Spelling suggestions: "subject:"redes neurais(computação)"" "subject:"aedes neurais(computação)""
821 |
Comparação dos algoritmos C4.5 e MLP usados na avaliação da segurança dinâmica e no auxílio ao controle preventivo no contexto da estabilidade transitória de sistemas de potênciaOLIVEIRA, Werbeston Douglas de 06 March 2013 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2013-04-24T22:22:44Z
No. of bitstreams: 2
license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5)
Dissertacao_ComparacaoAlgoritmosC45.pdf: 6478832 bytes, checksum: 5b133794170fc1dbb66f65dbedb6dd9c (MD5) / Approved for entry into archive by Ana Rosa Silva(arosa@ufpa.br) on 2013-04-29T15:43:06Z (GMT) No. of bitstreams: 2
license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5)
Dissertacao_ComparacaoAlgoritmosC45.pdf: 6478832 bytes, checksum: 5b133794170fc1dbb66f65dbedb6dd9c (MD5) / Made available in DSpace on 2013-04-29T15:43:06Z (GMT). No. of bitstreams: 2
license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5)
Dissertacao_ComparacaoAlgoritmosC45.pdf: 6478832 bytes, checksum: 5b133794170fc1dbb66f65dbedb6dd9c (MD5)
Previous issue date: 2013 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Esse trabalho compara os algoritmos C4.5 e MLP (do inglês “Multilayer Perceptron”) aplicados a avaliação de segurança dinâmica ou (DSA, do inglês “Dynamic Security Assessment”) e em projetos de controle preventivo, com foco na estabilidade transitória de sistemas elétricos de potência (SEPs). O C4.5 é um dos algoritmos da árvore de decisão ou (DT, do inglês “Decision Tree”) e a MLP é um dos membros da família das redes neurais artificiais (RNA). Ambos os algoritmos fornecem soluções para o problema da DSA em tempo real, identificando rapidamente quando um SEP está sujeito a uma perturbação crítica (curto-circuito, por exemplo) que pode levar para a instabilidade transitória. Além disso, o conhecimento obtido de ambas as técnicas, na forma de regras, pode ser utilizado em projetos de controle preventivo para restaurar a segurança do SEP contra perturbações críticas. Baseado na formação de base de dados com exaustivas simulações no domínio do tempo, algumas perturbações críticas específicas são tomadas como exemplo para comparar os algoritmos C4.5 e MLP empregadas a DSA e ao auxílio de ações preventivas. O estudo comparativo é testado no sistema elétrico “New England”. Nos estudos de caso, a base de dados é gerada por meio do programa PSTv3 (“Power System Toolbox”). As DTs e as RNAs são treinada e testadas usando o programa Rapidminer. Os resultados obtidos demonstram que os algoritmos C4.5 e MLP são promissores nas aplicações de DSA e em projetos de controle preventivo. / This work compares the C4.5 and multilayer perceptron (MLP) algorithms applied for dynamic security assessment (DSA) and power system stability transient preventive control design. C4.5 is an algorithm of the decision tree (DT) technique and the MLP is a member of artificial neural network (ANNs) family. The advent of DTs and ANNs provides solution to real-time DSA issues in order to identify quickly when a power system is subjected to a critical disturbance (short-circuit) that may lead to transient instability. In addition, the knowledge obtained by both techniques can be utilized in the preventive control design to restore the power system security against critical disturbances. Based on the data base generation with exhaustive time-domain simulations, some specific critical disturbances are taken as examples to compare the C4.5 and MLP algorithms employed to DSA and guideline to preventive actions. The comparative study is tested on the New England power system. In the case studies, the knowledge database is generated by using PSTv3 (Power System Toolbox) software. The DTs and ANNs are trained and tested by the Rapidminer software. The obtained results have demonstrated a promising application of the C4.5 and MLP algorithms used in power system DSA and preventive control design.
|
822 |
Modelagem neural da resistência elétrica dos fornos de redução do alumínioCONTE, Thiago Nicolau Magalhães de Souza 16 October 2015 (has links)
Submitted by camilla martins (camillasmmartins@gmail.com) on 2017-03-28T14:46:51Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_ModelagemNeuralResistencia.pdf: 1952861 bytes, checksum: 1924e498b84043d53cd4a207b4f98d34 (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-03-28T17:12:44Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_ModelagemNeuralResistencia.pdf: 1952861 bytes, checksum: 1924e498b84043d53cd4a207b4f98d34 (MD5) / Made available in DSpace on 2017-03-28T17:12:44Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_ModelagemNeuralResistencia.pdf: 1952861 bytes, checksum: 1924e498b84043d53cd4a207b4f98d34 (MD5)
Previous issue date: 2015-10-16 / Este trabalho avalia dois tipos de Redes Neurais Artificiais na tarefa de modelar dinamicamente o comportamento da resistência elétrica de um forno de redução de alumínio primário. A proposta é utilizar Redes Neurais Multicamada Diretas (RNMD) e Redes Neurais Recorrentes (RNR) para modelar a resistência elétrica do forno. Para cada uma destas Redes Neurais é explorado a sua capacidade de modelar sistemas dinâmicos, seja variando o número de camadas de neurônios, bem como o número de neurônios em cada camada, variando também os sinais de entrada da rede neural, etc. Os dados a serem utilizados na modelagem são oriundos de uma fábrica brasileira de alumínio primário. Esta modelagem pode ser usada para controlar a distância (subir ou descer) entre os eletrodos anodos e catodos do forno de redução que são constituídos principalmente por materiais carbonáceos. Desta forma o sistema de controle possui a tarefa de manter o valor de resistência dentro de faixas aceitáveis de operação procurando sempre garantir estabilidade térmica e consequentemente a produção do alumínio primário, com alto teor de pureza, com base em dados disponíveis online no sistema de controle da fábrica. Através desses eletrodos são injetadas correntes elétricas continuas que, além da eletrólise em si, provocam o aquecimento do banho eletrolítico, elevando a sua temperatura para uma faixa acima de 960 °C. A motivação para o trabalho está na alta complexibilidade do processo de redução do alumínio primário, cuja natureza é não-linear e o mesmo sofre influência de diversas variáveis diretamente ligadas a dinâmica do processo, muitas vezes imperceptíveis aos engenheiros de processo da fábrica, mas que podem ser percebidas por meio das técnicas de inteligência computacional refletindo aproximadamente as diferentes condições operacionais do sistema real. / The paper evaluates two types of Artificial Neural Networks to model dynamically the behaviour of the electrical resistance of a primary aluminum reduction furnace. The proposal is to use Direct Multilayer neural networks (RNMD) and Recurrent Neural networks (RNR) to model the electrical resistance of the oven. For each of these Neural Networks is explored its ability to model dynamic systems, either by varying the number of layers of neurons, as well as the number of neurons in each layer, varying the neural network input signals, etc. The data to be used in modeling from a Brazilian factory of primary aluminum. This modeling can be used to control the distance (up or down) between the electrodes, anodes and cathodes of the reduction that it consists primarily of carbonaceous materials. In this way the system of control has the task of maintaining the value of resistance within acceptable ranges of operation always attempting to ensure thermal stability and consequently the production of primary aluminum, high-purity, based on data available online in the control system of the plant. Through these electrodes are injected electrical currents keep that, besides the electrolysis itself cause the electrolytic bath, raising its temperature to a range up to 960° C. The motivation for the work is in high complexity of primary aluminum reduction process, whose nature is non-linear and the same suffering directly related variables influence the dynamics of the process, often imperceptible process engineers from the factory, but can be perceived by means of computational intelligence techniques reflecting about the different operating conditions of the real system.
|
823 |
Redes neurais diretas e recorrentes na previsão do preço de energia elétrica de curto prazo no mercado brasileiroPEREIRA JUNIOR, Flaviano Ramos 11 November 2016 (has links)
Submitted by camilla martins (camillasmmartins@gmail.com) on 2017-04-27T13:23:33Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_RedesNeuraisDiretas.pdf: 1815165 bytes, checksum: cfcfafe8a5e2953a3752c0fa6b44406d (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-05-04T12:40:06Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_RedesNeuraisDiretas.pdf: 1815165 bytes, checksum: cfcfafe8a5e2953a3752c0fa6b44406d (MD5) / Made available in DSpace on 2017-05-04T12:40:06Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_RedesNeuraisDiretas.pdf: 1815165 bytes, checksum: cfcfafe8a5e2953a3752c0fa6b44406d (MD5)
Previous issue date: 2016-11-11 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nos estudos sobre o mercado de energia do brasil existem poucos trabalhos sobre predição do preço de energia elétrica em curto prazo. Os que existem utilizam modelos preditores do tipo ARIMA e rede neural direta, entretanto com a rede neural sem método de seleção das variáveis de entrada ou dos atrasos das entradas. Além disso, não há trabalhos que utilizem redes neurais recorrentes no mercado brasileiro. O mercado de energia de curto prazo pode apresentar importantes oportunidades aos agentes atuantes, pois a comercialização nesse mercado é menos burocrática em relação ao mercado de longo prazo. Este trabalho apresenta o uso de redes neurais diretas e recorrentes (além da comparação com o modelo ARIMA) para a previsão do preço de energia elétrica de curto prazo brasileiro com uso da técnica de correlação para seleção das variáveis externas da rede e também para escolha dos atrasos nestas variáveis selecionadas. Mostra-se que, na
previsão de um passo a frente, as redes neurais implementadas superam o desempenho do modelo ARIMA para esta série e, em geral, a rede direta apresenta melhor resultado que a recorrente. além disso, a seleção dos atrasos nas variáveis de entrada melhora o desempenho da rede neural direta. / There are few articles about short term electricity price prediction in the Brazilian market. Existing works use ARIMA predictors and feedforward neural networks however, without input selection or lag selection for these inputs. Besides, there is no work with use of recurrent neural networks in the Brazilian electricity market. The short term electricity market may show important opportunities for the agents acting as the commercialization in this market is less bureaucratic in relation to the long-term market.. This article shows the use of feedforward and recurrent neural networks (besides comparison with the ARIMA model) to predict short term electricity price with the use of correlation for exogenous input selection for the networks and also for lag selection to these inputs. It is shown that, for one step forward predictions, both implemented networks outperforms the ARIMA model, and in general, feedforward network works better than recurrent network. Besides, lag selection in the input improves feedforward network performance.
|
824 |
Sistema de reconhecimento de caracteres numéricos manuscritos baseado nas redes neurais artificiais paraconsistentes / Handwritten numeric character recognition system based on paraconsistent artificial neural networkSouza, Sheila 26 November 2013 (has links)
O reconhecimento de padrões por computador é uma das mais importantes ferramentas da Inteligência Artificial presente em inúmeras áreas do conhecimento com aplicações em diversos setores, incluindo o reconhecimento de caracteres. O objetivo da dissertação se concentra na investigação de um processo computacional automatizado - Sistema Computacional Paraconsistente - capaz de reconhecer Caracteres Numéricos Manuscritos e Caracteres Magnéticos Codificados em 7 Barras utilizados em cheques bancários brasileiros, fornecendo uma fundamentação técnica para reconhecer documentos e imagens digitalizadas e, também, sinais biológicos. Embora haja vários estudos em reconhecimento de caracteres, optou-se pelo estudo desse tema devido à sua intrínseca importância e constante desenvolvimento, além de possibilitar adaptações para fazer o reconhecimento de diferentes tipos de sinais como, por exemplo, sinais biológicos. A metodologia adotada para essa tarefa se baseia nas Redes Neurais Artificiais Paraconsistentes por se tratar de uma ferramenta com capacidade de trabalhar com dados imprecisos, inconsistentes e paracompletos sem o perigo de trivialização. O processo de reconhecimento desse sistema é realizado a partir de algumas características do caractere previamente selecionadas com base em algumas técnicas do Grafismo e realiza-se a análise dessas características bem como o reconhecimento do caractere através das Redes Neurais Artificiais Paraconsistentes O sistema foi construído para reconhecer caracteres numéricos com um padrão previamente definido, onde adotou-se os Caracteres Magnéticos Codificados em 7 Barras utilizados em cheques bancários e, posteriormente, o sistema foi aperfeiçoado para fazer o reconhecimento de Caracteres Numéricos Manuscritos. Para a validação do estudo proposto apresentou-se dados reais, a saber, lotes de cheques e caracteres numéricos manuscritos digitalizados onde o sistema apresentou 97,85% de acertos para os Caracteres Magnéticos Codificados em 7 Barras e 91,62% de acertos para Caracteres Numéricos Manuscritos. O resultado obtido demonstra que o sistema é robusto o suficiente e pode servir de estudo para a análise de sinais em áreas correlatas com nível de precisão semelhante / Computer pattern recognition is one of the most important Artificial Intelligence tools present in numerous knowledge areas with applications in several themes, including the character recognition. The aim of this dissertation is the investigation of an automated computational process - Paraconsistent Computational System - able to recognize Handwritten Numeric Characters and Magnetic Ink Character Recognition used on Brazilian bank checks furnishing a technical basis to recognize digital documents, digital images and biological signals. Although there are several studies on character recognition, it was chosen to study this theme due to its intrinsic importance and constant improvement, besides enabling adjustments to the recognition of different kinds of signals such as, biological signals. The methodology employed for the task is based on Paraconsistent Artificial Neural Networks for being a tool with the ability to work with imprecise, inconsistent and paracomplete data without trivialization. The recognition process of this system is performed from some previously selected character features based on some Graphics techniques and, it performs the analysis of these features as well as the character recognition are performed through the Paraconsistent Artificial Neural Networks. The system was built to recognize numeric characters with a previously defined pattern where it was chosen the Magnetic Ink Character Recognition used on Brazilian bank checks and then the system was improved to recognize handwritten numeric characters. It was presented real data as checks\' batches and scanned handwritten numeric characters to validate the proposed study and the system reached 97.85% hits for Magnetic Ink Character Recognition and 91.62% hits for Handwritten Numeric Characters. The obtained result demonstrates that the system is robust enough for signal analysis study in correlated areas with similar precision level
|
825 |
Detecção de defeitos em juntas soldadas de tubulações de petróleo em radiografias computadorizadas parede dupla vista dupla (PDVD) por redes neuraisSuyama, Fernando Moreira 25 June 2015 (has links)
CAPES / A detecção de defeitos de soldagem em imagens radiográficas visa garantir a segurança das estruturas em análise com o objetivo de evitar perdas financeiras e prevenir contra danos ambientais. Atualmente, a inspeção de juntas soldadas é uma atividade essencialmente humana e, portanto, está sujeita a erros relacionados à acuidade visual, à experiência, à fadiga e às distrações do inspetor, afetando a repetitividade e reprodutibilidade deste processo. Nesse sentido, este trabalho apresenta um método para auxiliar na detecção de defeitos em juntas soldadas de tubulações de petróleo, utilizando radiografias computadorizadas adquiridas pela técnica de exposição Parede Dupla Vista Dupla (PDVD). O método desenvolvido compreendeu a aplicação do realce das imagens tratadas, a segmentação de descontinuidades e a redução do espaço de busca pela eliminação da região central da junta soldada PDVD. Dessa maneira, os referidos procedimentos contribuíram para que as descontinuidades segmentadas que correspondiam a regiões de defeito em potencial fossem classificadas por Redes Neurais Artificiais (RNA) Multilayer Perceptron (MLP), realizando a detecção de defeitos de soldagem. / Detection of weld defects in radiographic images aims to ensure the safety of analyzed structures in order to avoiding financial losses and prevent against environmental damage. Nowadays, the inspection of welded joints is essentially a human activity and, therefore, it is subject to errors related to the inspector visual acuity, experience, fatigue and distractions, affecting the repeatability and reproducibility of this process. In this sense, this work presents a method to assist the detection of weld defects in welded joints of petroleum pipelines in computed radiography acquired by Double Wall Double Image (DWDI) technique. The developed method involved the application of contrast enhancement of treated images, segmentation of discontinuities and, the search space reduction by eliminating the central region of the DWDI weld. Thus, these procedures contributed to that segmented discontinuities which correspond to potential weld defects regions were classified by Multilayer Perceptron Neural Networks, performing the detection of weld defects.
|
826 |
Reconhecimento de dígitos em imagens de medidores de consumo de gás natural utilizando técnicas de visão computacional / Digit recognition in images of natural gas consumption meters using computer vision techniquesGonçalves, Julio Cesar 15 September 2016 (has links)
Este trabalho propõe uma abordagem que emprega técnicas de processamento de imagens e classificação de padrões para o reconhecimento de dígitos apresentados no contador de consumo de medidores de gás natural. Tais imagens são obtidas em campo a partir de condições reais de operação, diferentemente da maioria das abordagens encontradas na literatura que se baseiam em imagens adquiridas em ambientes controlados. Inicialmente o contador de consumo é segmentado por técnicas de processamento de imagens. A segmentação é realizada com base no espaço de cor HSL da imagem, diferentemente da maioria dos trabalhos apresentados na literatura que utilizam imagens em tons de cinza. Em seguida os dígitos são individualmente segmentados e suas características extraídas de forma a compor uma base de conhecimento. Esta base serve de apoio para realizar a classificação e reconhecimento dos dígitos. Por fim, é feita uma comparação entre o desempenho dos classificadores KNN, SVM e ELM no reconhecimento de dígitos segmentados. Os resultados demonstram que as redes neurais ELM possuem um desempenho superior aos outros classificadores testados. Além disso, a metodologia mostrou-se promissora neste cenário, chegando a alcançar 95% de taxa de acerto no reconhecimento dos dígitos. Apresentando menos de 5% de falha no processo de segmentação do contador de consumo, considerando-se uma base com 903 imagens de medidores de gás. Diante da escassez de bases de imagens compatíveis com a finalidade desta pesquisa, tem-se como outro objetivo deste trabalho a disponibilização de uma base de dados contendo imagens de medidores de consumo de gás natural. Esta base é composta por imagens de medidores com tamanhos variados, obtidas em campo a partir de condições reais de operação. Fazem parte também desta base, imagens resultantes do processo de segmentação individual dos dígitos, com o objetivo de atender pesquisadores que pretendam apenas aplicar novos métodos de classificação. / This work proposes an approach that employs image processing techniques and pattern classification for the recognition of digits displayed in the counter of consumption of natural gas meters. These images are obtained in the field from actual operation conditions, unlike most of approaches in the literature that are based on images acquired in controlled environments. Initially, the counter of consumption is segmented by image processing techniques. The segmentation is performed based on the HSL color space of the image, unlike most of the works presented in the literature that uses images in grayscale. Then the digits are individually segmented and their features extracted in order to compose a knowledge base. This base serves as support to perform the classification and recognition of digits. Finally, a comparison is made between the performance of classifiers KNN, SVM and ELM in the recognition of segmented digits. The results demonstrate that the ELM neural networks have a performance superior to the other tested classifiers. Furthermore, the methodology showed to be promising in this scenario, reaching 95% success rate in recognition of digits. Presenting less than 5% fault in the process of segmentation the counter of consumption, considering a database with 903 images of gas meters. Given the scarcity of images compatible with the finality of this research, has as another objective of this work the availability of a database containing images of natural gas consumption meters. This base consists of images of gas meters with varying sizes, obtained from actual operating conditions. Also part of this base, resulting images of the individual segmented digits process, in order to meet researchers who wish to apply new methods of classification.
|
827 |
Who is the cowboy in Washington?: beating google at their own game with neuroscience and cryptographyKogeyama, Renato 17 December 2014 (has links)
Submitted by RENATO Kogeyama (rkogeyama@gmail.com) on 2015-03-06T14:50:01Z
No. of bitstreams: 1
Dissertação final.pdf: 1794273 bytes, checksum: b90c57e65dc2272d6edcdbabe5703b90 (MD5) / Approved for entry into archive by Janete de Oliveira Feitosa (janete.feitosa@fgv.br) on 2015-03-10T12:44:03Z (GMT) No. of bitstreams: 1
Dissertação final.pdf: 1794273 bytes, checksum: b90c57e65dc2272d6edcdbabe5703b90 (MD5) / Approved for entry into archive by Marcia Bacha (marcia.bacha@fgv.br) on 2015-03-12T19:58:58Z (GMT) No. of bitstreams: 1
Dissertação final.pdf: 1794273 bytes, checksum: b90c57e65dc2272d6edcdbabe5703b90 (MD5) / Made available in DSpace on 2015-03-12T19:59:13Z (GMT). No. of bitstreams: 1
Dissertação final.pdf: 1794273 bytes, checksum: b90c57e65dc2272d6edcdbabe5703b90 (MD5)
Previous issue date: 2014-12-17 / Who was the cowboy in Washington? What is the land of sushi? Most people would have answers to these questions readily available,yet, modern search engines, arguably the epitome of technology in finding answers to most questions, are completely unable to do so. It seems that people capture few information items to rapidly converge to a seemingly 'obvious' solution. We will study approaches for this problem, with two additional hard demands that constrain the space of possible theories: the sought model must be both psychologically and neuroscienti cally plausible. Building on top of the mathematical model of memory called Sparse Distributed Memory, we will see how some well-known methods in cryptography can point toward a promising, comprehensive, solution that preserves four crucial properties of human psychology.
|
828 |
Utilização do modelo skip-gram para representação distribuída de palavras no projeto Media Cloud BrasilLopes, Evandro Dalbem 30 June 2015 (has links)
Submitted by Evandro Lopes (dalbem.evandro@gmail.com) on 2016-04-04T03:14:32Z
No. of bitstreams: 1
dissertacao_skip_gram.pdf: 1559216 bytes, checksum: c9487105e0e9341acd30f549c30d4dc9 (MD5) / Approved for entry into archive by Janete de Oliveira Feitosa (janete.feitosa@fgv.br) on 2016-07-19T19:55:35Z (GMT) No. of bitstreams: 1
dissertacao_skip_gram.pdf: 1559216 bytes, checksum: c9487105e0e9341acd30f549c30d4dc9 (MD5) / Approved for entry into archive by Marcia Bacha (marcia.bacha@fgv.br) on 2016-07-25T17:47:32Z (GMT) No. of bitstreams: 1
dissertacao_skip_gram.pdf: 1559216 bytes, checksum: c9487105e0e9341acd30f549c30d4dc9 (MD5) / Made available in DSpace on 2016-07-25T17:47:47Z (GMT). No. of bitstreams: 1
dissertacao_skip_gram.pdf: 1559216 bytes, checksum: c9487105e0e9341acd30f549c30d4dc9 (MD5)
Previous issue date: 2015-06-30 / There is a representation problem when working with natural language processing because once the traditional model of bag-of-words represents the documents and words as single matrix, this one tends to be completely sparse. In order to deal with this problem, there are some methods capable of represent the words using a distributed representation, with a smaller dimension and more compact, including some properties that allow to relate words on the semantic form. The aim of this work is to use a dataset obtained by the Media Cloud Brasil project and apply the skip-gram model to explore relations and search for pattern that helps to understand the content. / Existe um problema de representação em processamento de linguagem natural, pois uma vez que o modelo tradicional de bag-of-words representa os documentos e as palavras em uma unica matriz, esta tende a ser completamente esparsa. Para lidar com este problema, surgiram alguns métodos que são capazes de representar as palavras utilizando uma representação distribuída, em um espaço de dimensão menor e mais compacto, inclusive tendo a propriedade de relacionar palavras de forma semântica. Este trabalho tem como objetivo utilizar um conjunto de documentos obtido através do projeto Media Cloud Brasil para aplicar o modelo skip-gram em busca de explorar relações e encontrar padrões que facilitem na compreensão do conteúdo.
|
829 |
Aplicação do Word2vec e do Gradiente descendente dstocástico em tradução automáticaAguiar, Eliane Martins de 30 May 2016 (has links)
Submitted by Eliane Martins de Aguiar (elianemart@gmail.com) on 2016-08-01T21:03:09Z
No. of bitstreams: 1
dissertacao-ElianeMartins.pdf: 6062037 bytes, checksum: 14567c2feca25a81d6942be3b8bc8a65 (MD5) / Approved for entry into archive by Janete de Oliveira Feitosa (janete.feitosa@fgv.br) on 2016-08-03T20:29:34Z (GMT) No. of bitstreams: 1
dissertacao-ElianeMartins.pdf: 6062037 bytes, checksum: 14567c2feca25a81d6942be3b8bc8a65 (MD5) / Approved for entry into archive by Maria Almeida (maria.socorro@fgv.br) on 2016-08-23T20:12:35Z (GMT) No. of bitstreams: 1
dissertacao-ElianeMartins.pdf: 6062037 bytes, checksum: 14567c2feca25a81d6942be3b8bc8a65 (MD5) / Made available in DSpace on 2016-08-23T20:12:54Z (GMT). No. of bitstreams: 1
dissertacao-ElianeMartins.pdf: 6062037 bytes, checksum: 14567c2feca25a81d6942be3b8bc8a65 (MD5)
Previous issue date: 2016-05-30 / O word2vec é um sistema baseado em redes neurais que processa textos e representa pa- lavras como vetores, utilizando uma representação distribuída. Uma propriedade notável são as relações semânticas encontradas nos modelos gerados. Este trabalho tem como objetivo treinar dois modelos utilizando o word2vec, um para o Português e outro para o Inglês, e utilizar o gradiente descendente estocástico para encontrar uma matriz de tradução entre esses dois espaços.
|
830 |
O uso de redes neurais auto-organizáveis na análise da transferência de conhecimentos prosódico em aprendizes brasileiros de língua inglesa / The use of self-organizing artificial neural networks for the analysis of prosodic knowledge in Brazilian learner of EnglishSilva, Ana Cristina Cunha da January 2010 (has links)
SILVA, Ana Cristina Cunha da. O uso de redes neurais auto-organizáveis na análise da transferência de conhecimentos prosódico em aprendizes brasileiros de língua inglesa. 2010, 201f. Tese (Doutorado em Linguística) – Universidade Federal do Ceará, Departamento de Letras Vernáculas, Programa de Pós-graduação em Linguística, Fortaleza-CE, 2010. / Submitted by nazareno mesquita (nazagon36@yahoo.com.br) on 2012-06-28T13:08:58Z
No. of bitstreams: 1
2010_tese_ACCSilva.pdf: 2172197 bytes, checksum: 036ba2cdc331410f0516a0ba2abe520d (MD5) / Approved for entry into archive by Maria Josineide Góis(josineide@ufc.br) on 2013-10-10T13:22:45Z (GMT) No. of bitstreams: 1
2010_tese_ACCSilva.pdf: 2172197 bytes, checksum: 036ba2cdc331410f0516a0ba2abe520d (MD5) / Made available in DSpace on 2013-10-10T13:22:45Z (GMT). No. of bitstreams: 1
2010_tese_ACCSilva.pdf: 2172197 bytes, checksum: 036ba2cdc331410f0516a0ba2abe520d (MD5)
Previous issue date: 2010 / The objective of this dissertation was to investigate how the prosodic knowledge is organized in an early stage of L2 acquisition in Brazilian learners of English with the help of a connectionist neural network. The approach proposed in this research is first, to quantify the utterances of L2 learners in the form of LPC coefficients and other linguistic/phonetics features that can represent the phenomenon studied here (Transfer of the prosodic knowledge from Portuguese to English). This process is called speech feature extraction, an important step in the connectionist approach to speech processing. Second, since certain features of the lexical item or sentence produced by each learner are determined, these data are entered into the neural network to analyze the statistical properties (regularities) of the set of speakers as a whole. Third, visualization tools are used to analyze how the network organizes speakers and what information is most relevant to this process of group formation (e.g. proficiency level, a certain characteristic or property of speech, among others). The network is known as Self-Organizing Map (Self-Organizing Map, SOM). The SOM organizes speakers for similarity degree in well-defined groups (clusters). Application of SOM in this context is therefore innovative. The SOM network is implemented in Matlab environment using the SOMtoolbox package, which is a set of programming routines developed by the research group in Finland, also the inventors of the SOM. The simulation results indicate that SOM might be used more frequently to assess the degree of distance that a group of learners is to the group of native speakers. Thus, a neural network might be used as a tool in the context of determining the level of foreign language proficiency. / O objetivo desta tese foi investigar como o conhecimento prosódico está organizado em um estágio inicial de aquisição de L2 em aprendizes brasileiros de inglês com a ajuda de uma rede neural conexionista. A abordagem proposta neste trabalho consiste primeiramente em "quantificar" as elocuções dos aprendizes de L2 na forma de coeficientes LPC e outras características linguísticas/fonéticas que possam representar o fenômeno aqui estudado (Transferência do Conhecimento Prosódico do Português para o inglês). A este processo dá-se o nome de "extração de características" da fala (feature extraction), uma importante etapa na abordagem conexionista do processamento da fala. Em segundo lugar, uma vez determinadas as características do item lexical ou da frase produzida por cada aprendiz, são inseridos esses dados na rede neural a fim de analisar as propriedades (regularidades) estatísticas do conjunto de falantes como um todo. Em terceiro, utiliza-se ferramentas de visualização para analisar como a rede organiza os falantes e quais informações são mais relevantes para este processo de formação de grupos (e.g. nível de proficiência, uma certa característica ou propriedade da fala, entre outros). A rede utilizada é conhecida como Mapa Auto-Organizável (Self-Organizing Map, SOM). A rede SOM organiza os falantes por grau de similaridade em grupos bem definidos (clusters). A aplicação da rede SOM neste contexto é, portanto, inovadora. A rede SOM é implementada no ambiente Matlab usando o pacote Som toolbox, que é um conjunto de rotinas de programação desenvolvidas pelo grupo de pesquisa da Finlândia, também inventores da rede SOM. Os resultados das simulações apontam que a rede SOM pode vir a ser usada mais frequentemente para avaliar o grau de distância a que um grupo de aprendizes está do grupo de falantes nativos. Dessa forma, uma rede neural pode vir a ser aplicada como ferramenta no contexto de determinação de nível de proficiência em língua estrangeira.
|
Page generated in 0.0844 seconds