Spelling suggestions: "subject:"redes neurais(computação)"" "subject:"aedes neurais(computação)""
861 |
Comite de maquinas : uma abordagem unificada empregando maquinas de vetores-suporte / Committee machines: a unified approach using support vector machinesLima, Clodoaldo Aparecido de Moraes 12 October 2004 (has links)
Orientador : Fernando Jose Von Zuben / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-04T02:17:19Z (GMT). No. of bitstreams: 1
Lima_ClodoaldoAparecidodeMoraes_D.pdf: 5444612 bytes, checksum: 0172ca4143c2737bf19a3b2076c06b44 (MD5)
Previous issue date: 2004 / Resumo: Os algoritmos baseados em métodos de kernel destacam-se entre as diversas técnicas de aprendizado de máquina. Eles foram inicialmente empregados na implementação de máquinas de vetores-suporte (SVMs). A abordagem SVM representa um procedimento de
aprendizado não-paramétrico para classificação e regressão de alto desempenho. No entanto, existem aspectos estruturais e paramétricos de projeto que podem conduzir a uma degradação de desempenho. Na ausência de uma metodologia sistemática e de baixo custo para a proposição de modelos computacionais otimamente especificados, os comitês de máquinas se apresentam como alternativas promissoras. Existem versões estáticas de comitês, na forma de ensembles de componentes, e versões dinâmicas, na forma de misturas de especialistas. Neste estudo, os componentes de um ensemble e os especialistas de uma mistura são tomados como SVMs. O objetivo é explorar conjuntamente potencialidades advindas de SVM e comitê de máquinas, adotando uma formulação unificada. Várias extensões e novas configurações de comitês de máquinas são propostas, com análises comparativas que indicam ganho significativo de desempenho frente a outras propostas de aprendizado de máquina comumente adotadas para classificação e regressão / Abstract: Algorithms based on kernel methods are prominent techniques among the available approaches for machine learning. They were initially applied to implement support vector machines (SVMs). The SVM approach represents a nonparametric learning procedure devoted to high performance classification and regression tasks. However, structural and parametric aspects of the design may guide to performance degradation. In the absence of a systematic and low-cost methodology for the proposition of optimally specified computational models, committee machines emerge as promising alternatives. There exist static versions of committees, in the form of ensembles of components, and dynamic versions, in the form of mixtures of experts. In the present investigation, the components of an ensemble and the experts of a mixture are taken as SVMs. The aim is to jointly explore
the potentialities of both SVM and committee machine, by means of a unified formulation. Several extensions and new configurations of committee machines are proposed, with comparative analyses that indicate significant gain in performance before other proposals for machine learning commonly adopted for classification and regression / Doutorado / Engenharia de Computação / Doutor em Engenharia Elétrica
|
862 |
Modelos de classificação : aplicações no setor bancário / Classification models : applications in banking sectorCaetano, Mateus, 1983- 02 June 2015 (has links)
Orientadores: Antonio Carlos Moretti, Márcia Aparecida Gomes Ruggiero / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T18:03:59Z (GMT). No. of bitstreams: 1
Caetano_Mateus_M.pdf: 1249293 bytes, checksum: f8adb755363291250261872ea756f58c (MD5)
Previous issue date: 2015 / Resumo: Técnicas para solucionar problemas de classificação têm aplicações em diversas áreas, como concessão de crédito, reconhecimento de imagens, detecção de SPAM, entre outras. É uma área de intensa pesquisa, para a qual diversos métodos foram e continuam sendo desenvolvidos. Dado que não há um método que apresente o melhor desempenho para qualquer tipo de aplicação, diferentes métodos precisam ser comparados para que possamos encontrar o melhor ajuste para cada aplicação em particular. Neste trabalho estudamos seis diferentes métodos aplicados em problemas de classificação supervisionada (onde há uma resposta conhecida para o treinamento do modelo): Regressão Logística, Árvore de Decisão, Naive Bayes, KNN (k-Nearest Neighbors), Redes Neurais e Support Vector Machine. Aplicamos os métodos em três conjuntos de dados referentes à problemas de concessão de crédito e seleção de clientes para campanha de marketing bancário. Realizamos o pré-processamento dos dados para lidar com observações faltantes e classes desbalanceadas. Utilizamos técnicas de particionamento do conjunto de dados e diversas métricas, como acurácia, F1 e curva ROC, com o objetivo de avaliar os desempenhos dos métodos/técnicas. Comparamos, para cada problema, o desempenho dos diferentes métodos considerando as métricas selecionadas. Os resultados obtidos pelos melhores modelos de cada aplicação foram compatíveis com outros estudos que utilizaram os mesmos bancos de dados / Abstract: Techniques for classification problems have applications on many areas, such as credit risk evaluation, image recognition, SPAM detection, among others. It is an area of intense research, for which many methods were and continue to be developed. Given that there is not a method whose performance is better across any type of problems, different methods need to be compared in order to select the one that provides the best adjustment for each application in particular. In this work, we studied six different methods applied to supervised classification problems (when there is a known response for the model training): Logistic Regression, Decision Tree, Naive Bayes, KNN (k-Nearest Neighbors), Neural Networks and Support Vector Machine. We applied these methods on three data sets related to credit evaluation and customer selection for a banking marketing campaign. We made the data pre-processing to cope with missing data and unbalanced classes. We used data partitioning techniques and several metrics, as accuracy, F1 and ROC curve, in order to evaluate the methods/techniques performances. We compared, for each problem, the performances of the different methods using the selected metrics. The results obtained for the best models on each application were comparable to other studies that have used the same data sources / Mestrado / Matematica Aplicada / Mestra em Matemática Aplicada
|
863 |
Propostas de metodologias para identificação e controle inteligentesSerra, Ginalber Luiz de Oliveira 31 August 2018 (has links)
Orientador: Celso Pascoli Bottura / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e Computação / Made available in DSpace on 2018-08-31T09:18:30Z (GMT). No. of bitstreams: 1
Serra_GinalberLuizdeOliveira_D.pdf: 2165582 bytes, checksum: a1dad46bc4d817f8d4e6457f60ae9599 (MD5)
Previous issue date: 2005 / Resumo: Esta tese apresenta propostas de metodologias para identificação e controle inteligentes. Uma metodologia para identificação de sistemas dinâmicos não-lineares no tempo discreto, baseada tio método de variável instrumental e no modelo nebuloso Takagi-Sugeno, é apresentada. Nesta metodologia, a qual é uma extensão do método de variável instrumental tradicional, as variáveis instrumentais escolhidas, estatisticamente independentes do ruído, são mapeadas em conjuntos nebulosos, particionando o espaço de entrada em sub-regiões, para estimação não-polarizada dos parâmetros do conseqüente dos modelos nebulosos TS em ambiente ruidoso. Um esquema de controle adaptativo gain scheduling baseado em redes neurais, sistemas nebulosos e algoritmos genéticos para sistemas dinâmicos não-lineares no tempo discreto também é apresentado. 0 controlador nebuloso é desenvolvido e projetado com o usa de um algoritmo genético para satisfazer, simultaneamente, múltiplos objetivos. Com o esquema de aprendizagem supervisionada, os parâmetros do controlador nebuloso são usados para projetar um gain scheduler neural para ajuste on-line do controlador nebuloso em alguns pontos de operação do sistema dinâmico / Abstract: This thesis presents proposals of methodologies for intelligent identification and control. A methodology tor nonlinear dynamic discrete time systems identification, based on the instrumental variable method and Takagi-Sugeno fuzzy model, is presented. In this methodology, which is an extension of the standard instrumental variable method, the chosen instrumental variables, estatistically independent of the noise, are mapped into fuzzy sets, partitioning the input space in subregions, for unbiased estimation of Takagi-Sugeno fuzzy model consequent parameters in a noisy environment. A gain scheduling adaptive control design based on neural network, fuzzy systems and genetic algorithms for nonlinear dynamic discrete time systems is also presented. The fuzzy controller is developed and designed by a genetic algorithm to satisfy, simultaneously, multiple objectives. "With the supervised learning scheme, the fuzzy controller parameters are used to design the gain neural scheduler to tune on-line the fuzzy controller in some operation points of the dynamic system / Doutorado / Automação / Doutor em Engenharia Elétrica
|
864 |
Sistemas inteligentes aplicados à análise de riscos ambientesAlbuquerque Filho, Francisco Sales de 17 October 2012 (has links)
Made available in DSpace on 2017-06-01T18:20:37Z (GMT). No. of bitstreams: 1
dissertacao_francisco_sales.pdf: 1424498 bytes, checksum: 31e4dca2f34d83cb1a300966669297f2 (MD5)
Previous issue date: 2012-10-17 / In order to forecast and classify environmental risks, artificial intelligence (AI) techniques were applied to the air quality problem. Predetermined gaseous pollutant
concentration data were acquired with the intent of predicting the risks. Such concentrations are denominated air quality indicators, and are regulated all around the world, including by brazilian law. The data concerning these indicators were used in a model that consists of two
AI techniques: artificial neural networks and particle swarm optimization. The air quality indicators concentration prediction resulted in one day ahead values. The risk modeling utilizes the predictions as inputs values, correlating them in order to obtain the resulting air quality and, the risk that such quality has upon the human health. The risk model is based on a third AI technique, called fuzzy logic. The present work obtained two main results. The first was the accurate forecasts made by the prediction model. The second was the achievement of a coherent classification of the risks. / Este trabalho aplica técnicas da área de inteligência artificial (IA) com o intuito de prever e classificar riscos ambientais, com o foco no problema da qualidade do ar. Para prever os riscos, dados foram adquiridos acerca das concentrações gasosas de determinados poluentes. Tais concentrações, denominadas de indicadores da qualidade do ar, são regulamentadas por várias legislações ao redor do mundo, inclusive a do Brasil. Estes dados foram empregados em um modelo que consiste de duas técnicas de IA: redes neurais artificiais e otimização por enxame de partículas. O resultado do modelo é a previsão de um dia adiante das concentrações gasosas dos indicadores da qualidade do ar. As previsões são usadas como entradas para a modelagem de riscos. A modelagem de riscos correlaciona as previsões dos poluentes observados para obter a qualidade do ar e o risco que tal qualidade oferece à saúde humana. O modelo de risco é baseado em lógica nebulosa, uma terceira técnica de IA. Ao término do trabalho, dois resultados foram alcançados. O primeiro foi o modelo de previsões que obteve resultados com um bom nível de acuidade. Em seguida, o modelo de riscos foi capaz de alcançar uma classificação coerente dos riscos ambientais.
|
865 |
Estimação da porcentagem de flúor em alumina fluoretada proveniente de uma planta de tratamento de gases por meio de um sensor virtual neuralSOUZA, Alan Marcel Fernandes de 22 June 2011 (has links)
Submitted by Samira Prince (prince@ufpa.br) on 2012-05-11T14:16:38Z
No. of bitstreams: 1
Dissertacao_EstimacaoPorcentagemFluor.pdf: 3010181 bytes, checksum: 0b250d533f6f07d9141beb6a3afccea1 (MD5) / Approved for entry into archive by Samira Prince(prince@ufpa.br) on 2012-05-14T13:54:38Z (GMT) No. of bitstreams: 1
Dissertacao_EstimacaoPorcentagemFluor.pdf: 3010181 bytes, checksum: 0b250d533f6f07d9141beb6a3afccea1 (MD5) / Made available in DSpace on 2012-05-14T13:54:38Z (GMT). No. of bitstreams: 1
Dissertacao_EstimacaoPorcentagemFluor.pdf: 3010181 bytes, checksum: 0b250d533f6f07d9141beb6a3afccea1 (MD5)
Previous issue date: 2011 / FAPESPA - Fundação Amazônia de Amparo a Estudos e Pesquisas / CVRD - Companhia Vale do Rio Doce / As indústrias têm buscado constantemente reduzir gastos operacionais, visando o aumento do lucro e da competitividade. Para alcançar essa meta, são necessários, dentre outros fatores, o projeto e a implantação de novas ferramentas que permitam o acesso às informações relevantes do processo de forma precisa, eficiente e barata. Os sensores virtuais têm sido aplicados cada vez mais nas indústrias. Por ser flexível, ele pode ser adaptado a qualquer tipo de medição, promovendo uma redução de custos operacionais sem comprometer, e em alguns
casos até melhorar, a qualidade da informação gerada. Como estão totalmente baseados em software, não estão sujeitos a danos físicos como os sensores reais, além de permitirem uma melhor adaptação a ambientes hostis e de difícil acesso. A razão do sucesso destes tipos de sensores é a utilização de técnicas de inteligência computacional, as quais têm sido usadas na modelagem de vários processos não lineares altamente complexos. Este trabalho tem como objetivo estimar a qualidade da alumina fluoretada proveniente de uma Planta de Tratamento de Gases (PTG), a qual é resultado da adsorção de gases poluentes em alumina virgem, via sensor virtual. O modelo que emula o comportamento de um sensor de qualidade de alumina foi criado através da técnica de inteligência computacional conhecida como Rede Neural Artificial. As motivações deste trabalho consistem em: realizar simulações virtuais, sem comprometer o funcionamento da PTG; tomar decisões mais precisas e não baseada somente
na experiência do operador; diagnosticar potenciais problemas, antes que esses interfiram na qualidade da alumina fluoretada; manter o funcionamento do forno de redução de alumínio dentro da normalidade, pois a produção de alumina de baixa qualidade afeta a reação de quebra da molécula que contém este metal. Os benefícios que este projeto trará consistem em: aumentar a eficiência da PTG, produzindo alumina fluoretada de alta qualidade e emitindo menos gases poluentes na atmosfera, além de aumentar o tempo de vida útil do forno de redução. / The industries have been often seeking to reduce operating expenses, as to increase profits and competitiveness. To achieve this goal, it must take into account, among other factors, the design and implementation of new tools that accurately, efficiently and inexpensively allow access to information relevant to process. Soft sensors have been increasingly applied in
industry. Since it offers flexibility, it can be adapted to make estimations of any measurement, thus a reducing in operating costs without compromising the measurements, and in some cases even improve the quality of generated information. Since they are completely softwarebased, they are not subjected to physical damage as the real sensors, and are better adaptated to harsh environments with hard access. The success of this king of sensors is due to the use
of computational intelligence techniques, which have been widely used in the modeling of several nonlinear complex processes. This work aims to estimate the quality of alumina
fluoride from a Gas Treatment Center (GTC), which is the result of gaseous adsorption on
alumina virgin, using a soft sensor. The model that emulates the behavior of a alumina quality sensor the plant was created using an artificial intelligence technique known as Artificial Neural Network. The motivations of this work are: perform virtual simulations without compromising the GTC and make accurate decisions based not only on the operator's experience, to diagnose potential problems before they can interfere with the quality of alumina fluoride; maintain the aluminum reduction pot control variables within normal limits,
since the production from low quality alumina strongly affects the reaction of breaking the molecule that contains this metal. The benefits this project brings include: increasing the GTC efficiency, producing high quality fluoridated alumina and emitting fewer greenhouse gases into the atmosphere and increasing the pot lifespan.
|
866 |
Modelos para previsão de carga a curto prazo através de redes neurais artificiais com treinamento baseado na teoria da informaçãoALVES, Wesin Ribeiro 04 November 2011 (has links)
Submitted by Samira Prince (prince@ufpa.br) on 2012-08-27T14:46:59Z
No. of bitstreams: 2
Dissertacao_ModelosPrevisaoCarga.pdf: 1369826 bytes, checksum: 6bbbe896ee75adc3eefb8c0de0c81bf4 (MD5)
license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) / Approved for entry into archive by Samira Prince(prince@ufpa.br) on 2012-08-27T14:48:07Z (GMT) No. of bitstreams: 2
Dissertacao_ModelosPrevisaoCarga.pdf: 1369826 bytes, checksum: 6bbbe896ee75adc3eefb8c0de0c81bf4 (MD5)
license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) / Made available in DSpace on 2012-08-27T14:48:07Z (GMT). No. of bitstreams: 2
Dissertacao_ModelosPrevisaoCarga.pdf: 1369826 bytes, checksum: 6bbbe896ee75adc3eefb8c0de0c81bf4 (MD5)
license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5)
Previous issue date: 2011 / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / O conhecimento prévio do valor da carga é de extrema importância para o planejamento e operação dos sistemas de energia elétrica. Este trabalho apresenta os resultados de um estudo investigativo da aplicação de Redes Neurais Artificiais do tipo Perceptron Multicamadas com treinamento baseado na Teoria da Informação para o problema de Previsão de Carga a curto prazo. A aprendizagem baseada na Teoria da Informação se concentra na utilização da quantidade de informação (Entropia) para treinamento de uma rede neural artificial. Dois modelos previsores são apresentados sendo que os mesmos foram desenvolvidos a partir de dados reais fornecidos por uma concessionária de energia. Para comparação e verificação da eficiência dos modelos propostos um terceiro modelo foi também desenvolvido utilizando uma rede neural com treinamento baseado no critério clássico do erro médio quadrático. Os resultados alcançados mostraram a eficiência dos sistemas propostos, que obtiveram melhores resultados de previsão quando comparados ao sistema de previsão baseado na rede treinada pelo critério do MSE e aos sistemas previsores já apresentados na literatura. / The previous knowledge of the load value is almighty important to the electric power system planning and operation. This paper presents results of an investigative study of application of Artificial Neural Networks as a Multilayer Perceptron with the training based on Information Theory to the problem of short term load forecasting. The learning based on Information Theory focuses on the use of the amount of information (Entropy) for the training of neural network. Two forecaster models are presented, and that they was developed using real data from an energy utility. To compare and verify the efficiency of the proposed systems, it was also developed a forecasting system using neural network trained based on the traditional criterion of mean square error (MSE). The results has showed the efficiency of proposed systems, which had better results when compared with the forecasting system based on neural network trained by criterion of MSE and with forecasting system already was presented in the literature.
|
867 |
Stormsom: clusterização em tempo-real de fluxos de dados distribuídos no contexto de BigDataLIMA, João Gabriel Rodrigues de Oliveira 28 August 2015 (has links)
Submitted by camilla martins (camillasmmartins@gmail.com) on 2017-01-27T16:34:20Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_StormsomClusterizacaoTempo-Real.pdf: 1081222 bytes, checksum: 30261425224872c11433d064abb4a2d8 (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-01-30T13:30:32Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_StormsomClusterizacaoTempo-Real.pdf: 1081222 bytes, checksum: 30261425224872c11433d064abb4a2d8 (MD5) / Made available in DSpace on 2017-01-30T13:30:32Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_StormsomClusterizacaoTempo-Real.pdf: 1081222 bytes, checksum: 30261425224872c11433d064abb4a2d8 (MD5)
Previous issue date: 2015-08-28 / Cresce cada vez mais a quantidade de cenários e aplicações que algoritmo necessitam de processamento e respostas em tempo real e que se utilizam de modelos estatísticos e de mineração de dados a fim de garantir um melhor suporte à tomada de decisão. As ferramentas disponíveis no mercado carecem de processos computacionais mais refinados que sejam capazes de extrair padrões de forma mais eficiente a partir de grandes volumes de dados. Além disso, há a grande necessidade, em diversos cenários, que o os resultados sejam providos em tempo real, tão logo inicie o processo, uma resposta imediata já deve estar sendo produzida. A partir dessas necessidades identificadas, neste trabalho propomos um processo autoral, chamado StormSOM, que consiste em um modelo de processamento, baseado em topologia distribuída, para a clusterização de grandes volumes de fluxos, contínuos e ilimitados, de dados, através do uso de redes neurais artificiais conhecidas como mapas auto-organizáveis, produzindo resultados em tempo real. Os experimentos foram realizados em um ambiente de computação em nuvem e os resultados comprovam a eficiência da proposta ao garantir que o modelo neural utilizado possa gerar respostas em tempo real para o processamento de Big Data.
|
868 |
Similaridade comportamental do consumo residencial de eletricidade por rede neural baseada na Teoria da Ressonância Adaptativa /Justo, Daniela Sbizera January 2016 (has links)
Orientador: Carlos Roberto Minussi / Resumo: Esta pesquisa será dedicada ao desenvolvimento de uma metodologia com vistas à compreensão e ao exame do comportamento do hábito de consumo de eletricidade residencial, via análise de similaridade, baseado no uso de uma rede neural da família ART (Adaptive Resonance Theory). Trata-se de uma rede neural composta por dois módulos ART-Fuzzy, cujo treinamento é realizado de modo não supervisionado. No primeiro módulo, serão usadas, como entrada, as informações que caracterizam os hábitos de consumo e a situação socioeconômica. A saída do primeiro módulo junto com os dados referentes aos equipamentos eletroeletrônicos da residência compõem a entrada do segundo módulo que, finalmente, produz informações, na saída, relativas ao diagnóstico pretendido, ou seja, a formação de agrupamentos similares (clusters). Todo o processamento da rede neural modular é realizado com dados binários, os quais são gerados a partir de informações quantitativas e qualitativas. As redes neurais da família ART são estáveis e plásticas. A estabilidade refere-se à garantia de sempre produzir soluções, ou seja, não se observa problemas relativos à má convergência. A plasticidade é uma característica que possibilita a execução do treinamento de forma contínua sem destruir o conhecimento adquirido previamente. É um recurso pouco observado nas demais redes neurais disponíveis na literatura especializada. Com essas propriedades (estabilidade e plasticidade), combinada com o processamento de dados essencialmente ... (Resumo completo, clicar acesso eletrônico abaixo) / Doutor
|
869 |
Deep learning methods for detecting anomalies in videos: theoretical and methodological contributions / Métodos de deep learning para a detecção de anomalias em vídeos: contribuições teóricas e metodológicasRibeiro, Manassés 05 March 2018 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A detecção de anomalias em vídeos de vigilância é um tema de pesquisa recorrente em visão computacional. Os métodos de aprendizagem profunda têm alcançado o estado da arte para o reconhecimento de padrões em imagens e o Autocodificador Convolucional (ACC) é uma das abordagens mais utilizadas por sua capacidade em capturar as estruturas 2D dos objetos. Neste trabalho, a detecção de anomalias se refere ao problema de encontrar padrões em vídeos que não pertencem a um conceito normal esperado. Com o objetivo de classificar anomalias adequadamente, foram verificadas formas de aprender representações relevantes para essa tarefa. Por esse motivo, estudos tanto da capacidade do modelo em aprender características automaticamente quanto do efeito da fusão de características extraídas manualmente foram realizados. Para problemas de detecção de anomalias do mundo real, a representação da classe normal é uma questão importante, sendo que um ou mais agrupamentos podem descrever diferentes aspectos de normalidade. Para fins de classificação, esses agrupamentos devem ser tão compactos (densos) quanto possível. Esta tese propõe o uso do ACC como uma abordagem orientada a dados aplicada ao contexto de detecção de anomalias em vídeos. Foram propostos métodos para o aprendizado de características espaço-temporais, bem como foi introduzida uma abordagem híbrida chamada Autocodificador Convolucional com Incorporação Compacta (ACC-IC), cujo objetivo é melhorar a compactação dos agrupamentos normais. Além disso, foi proposto um novo critério de parada baseado na sensibilidade e sua adequação para problemas de detecção de anomalias foi verificada. Todos os métodos propostos foram avaliados em conjuntos de dados disponíveis publicamente e comparados com abordagens estado da arte. Além do mais, foram introduzidos dois novos conjuntos de dados projetados para detecção de anomalias em vídeos de vigilância em rodovias. O ACC se mostrou promissor na detecção de anomalias em vídeos. Resultados sugerem que o ACC pode aprender características espaço-temporais automaticamente e a agregação de características extraídas manualmente parece ser valiosa para alguns conjuntos de dados. A compactação introduzida pelo ACC-IC melhorou o desempenho de classificação para a maioria dos casos e o critério de parada baseado na sensibilidade é uma nova abordagem que parece ser uma alternativa interessante. Os vídeos foram analisados qualitativamente de maneira visual, indicando que as características aprendidas com os dois métodos (ACC e ACC-IC) estão intimamente correlacionadas com os eventos anormais que ocorrem em seus quadros. De fato, ainda há muito a ser feito para uma definição mais geral e formal de normalidade, de modo que se possa ajudar pesquisadores a desenvolver métodos computacionais eficientes para a interpretação dos vídeos. / The anomaly detection in automated video surveillance is a recurrent topic in recent computer vision research. Deep Learning (DL) methods have achieved the state-of-the-art performance for pattern recognition in images and the Convolutional Autoencoder (CAE) is one of the most frequently used approach, which is capable of capturing the 2D structure of objects. In this work, anomaly detection refers to the problem of finding patterns in images and videos that do not belong to the expected normal concept. Aiming at classifying anomalies adequately, methods for learning relevant representations were verified. For this reason, both the capability of the model for learning automatically features and the effect of fusing hand-crafted features together with raw data were studied. Indeed, for real-world problems, the representation of the normal class is an important issue for detecting anomalies, in which one or more clusters can describe different aspects of normality. For classification purposes, these clusters must be as compact (dense) as possible. This thesis proposes the use of CAE as a data-driven approach in the context of anomaly detection problems. Methods for feature learning using as input both hand-crafted features and raw data were proposed, and how they affect the classification performance was investigated. This work also introduces a hybrid approach using DL and one-class support vector machine methods, named Convolutional Autoencoder with Compact Embedding (CAE-CE), for enhancing the compactness of normal clusters. Besides, a novel sensitivity-based stop criterion was proposed, and its suitability for anomaly detection problems was assessed. The proposed methods were evaluated using publicly available datasets and compared with the state-of-the-art approaches. Two novel benchmarks, designed for video anomaly detection in highways were introduced. CAE was shown to be promising as a data-driven approach for detecting anomalies in videos. Results suggest that the CAE can learn spatio-temporal features automatically, and the aggregation of hand-crafted features seems to be valuable for some datasets. Also, overall results suggest that the enhanced compactness introduced by the CAE-CE improved the classification performance for most cases, and the stop criterion based on the sensitivity is a novel approach that seems to be an interesting alternative. Videos were qualitatively analyzed at the visual level, indicating that features learned using both methods (CAE and CAE-CE) are closely correlated to the anomalous events occurring in the frames. In fact, there is much yet to be done towards a more general and formal definition of normality/abnormality, so as to support researchers to devise efficient computational methods to mimetize the semantic interpretation of visual scenes by humans.
|
870 |
Inteligência computacional no sensoriamento a fibra ótica / Computational intelligence applied to optical fiber sensingNegri, Lucas Hermann 20 February 2017 (has links)
CAPES; CNPq; Fundação Araucária; FINEP / Esta tese apresenta aplicações de inteligência computacional para o aprimoramento de sensoriamento ótico realizado com sensores em fibra ótica. Para tanto, redes neurais artificiais (perceptron de múltiplas camadas), máquinas de vetor de suporte para regressão, evolução diferencial e métodos de sensoriamento compressivo são empregados em conjunto com transdutores de redes de Bragg em fibras óticas. As redes neurais artificiais, máquinas de vetor de suporte para regressão e redes de Bragg são empregadas na localização de uma carga aplicada sobre uma placa de acrílico. É apresentado um novo método utilizando evolução diferencial para a solução do problema do espalhamento inverso em redes de Bragg em fibra ótica, propondo o uso de restrições para solucioná-lo na ausência de informação de fase do sinal refletido. Um método para a detecção de múltiplas cargas posicionadas acima de uma placa de metal é proposto. Neste método, a placa de metal é suportada por anéis de ferro contendo redes de Bragg em fibra ótica e a detecção das cargas é realizada com o uso de métodos de sensoriamento compressivo para a solução do problema inverso subdeterminado resultante. A troca dos anéis de ferro por blocos de silicone e um novo método baseado em sensoriamento compressivo e evolução diferencial são propostos. Os resultados experimentais mostram que os métodos computacionais propostos auxiliam o sensoriamento e podem permitir uma melhoria da resolução espacial do sistema sem a necessidade do aumento do número de elementos transdutores. / This thesis presents new optical fiber sensing methodologies employing computational intelligence approaches seeking for the improvement of the sensing performance. Particularly, artificial neural networks, support vector regression, differential evolution and compressive sensing methods were employed with fiber Bragg grating transducers. Artificial neural networks (multilayer perceptron) and fiber Bragg gratings were used to determine the location of a load applied to a polymethyl methacrylate sheet. A new method based on the application of differential evolution is proposed to solve the inverse scattering problem in fiber Bragg gratings, where constraints are imposed to solve the problem without the need of phase information. A method for detecting multiple loads on a metal sheet is also proposed. In this method, the metal sheet is supported by iron rings containing fiber Bragg gratings, and compressive sensing methods are employed to solve the resulting underdetermined inverse problem. Further developments of the method replaced the iron rings by silicon blocks and employed a new reconstruction method based on compressive sensing and differential evolution. Experimental results show that the proposed computational methods improve the optical fiber sensing and lead to an enhancement of the spatial resolution without increasing the number of transducers.
|
Page generated in 0.0657 seconds