• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 844
  • 42
  • 35
  • 35
  • 35
  • 26
  • 20
  • 20
  • 19
  • 11
  • 9
  • 2
  • Tagged with
  • 882
  • 882
  • 882
  • 316
  • 262
  • 228
  • 188
  • 184
  • 144
  • 121
  • 110
  • 108
  • 96
  • 92
  • 91
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
841

Sistema inteligente para monitoramento e predição do estado clínico de pacientes baseado em lógica fuzzy e redes neurais

Schatz, Cecilia Haydee Vallejos de 18 February 2014 (has links)
CAPES / O conforto e a liberdade de movimentos de pacientes com doenças crônicas e que têm que ser continuamente monitorados é um tema que tem incentivado o desenvolvimento de novas tecnologias como as redes de sensores corporais sem fios (WBAN) e novas áreas de pesquisa como a telemedicina. Além disso, a incorporação de software inteligente que permite simular o raciocínio dos especialistas, auxiliá-los na tomada de decisões e detectar com antecedência condições anormais ou tendência ao desenvolvimento de determinadas doenças, abre um campo ainda maior de pesquisas, como o campo da Inteligência Artificial na Medicina (AIM). O monitoramento de pacientes por meio de equipamentos sem fios, em conjunto com a tecnologia AIM, permite desenvolver soluções práticas para monitorar pacientes sem descuidar de seu conforto. Nesta tese foram pesquisadas técnicas inteligentes para o desenvolvimento de uma aplicação que permita monitorar cinco sinais vitais de pacientes sem que eles precisem usar leitos hospitalares. Em uma primeira etapa, os procedimentos médicos tipicamente usados pelos especialistas para avaliar um paciente foram estudados e transformados em regras para o modelo fuzzy. O modelo fuzzy proposto permite analisar o estado clínico presente do paciente e criar as saídas desejadas (targets) que permitam treinar as redes neurais artificiais. Posteriormente foi desenvolvido um modelo neural que, analisando os dados atuais e saídas anteriores do paciente, permite prever o seu estado clínico futuro próximo. A fim de achar a metodologia mais exata, cinco redes neurais artificiais foram analisadas e comparadas umas às outras. As redes Elman MISO, Elman MIMO, e NNARX – totalmente conectadas e podadas – foram testadas. O modelo fuzzy teve um excelente resultado concordando com as respostas dadas pelos especialistas em 99,76% dos casos. Depois de analisar as redes propostas no conjunto de validação, os resultados revelaram que unicamente a rede NNARX podada pode oferecer a mais alta acurácia de 99,82%, enquanto os outros modelos degradam o seu desempenho em até 35%. As técnicas de parada antecipada para o treinamento junto com a obtenção de valores médios de MSE, FPE e coeficientes de correlação conseguiram obter as melhores topologias de cada tipo de rede, fazendo quase desnecessária a sua poda. As redes NNARX e P-NNARX conseguiram resultados bem melhores que as redes restantes, mas a acurácia na rede P-NNARX observou um aumento de 1,27% em relação à rede NNARX. Como conclusão, pode-se dizer que, para este caso particular, as redes NNARX capturam a essência do sistema dinâmico não linear muito melhor do que as redes Elman. Finalmente, a rede P-NNARX foi a escolhida para a implementação do sistema inteligente proposto nesta tese. A sua acurácia foi de 99,25% para uma predição no tempo (t + d), onde d = 1 segundo, utilizando os dados de 30 novos pacientes. Foram feitas mais provas com periodos de predição maiores e o sistema demostrou uma ligeira diminuição na acurácia, chegando a 94,58% para d = 60 segundos, mas ainda ficando na faixa dos 90%. Os resultados demonstram o alto nível de generalização do sistema e o excelente desempenho na predição dos três estados clínicos do paciente (estável, semiestável e instável). Pretende-se que este sistema inteligente possa ser usado como ferramenta para a medicina preventiva em pacientes crônicos. / The comfort and freedom of movements of patients that have to be continually monitored is a theme that has motivated the development of new technologies such as networks of wireless body sensors (WBAN) and new research areas such as telemedicine. In addition, the incorporation of intelligent software to simulate the reasoning of experts, assist them in decision making and in early detection of abnormal conditions or tendencies to develop certain diseases, opens an even larger field of research, such as the field of Artificial Intelligence in Medicine (AIM beings its acronym in English). Patient monitoring through wireless equipment and AIM technology allows to develop practical solutions to control patients in environments outside of clinics or hospitals. In this thesis, intelligent tools were used for the development of an application that allows monitoring of five vital signs of patients without them being present in a hospital bed. In a first step, typical medical procedures used by specialists for evaluating a patient were studied and transformed into rules for the fuzzy model. The proposed fuzzy model allows the analysis of the current state of the patient to create the desired outputs (targets) that are used to train the artificial neural networks. Then, a neural model was developed which, by analysing current and historic patient data, forecasts patients’ clinical status in the near future. In order to find the most exact methodology, five artificial neural networks were analyzed and compared with each other using thousands of real patient data sets. Elman MISO, Elman MIMO and NNARX – fully connected and pruned – were tested. The fuzzy model answered in a excelent form, agreeing in 99.76% to the answers given by the experts. After analizing the proposed networks in the validation dataset, it was discovered that the pruned NNARX can offer the highest overall accuracy of 99.82%, whereas the others show a decrease of up to 35%. Through techniques such as early stopping for the training with the search of the mean of MSE, FPE and correlation coefficients it was possible to achieve the best topologies of every network type, making their pruning almost unnecessary. The fully connected NNARX and the P-NNARX achieved much better results than other networks, but an increase of 1.27% was observed in the overall accuracy of the pruned network with respect to the NNARX. It can be said that for this particular case, NNARX networks capture the essence of the non-linear dynamic system much better than Elman. Finally, the P-NNARX model was chosen for the implementation of the proposed smart system. Its overall acuracy was of 99.25%, for the prediction time (t + d), with d = 1 second, by using unseen data of 30 new patients. More tests made with longer prediction periods demonstrate a slight decrease in the overall accuracy reaching up to 94.58% for d = 60 seconds. Nevertheless, it still remained over 90%. Results demonstrate the high generalization level of the system and its excellent performance in predicting the three possible patient conditions (stable, semi-stable, unstable). The next step is to turn this intelligent system into an usefull tool for preventive medicine for chronic patients.
842

Classificação de sites a partir das análises estrutural e textual

Ribas, Oeslei Taborda 28 August 2013 (has links)
Com a ampla utilização da web nos dias atuais e também com o seu crescimento constante, a tarefa de classificação automática de sítios web têm adquirido importância crescente, pois em diversas ocasiões é necessário bloquear o acesso a sítios específicos, como por exemplo no caso do acesso a sítios de conteúdo adulto em escolas elementares e secundárias. Na literatura diferentes trabalhos têm surgido propondo novos métodos de classificação de sítios, com o objetivo de aumentar o índice de páginas corretamente categorizadas. Este trabalho tem por objetivo contribuir com os métodos atuais de classificação através de comparações de quatro aspectos envolvidos no processo de classificação: algoritmos de classificação, dimensionalidade (número de atributos considerados), métricas de avaliação de atributos e seleção de atributos textuais e estruturais presentes nas páginas web. Utiliza-se o modelo vetorial para o tratamento de textos e uma abordagem de aprendizagem de máquina clássica considerando a tarefa de classificação. Diversas métricas são utilizadas para fazer a seleção dos termos mais relevantes, e algoritmos de classificação de diferentes paradigmas são comparados: probabilista (Naıve Bayes), árvores de decisão (C4.5), aprendizado baseado em instâncias (KNN - K vizinhos mais próximos) e Máquinas de Vetores de Suporte (SVM). Os experimentos foram realizados em um conjunto de dados contendo sítios de dois idiomas, Português e Inglês. Os resultados demonstram que é possível obter um classificador com bons índices de acerto utilizando apenas as informações do texto ˆancora dos hyperlinks. Nos experimentos o classificador baseado nessas informações atingiu uma Medida-F de 99.59%. / With the wide use of the web nowadays, also with its constant growth, task of automatic classification of websites has gained increasing importance. In many occasions it is necessary to block access to specific sites, such as in the case of access to adult content sites in elementary and secondary schools. In the literature different studies has appeared proposing new methods for classification of sites, with the goal of increasing the rate of pages correctly categorized. This work aims to contribute to the current methods of classification by comparing four aspects involved in the classification process: classification algorithms, dimensionality (amount of selected attributes), attributes evaluation metrics and selection of textual and structural attributes present in webpages. We use the vector model to treat text and an machine learning classical approach according to the classification task. Several metrics are used to make the selection of the most relevant terms, and classification algorithms from different paradigms are compared: probabilistic (Na¨ıve Bayes), decision tree (C4.5), instance-based learning (KNN - K-Nearest Neighbor) and support vector machine (SVM). The experiments were performed on a dataset containing two languages, English and Portuguese. The results show that it is possible to obtain a classifier with good success indexes using only the information from the anchor text in hyperlinks, in the experiments the classifier based on this information achieved 99.59% F-measure.
843

Aplicação de redes neuro-fuzzy para a solução de problemas inversos em transferência radiativa / Application of neuro-fuzzy systems for the solution of radiative transfer inverse problems

Mauro Cesar Cantarino Gil 08 August 2010 (has links)
Nesta tese é proposta uma implementação para a solução do problema inverso com as estimativas das propriedades radiativas (o albedo de espalhamento simples, a espessura ótica do meio e as reflectividades difusas) a partir dos valores das intensidades de radiação que deixam o meio participante utilizando uma abordagem híbrida de sistemas neuro-fuzzy (SNF), o qual combina a utilização de sistemas de inferência fuzzy com as redes neurais artificiais. Busca-se com a utilização desse sistema híbrido integrar a habilidade dos sistemas fuzzy no tratamento de informações inexatas, imprecisas, e vagas, e a capacidade das redes neurais artificiais de tratar o aprendizado por experiência e a generalização do conhecimento. É proposta também uma metodologia de máquinas de comitês neuro-fuzzy na solução deste problema inverso em transferência radiativa. Foi observado paralelamente que a solução dos sistemas neuro-fuzzy e dos sistemas híbridos de máquinas de comitê neuro-fuzzy, apresentam baixa qualidade nos resultados quando são utilizados os dados experimentais com os menores coeficientes de sensibilidade para os parâmetros que serão estimados. Por outro lado, quando são utilizados dados com maior sensibilidade, são obtidos melhores resultados. Esta abordagem procura evitar a possibilidade da não convergência desses métodos. / In this thesis is proposed an implementation for solving the inverse problem with the estimates of radiative properties (the single scattering albedo, the optical thickness of the media and the diffuse reflectivities) by the values of the intensities of radiation that leaves the participant medium using a hybrid approach of neuro-fuzzy systems, which combines the use of fuzzy inference systems with artificial neural networks. The use of this hybrid system try to include the ability of fuzzy systems in the treatment of inaccurate, imprecise, and vague data, and the ability of artificial neural networks to deal with learning from experience and widespread knowledge. Also is proposed a methodology for machines committees in neuro-fuzzy solution of this inverse problem in radiative transfer. It was observed in parallel that the solution of neuro-fuzzy systems and hybrid systems neuro-fuzzy committee machines, have a poor quality results when using the experimental data with the lowest sensitivity coefficients for the parameters that will be estimated. Moreover, when data are used with greater sensitivity, better results are obtained. This approach seeks to avoid the possibility of non-convergence in such methods.
844

Aplicação de máquinas de comitê de redes neurais artificiais na solução de um problema inverso em transferência radiativa / Application of artificial neural networks commitee machine in the solution of an inverse radiative transfer problem

Rogério Campos de Oliveira 26 July 2010 (has links)
Este trabalho fundamenta-se no conceito de máquina de comitê de redes neurais artificiais e tem por objetivo resolver o problema inverso de transferência radiativa em um meio unidimensional, homogêneo, absorvedor e espalhador isotrópico. A máquina de comitê de redes neurais artificiais agrega e combina o conhecimento adquirido por um certo número de especialistas aqui representados, individualmente, por cada uma das redes neurais artificiais (RNA) que compõem a máquina de comitê de redes neurais artificiais. O objetivo é atingir um resultado final melhor do que o obtido por qualquer rede neural artificial separadamente, selecionando-se apenas àquelas redes neurais artificiais que apresentam os melhores resultados na fase de generalização descartando-se as demais, o que foi feito neste trabalho. Aqui são utilizados dois modelos estáticos de máquinas de comitê, usando a média aritmética de conjunto, que se diferenciam entre si apenas na composição do combinador de saída de cada máquina de comitê. São obtidas, usando-se máquinas de comitê de redes neurais artificiais, estimativas para os parâmetros de transferência radiativa, isto é, a espessura óptica do meio, o albedo de espalhamento simples e as refletividades difusas. Finalmente, os resultados obtidos com ambos os modelos de máquina de comitê são comparados entre si e com aqueles encontrados usando-se apenas redes neurais artificiais do tipo perceptrons de múltiplas camadas (MLP), isoladamente. Aqui essas redes neurais artificiais são denominadas redes neurais especialistas, mostrando que a técnica empregada traz melhorias de desempenho e resultados a um custo computacional relativamente baixo. / This work is based on the concept of neural networks committee machine and has the objective to solve the inverse radiative transfer problem in one-dimensional, homogeneous, absorbing and isotropic scattering media. The artificial neural networks committee machine adds and combines the knowledge acquired by an exact number of specialists which are represented, individually, by each one of the artificial neural networks (ANN) that composes the artificial neural network committee machine. The aim is to reach a final result better than the one obtained by any of the artificial neural network separately, selecting only those artificial neural networks that presents the best results during the generalization phase and discarding the others, what was done in this present work. Here are used two static models of committee machines, using the ensemble arithmetic average, that differ between themselves only by the composition of the output combinator by each one of the committee machine. Are obtained, using artificial neural networks committee machines, estimates for the radiative transfer parameters, that is, medium optical thickness, single scattering albedo and diffuse reflectivities. Finally, the results obtained with both models of committee machine are compared between themselves and with those found using artificial neural networks type multi-layer perceptrons (MLP), isolated. Here that artificial neural networks are named as specialists neural networks, showing that the technique employed brings performance and results improvements with relatively low computational cost.
845

Caracterização de imagens utilizando redes neurais artificiais

Ribeiro, Eduardo Ferreira 09 June 2009 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / Image representation in Content Based Image Retrieval systems is a fundamental task. The results obtained by these systems strongly depend on the choice of features selected to represent an image. Works in the literature show that intelligent techniques are used to minimize the semantic gap between the limited power of machine interpretation and human subjectivity. In this work the use of artificial neural networks to characterize images in a high-level space from an initial characterization based on low-level features (color, shape and texture) is proposed. Experiments on 3 databases of various kinds, one with general images (BD-12750 ), one with texture images (Vistex-167 ) and other with buildings (ZuBuD) are performed to exemplify the application of the method and to show the effectiveness of the model. Furthermore, the application of the proposed method in the high-level characterization of complex motions patterns is presented. / Em sistemas de Recuperação de Imagens Baseada em Conteúdo a representação das imagens desempenham um papel fundamental. Os resultados obtidos por esses sistemas dependem fortemente da escolha das características selecionadas para representar uma imagem. Trabalhos existentes na literatura evidenciam que técnicas inteligentes conseguem minimizar o gap- semântico existente entre o poder de interpretação limitado das máquinas e a subjetividade humana. Neste trabalho é proposto o uso das redes neurais artificiais para caracterizar imagens neurosemânticamente à partir de uma caracterização inicial baseada em características de baixo nível (cor, forma e textura). Testes em 3 bases de dados de naturezas diferentes, um de imagens mais gerais (BD-12750 ), um de texturas (Vistex-167 ) e outro de prédios (ZuBuD) exemplificam a aplicação do método como também mostram a eficácia do modelo. Ainda é apresentada a aplicação do método proposto na caracterização neurosemântica de movimentos complexos em vídeos. / Mestre em Ciência da Computação
846

Estudo do sombreamento parcial em módulos fotovoltaicos através da resistência série e das redes neurais artificiais

Faria, Waltenir Alves de 09 May 2014 (has links)
Given the scenarios of increasing world population, the concentration of CO2, fuel costs, global consumption of energy and climate change, there was a need to search for alternative energy sources. In this context, solar photovoltaic, the result of research and investments over the past five decades, had a great impact in the last decade, recording a significant increase in the production of photovoltaic cells and modules and installations of photovoltaic systems worldwide. One of the goals of this work was to study the behavior of PV modules by partial shading situations in different conditions of temperature and solar radiation. Within this partial shading scenario that impacts virtually all electrical parameters of a module, the study and calculation of the series resistance of the modules was done in conditions of partial shading proposals to verify the relationship between the value of the series resistance and the state of shading partial, allowing identification of a possible state of shading from monitoring the resistance series. Another objective of this work was to apply Artificial Intelligence (AI) resources in the form of Artificial Neural Networks (ANN) to, after the proper training and learning of ANN from the database collected in the field under conditions of partial shade, they can identify the parameters of the PV modules within the various conditions of partial shading proposals. To pursue the objectives of this work four photovoltaic modules were used, two with 40 W nominal power with over fifteen years of manufacturing, assigned by the Instituto Federal de Goiás (IFGoiano) Urutaí Campus, at the city of Urutaí-GO and two new without any use of 75 W nominal power assigned by the Center for Research on Alternative Energy Sources, School of Electrical Engineering, Universidade Federal de Uberlândia (UFU). / Diante dos cenários de aumento da população mundial, da concentração de CO2 ,dos custos dos combustíveis, do consumo mundial de energia e das alterações climáticas, surgiu a necessidade de se buscar por fontes de energias alternativas. Neste contexto, a energia solar fotovoltaica, fruto de investigações e investimentos realizados nas últimas cinco décadas, teve um grande impacto na última década, registrando um aumento significativo na produção de células e módulos fotovoltaicos e instalações de sistemas fotovoltaicos no mundo todo. Um dos objetivos deste trabalho foi estudar o comportamento de módulos fotovoltaicos mediante situações de sombreamento parcial em diferentes condições de temperatura e radiação solar. Dentro deste cenário de sombreamento parcial que causa impacto praticamente em todos os parâmetros elétricos de um módulo, foi feito o estudo e cálculo da resistência série dos módulos nas condições de sombreamento parcial propostas para verificar a relação entre o valor da resistência série e o estado de sombreamento parcial, possibilitando uma possível identificação do estado de sombreamento a partir do monitoramento da resistência série. Outro objetivo deste trabalho foi aplicar recursos de Inteligência Artificial (IA) na modalidade de Redes Neurais Artificiais (RNAs) para, após o devido treinamento e aprendizado das RNAs a partir do banco de dados colhidos em campo sob condições de sombreamento parcial, elas poderem identificar os parâmetros do módulo fotovoltaico dentro das diversas condições de sombreamento parcial propostas. Para a busca dos objetivos deste trabalho foram utilizados quatro módulos fotovoltaicos sendo dois de 40 W de potência nominal com mais de quinze anos de fabricação, cedidos pelo Instituto Federal Goiano (IFGoiano) Campus Urutaí, da cidade de Urutaí-GO e dois novos e sem uso, de 75 W de potência nominal cedidos pelo Núcleo de Pesquisa em Fontes Alternativas de Energia da Faculdade de Engenharia Elétrica da Universidade Federal de Uberlândia (UFU). / Mestre em Ciências
847

Modelo de predição para análise comparativa de técnicas Neuro-Fuzzy e de Regressão

Oliveira, Alessandro Bertolani 12 February 2010 (has links)
Made available in DSpace on 2016-12-23T14:33:42Z (GMT). No. of bitstreams: 1 Dissertacao de Alexandre Bertolani Oliveira.pdf: 2765651 bytes, checksum: d31c448c5c2d094b1f5f76cb6c10e190 (MD5) Previous issue date: 2010-02-12 / We investigate strategies to define prediction models for a quality parameter of an industrial process. We estimate this variable using computational intelligence and in special regression methods. The main contribution of this paper is the comparative analysis of heuristic training models to create the prediction system. We propose two main paradigms to obtain the system, machine learning and hybrid artificial neural networks. The resulting system is a prototype for the intelligent supervision of a real-time production process. Statistical tools are used to compare the performance of the regression based predictor and the neuro-fuzzy based predictor, considering the degree of adaptation of the system to the problem and its generalization ability / Neste trabalho são investigadas estratégias para a elaboração de Modelos de Predição que possam ser utilizados no monitoramento de uma variável de qualidade pertencente a um determinado Processo Produtivo Industrial. Neste cenário, a variável de qualidade é estimada por meio de técnicas da Inteligência Computacional e empiricamente avaliada na resolução de problemas de regressão. A principal contribuição desta monografia é a análise comparativa de Técnicas da Inteligência Computacional associadas às estratégias heurísticas de treinamento para a construção dos Modelos de Predição. São propostas duas linhas de pesquisa investigadas a partir de uma pesquisa empírica dos dados, e analisados a partir de dois grandes ramos da Inteligência Computacional Aprendizagem de Máquina e Redes Neurais Híbridas. Os Modelos de Predição desenvolvidos são protótipos conceituais para potencial implementação de Sistemas Inteligentes em tempo real de uma planta industrial. O método de construção dos Modelos de Predição por técnicas de Regressão é comparado com o método de construção do Modelo de Predição por redes Neuro-Fuzzy e analisados por critérios estabelecidos a partir de ferramentas estatísticas que levam em consideração os níveis de adequação e generalização dos mesmos. Ao final, são apresentados resultados dos métodos implementados sobre a mesma base de dados bem como os pertinentes trabalhos futuros
848

Previsão de vendas no varejo de moda com modelos de redes neurais

Bessa, Adriana Bezerra 24 April 2018 (has links)
Submitted by Adriana Bezerra Bessa (adrianabbessa@gmail.com) on 2018-05-09T00:07:09Z No. of bitstreams: 1 Tese_AdrianaBessa_versaofinal.pdf: 4846338 bytes, checksum: 5d2e8d52cd770e8fd17a4a9adee180d2 (MD5) / Approved for entry into archive by Thais Oliveira (thais.oliveira@fgv.br) on 2018-05-10T17:26:20Z (GMT) No. of bitstreams: 1 Tese_AdrianaBessa_versaofinal.pdf: 4846338 bytes, checksum: 5d2e8d52cd770e8fd17a4a9adee180d2 (MD5) / Approved for entry into archive by Suzane Guimarães (suzane.guimaraes@fgv.br) on 2018-05-11T12:30:07Z (GMT) No. of bitstreams: 1 Tese_AdrianaBessa_versaofinal.pdf: 4846338 bytes, checksum: 5d2e8d52cd770e8fd17a4a9adee180d2 (MD5) / Made available in DSpace on 2018-05-11T12:30:08Z (GMT). No. of bitstreams: 1 Tese_AdrianaBessa_versaofinal.pdf: 4846338 bytes, checksum: 5d2e8d52cd770e8fd17a4a9adee180d2 (MD5) Previous issue date: 2018-04-24 / A previsão de vendas é um aspecto crítico para maior parte das organizações, já que permite tornar o processo de planejamento mais eficiente, impactando assim nos resultados a serem obtidos pelas empresas. Entre as diversas técnicas de previsão, temos o grupo de métodos estatísticos clássicos e os métodos avançados, que trazem uma contribuição no tratamento das não linearidades. É neste contexto, que surge o problema desta dissertação: Quais são as técnicas que apresentam maior acurácia quando aplicadas para previsão de vendas no varejo de moda? Para responder a esta questão, esse trabalho avaliou dez métodos de previsão: Naive, SARIMA, SARIMA com exógenas, SARIMA GARCH, SARIMA GARCH com exógenas, método atual utilizado pela empresa estudada, rede neural MLP, rede neural MLP com exógenas, rede neural recorrente LSTM e rede neural recorrente LSTM com exógenas para quatro séries de quantidades vendidas de categorias de produtos distintas de uma empresa varejista do setor de moda. É fundamental destacar, que de forma casual, a pesquisa identificou que as quatro séries semanais de vendas dos produtos analisados são estacionárias, considerando um período longo de dez anos, o que por si só já é um resultado relevante. A análise dos diversos métodos de previsão para cada série de produto mostrou que os métodos avançados superaram os métodos estatísticos clássicos e, mais especificamente, a rede neural recorrente LSTM foi a que apresentou a maior precisão. Sendo assim, não há dúvidas que adoção dos métodos avançados para as empresas, que atuam no varejo de moda, pode trazer melhorias significativas em termos de gestão de estoque, de gestão da cadeia de abastecimento e de gestão de caixa, garantindo um aumento de eficiência e dos resultados das mesmas. De forma prática, para a empresa estudada foi obtido um incremento de acuracidade de 54,32%. / The sales forecasting is a critical aspect for most organizations, since it allows to make the planning process more efficient, thus impacting the results to be obtained by the companies. Among the various forecasting techniques, we have the group of classical statistical methods and the advanced methods, which make a contribution in the treatment of nonlinearities. It is in this context, that the problem of this dissertation arises: What are the techniques that present the greatest accuracy when applied to forecast sales in fashion retail? In order to answer this question, this study evaluated ten predictive methods: Naive, SARIMA, SARIMA with exogenous, SARIMA GARCH, SARIMA GARCH with exogenous, current method used by the studied company, MLP neural network, MLP neural network with exogenous, recurrent neural network LSTM and LSTM recurrent neural network with exogenous for four series of quantities sold from product categories distinct from a retailer in the fashion industry. It is important to highlight that, on a casual basis, the research identified that the four weekly series of sales of the analyzed products are stationary, considering a long period of ten years, which in itself is already a relevant result. The analysis of the various prediction methods for each product series showed that the advanced methods overcame the classic statistical methods and, more specifically, the recurrent neural network LSTM was the one that presented the highest precision. Therefore, there is no doubt that adoption of the advanced methods for companies that operate in fashion retail can bring significant improvements in terms of inventory management, supply chain management and cash management, ensuring an increase in efficiency and in its results. In practice, for the company studied, an accuracy increase of 54.32% was obtained.
849

Sintese sonora auto-organizavel atraves da aplicação de algoritmos bio-inspirados / Self-organizing sound synthesis by means of the application of bio-inspired algorithms

Caetano, Marcelo Freitas 20 April 2006 (has links)
Orientadores: Fernando Jose Von Zuben, Jonatas Manzolli / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-06T18:10:14Z (GMT). No. of bitstreams: 1 Caetano_MarceloFreitas_M.pdf: 11758987 bytes, checksum: 2521dc99ef68d0b0a4e06b9ea4751fc5 (MD5) Previous issue date: 2006 / Resumo: Não há limitações teóricas para o uso do computador como fonte de sons musicais. O computador digital permite a produção de qualquer som concebivel dada a seqüência correta de números (amostras digitais). No entanto, produzir uma dada seqüência de números que corresponda a um som musical que possua determinadas características perceptivas desejadas é uma tarefa de difícil resolução. Grande parte dos métodos e sistemas de síntese sonora digital utiliza modelos e/ou incorpora técnicas que não levam em conta a natureza dinâmica dos sons musicais ou que não foram originalmente desenvolvidas para manipulação musical. Neste trabalho, é apresentada uma abordagem populacional para síntese sonora no domínio temporal. Foi estudado um espaço sonoro e um conjunto de atratores, isto é, um conjunto de formas de onda com qualidades sonoras desejadas e definidas a priori, e foi possível obter sons que possuem características associadas a um ou mais atratores, representando variantes dos mesmos. Este método de síntese de sons musicais pode ser interpretado como um processo de busca no espaço vetorial que contém todas as possibilidades sonoras decorrentes da representação adotada, e tem por objetivo a criação de formas de onda digítalizadas com características emergentes e potencial para serem utilizadas em diversas aplicações musicais. Os resultados representam variantes e/ou possuem íntersecções das características próprias dos atratores, responsáveis por indicar as regiões de interesse do espaço de busca. A proposta de pesquisa envolveu a utilização de algoritmos bioinspirados - os quais expressam propriedades de sistemas auto-organizados e adaptativos - como definidores de processos de geração e estruturação dos elementos sonoros, entendidos aqui como problemas de otimização. A auto-organização e os mecanismos de manutenção de diversidade e de adaptação, intrínsecos aos sistemas bio-inspirados, fundamentam a proposta no sentido de viabilizarem a emergência temporal de estruturas estáveis sem um elemento organizador externo / Abstract: There are no theoretical limitations to the use of the computer as a source of musical sounds. The digital computer allows for the production of any conceivable sound given the carrect sequence af numbers (digital samples). Nevertheless, producing the correct sequence of numbers that correspond to a musical sound expressing predefined perceptual characteristics is a very difficult task. Most sound synthesis methods and systems utilize models and/or incorporate techniques which do not take into account the dynamic nature of musical sounds or were not originally developed for the manipulation of musical tones. In this work we are proposing a populational sound synthesis approach in the time domain. A soundspace and a set of attractors, i.e. waveforms containing a priari desired features or qualities, and a population of agents communicating by means of local interaction were studied, and it was possible to attain sounds which share some qualities from more than one of the attractors, resulting exclusively from low-Ievel rules followed by these agents. This sound synthesis method can be regarded as a search in the vector space that contains ali the possible sounds resulting from the adopted representation, and its objective is to synthesize digital waveforms that possess emergent properties and the potential to be used in musical applications. The resulting sounds are variants or hybrids that share some of the intrinsic features of the attractors, which are responsible for indicating the regions of interest in the search space. This proposal involved the use of bio-inspired algorithms, which express features of adaptive, self-organizing systems, as definers of generating and structuring processes of sound elements, regarded herein as optimization processes. Self-organization and diversity maintenance and adaptation mechanisms, intrinsic to bio-inspired systems, lay the foundations of this proposal so as to make viable the temporal emergence of stable structures without an externa I organizing element / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
850

Processo de produção de bioemulsificante por Candida lipolytica : otimização, ampliação de escala e desenvolvimento de softsensor baseado em redes neurais artificiais / Biomulsifier production process by Candida lipolytica: optmization, scale-up and development of artificial neural network based softsensor

Albuquerque, Clarissa Daisy da Costa 22 February 2006 (has links)
Orientadores: Ana Maria Frattini Fileti, Galba Maria de Campos Takaki / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-06T21:06:24Z (GMT). No. of bitstreams: 1 Albuquerque_ClarissaDaisydaCosta_D.pdf: 8871218 bytes, checksum: 55101c854d0f7293da9222f2518c7c15 (MD5) Previous issue date: 2006 / Resumo: Entre as técnicas convencionais usadas para desenvolvimento de software sensores, redes neurais artificiais têm mostrado ser um instrumento poderoso em modelagem e controle de bioprocessos complexos. O objetivo geral do presente trabalho é o desenvolvimento de software sensores baseados em redes neurais para estimação e previsão em tempo real da concentração de biomassa e da atividade de emulsificação no processo de produção de bioemulsificante por Cândida lipolytica. Bioemulsificantes normalmente apresentam vantagens como biodegradabilidade, baixa toxicidade e biocompatibilidade em relação a emulsifícantes sintetizados quimicamente. Adicionalmente, eles apresentam potencial para serem sintetizados a partir de substratos de baixo custo e são normalmente efetivos em condições extremas de pH, temperatura e salinidade. Consequentemente, bioemulsificantes têm sido aplicados com sucesso em áreas como biorremediaçào e recuperação de óleos. Contudo, os bioemulsificantes não são ainda largamente empregados por conta do seu alto custo de produção, resultante primeiramente da baixa produtividade dos microrganismos empregados e do alto custo de recuperação. Entretanto, neste trabalho foi mostrado que o desenvolvimento de softsensores neurais juntamente com otimização de componentes de meio de produção e ampliação de escala do processo podem contribuir para tomar a produção de bioemulsificante mais eficiente e econômica. O modelo quadrático obtido na otimização dos componentes do meio usando planejamento composto central com três fatores e metodologia de superfície de resposta mostrou significância estatística e capacidade preditiva. A máxima atividade de emulsificação para emulsões água-em-hexadecano obtida foi de 4,415 UAE e as concentrações ótimas de uréia, sulfato de amónio e fosfato monobásico de potássio foram respectivamente iguais a 0,544 % (w/v), 2,131 % (w/v) and 2,628 % (w/v). O rendimento do processo foi otimizado em 272%. A ampliação do processo da escala de frascos para a escala de fermentador de bancada foi realizada com sucesso e os efeitos e interações da temperatura e velocidade de agitação sobre a atividade de emulsificação do bioemulsificante produzido por Cândida lipolytica foram investigados. Os conjuntos de dados necessários para o treinamento, validação e teste dos softsensores foram obtidos de experimentos de produção de bioemulsificante realizados em biorreator de 5L, sob diferentes condições de temperatura e agitação. Os conjuntos de treinamento, validação e teste dos softsensores foram suavizados e expandidos usando interpolação com spline cúbica. Várias topologias de redes neurais com uma camada escondida foram testadas. As variáveis de entrada do processo incluíram pH, oxigênio dissolvido, densidade ótica e salinidade do liquido metabólico livre de células. O algoritmo de treinamento usado foi o algoritmo de retropropagação baseado em Levenberg-Marquardt em conjunção com regularização bayesiana. A raiz do erro quadrático médio (RMSE) e o coeficiente de determinação global (Rg2) foram usados entre outros índices para comparar o desempenho dos modelos. Os resultados mostram que softsensores neurais fornecem estimação e previsão on-line de concentração de biomassa e de atividade de emulsificação dentro de uma variação aceitável de 5% dos valores experimentais. Coeficientes de determinação global superiores a 0,90 indicam o excelente ajuste dos modelos de redes neurais com os valores experimentais testados, obtidos para concentração de biomassa e atividade de emulsificação / Abstract: Among conventional techniques used for development of 'software sensors', artificial neural networks have showed to be a powerful tool for modelling and control of complex bioprocess. The present work deals with the development of neural network based software sensors for real time estimation and prediction of biomass concentration and emulsification activity in a bioemulsifier production process by Candida lipolytics Bioemulsifiers commonly have the advantages of biodégradation, low toxicity, and biocompability over chemically synthesized emulsifiers. In addition, they can potentially be synthesized from cheap subtrates and are commonly effective at extremes of pH, temperature, and salinity. As a result, bioemulsifiers have found successful application in areas such as bioremediation and oil recovery. However, bioemulsifiers are not widely available because of their high production costs, which results primarily from low strain productivities and high recovery expenses. Therefore, in this work was showed that on-iine neural softsensor development jointly with media optimization and scale up of the process can make bioemulsifier production more efficient and more economical.The second order model obtained in the optimization of the medium components using three-factor central composite design and response surface methodology showed statistical significance and predictive ability. It was found that the maximum emulsification activity to water-in-hexadecane emulsion produced was 4,415 UEA and the optimum levels of urea, ammonium sulfate and potassium dihydrogen orthophosphate were, respectively, 0,544 % (w/v), 2,131 % (w/v) and 2,628 % (w/v). The emulsifier production process yield was optimized in 272 %. Successful scale-up from flasks to laboratory scale bioreactor was attained and the effects and interactions of the temperature and agitation rate on the emulsification activity of the bioemulsifier produced by Candida lipolytica were investigated. The data sets required to training, validation and test the neural software sensors were obtained from bioemulsifier production experiments carried out using com oil and sea water based media in a 5L bioreactor, under different temperature and agitation conditions. The training, validation and test sets were smoothed and expanded by interpolation using a piecewise smoothing cubic spline. Several neural network topologies with one hidden layer were tested. The input process variables included pH, dissolved oxygen, optic density and free cell metabolic liquid salinity. The training algorithm used was the Levenberg-Marquardt based backpropagation algorithm, in conjunction with Bayesian regularization. The root mean square error (RMSE) and the global determination coefficient (Rg2) among others index were used to compare model performances. The results showed that neural 'software sensors' supplied for biomass concentration and emulsification activity on-line estimation and prediction within an acceptable variation of 5% of the experimental values. Global coefficients of determination higher than 0.90 indicated excellent agreement of the neural network models with experimental test values, obtained for biomass concentration and emulsification activity / Doutorado / Sistemas de Processos Quimicos e Informatica / Doutor em Engenharia Química

Page generated in 0.1043 seconds