas intermediárias e quatro neurônios de saída. O número de neurônios das camadas intermediárias foi variado a fim de descobrir a melhor configuração. Como função de ativação, foram testadas as funções logística, tangente hiperbólica e gaussiana. Os resultados observados mostram que é possível a identificação dos regimes por meio de redes neurais e dentre as configurações testadas, a que apresentou melhor desempenho foi a rede que utilizou a função de ativação tangente hiperbólica, 10 neurônios na primeira camada oculta e 12 neurônios na segunda camada oculta.
880

Modelagem híbrida do processo de troca iônica em colunas de leito fixo / Hybrid modelling of ion exchange process in fixed bed column

D'arisbo, Thiago 24 February 2011 (has links)
Made available in DSpace on 2017-07-10T18:08:16Z (GMT). No. of bitstreams: 1 Thiago DArisbo.pdf: 2108504 bytes, checksum: 7b8aad29ec7d75a6fd370e54a95cd849 (MD5) Previous issue date: 2011-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Ion exchange is a process that is used in the treatment of aqueous industrial effluents containing organic compounds and heavy metals. The fixed bed columns are longer applied by allowing the process to occur continuously (cycles of regeneration). The design and process optimization of the ion exchange column requires the use of mathematical models. Phenomenological models of these systems involve the solution of partial differential and algebraic equations. The equilibrium data for ion exchange processes are usually described by the Mass Action Law (MAL), which can be considered non-ideality of aqueous and solid phases. Artificial Neural Networks (ANN) are being used successfully for the study of equilibrium data because they are empirical models and don t demand a mathematical rigor. This work aimed to evaluate the applicability of the hybrid model to describe the dynamics of ion exchange in fixed beds of binary systems. This system consists of partial differential equations obtained from mass balance in fluid phases in the ion exchanger and ANN to describe the balance. LAM was adjusted to experimental data of ion exchange equilibrium and then were generated 4200 data sets for each binary pair studied, which served as training for RNA. We tested networks with different structures, with one and two input layers. The 3-3-2 structure was used in the simulations of the hybrid model because it was the best represented the systems during the training phase. The differential equations were solved by the lines method. A computer program in FORTRAN language was developed for solving the model equations. DASSL subroutine was used to solve the equations. The performance of the hybrid model was evaluated from the results obtained with the phenomenological model, in which case the equilibrium description was made with the use of MAL. It also was the analysis of results from the comparison of experimental data. To evaluate the model we used data from the literature of ion exchange in Amberlite IR 120 resin on the systems Cu-Na and Zn-Na and in NaY zeolite on Fe-Na and Zn-Na. Both models were efficient to describe the dynamics of ion-exchange fixed bed columns, and the hybrid model had the advantage of the reduced computational time (82% reduction on average) as a result of not needing to solve a nonlinear equation. / A troca iônica é um processo muito utilizado no tratamento de efluentes industriais aquosos contendo compostos orgânicos e metais pesados. As colunas de leito fixo são mais aplicadas por permitir que o processo ocorra de maneira contínua (ciclos de regeneração). O projeto e a otimização de processos de troca iônica em coluna requer o uso de modelos matemáticos. Os modelos fenomenológicos destes sistemas envolvem a resolução de equações diferenciais parciais e algébricas. Os dados de equilíbrio de processos de troca iônica geralmente são descritos pela Lei da Ação das Massas (LAM), na qual podem ser consideradas as não idealidades das fases aquosa e sólida. As Redes Neurais Artificiais (RNA) estão sendo utilizadas com sucesso para o estudo destes dados de equilíbrio por serem modelos empíricos e não demandarem tal rigor matemático. Esta dissertação teve por objetivo avaliar a aplicabilidade do modelo híbrido para descrever a dinâmica do processo de troca iônica em leito fixo de sistemas binários. Este sistema é constituído de equações diferenciais parciais obtidas por meio de balanço de massa nas fases fluida e no trocador iônico e de RNA para descrever o equilíbrio. A LAM foi ajustada a dados experimentais de equilíbrio de troca iônica e, então, foram gerados conjuntos de 4200 dados para cada par binário estudado, os quais serviram como treinamento para a RNA. Foram testadas redes com diferentes estruturas, com uma e com duas camadas de entrada. A estrutura 3-3-2 foi utilizada nas simulações do modelo híbrido, pois foi a que melhor representou os sistemas na etapa de treinamento. As equações diferenciais foram resolvidas pelo método das linhas. Um programa computacional em linguagem FORTRAN foi desenvolvido para a resolução das equações do modelo. Foi utilizada a sub-rotina DASSL para resolver as equações. O desempenho do modelo híbrido foi avaliada a partir dos resultados obtidos com o modelo fenomenológico, sendo que neste caso a descrição do equilíbrio foi feita pelo uso da LAM. Também foi feita a análise dos resultados a partir da comparação dos dados experimentais. Para avaliar o modelo foram utilizados dados da literatura de troca iônica em resina Amberlite IR 120 dos sistemas Cu-Na e Zn-Na e na zeólita NaY dos sistemas Fe-Na e Zn-Na. Ambos os modelos foram eficientes para descrever a dinâmica de troca iônica de colunas de leito fixo, sendo que o modelo híbrido apresentou como vantagem o menor tempo computacional (82% de redução em média) em decorrência de não necessitar resolver a equação não-linear.

Page generated in 0.0938 seconds