• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 9
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 60
  • 60
  • 35
  • 15
  • 14
  • 12
  • 11
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Caracterização de materiais compostos por ultra-som. / Ultrasonic characterization of composite materials.

Daniel Verga Boeri 19 April 2006 (has links)
Este trabalho apresenta duas técnicas de ensaios não-destrutivos por ultra-som realizados em um tanque com água para determinar as constantes elásticas de materiais compostos de fibra de vidro/epóxi. A primeira técnica é a transmissão direta utilizando um par de transdutores. A segunda é a técnica de pulso-eco, utilizando um único transdutor. A água do tanque atua como um acoplante para transferir a energia mecânica do transdutor para a amostra. Como o transdutor não fica em contato direto com a amostra, pode-se garantir um acoplamento constante. O sistema de medição dota de um dispositivo que permite medir a velocidade da onda elástica sob diferentes ângulos de incidência, através da rotação manual da amostra. Devido ao fenômeno de conversão de modos com incidência oblíqua na interface amostra-água, ensaios por ultra-som em tanques com água fornecem as informações necessárias para o cálculo das constantes elásticas em amostras de materiais anisotrópicos, numa dada direção, a partir das medições das velocidades longitudinal e de cisalhamento. Numa dada direção de propagação em um meio anisotrópico, existem três ondas elásticas distintas: uma longitudinal e duas de cisalhamento. Se as constantes elásticas do material são conhecidas, é possível obter as três velocidades em uma dada direção bastando resolver a equação de Christoffel. Invertendo a equação de Christoffel, obtém-se as constantes elásticas a partir das velocidades medidas em uma dada direção. Os experimentos são realizados com amostras de fibra de vidro/epóxi unidirecionais e bidirecionais, utilizando transdutores com freqüências de 0,5 MHz, 1 MHz e 2,25 MHz. Os resultados experimentais obtidos utilizando ambas as técnicas são comparados com um modelo denominado “Regra das Misturas” e com resultados da literatura. / In this work, two ultrasonic non destructive techniques were implemented in a water tank and used to determine the elastic constants of glass-epoxy composites samples. The first is the through-transmission technique implemented with a pair of ultrasonic transducers. The second is the back-reflection technique that uses a single transducer in pulse-eco mode. The water acts as a couplant and transfers the mechanical energy from the transducer to the sample. As the transducer is not in direct contact with the sample, we can guarantee a good coupling with the immersion technique. With the system device, it is possible to measure the velocities of the elastic waves in different angles by manually rotating the sample. Due to wave mode conversion phenomenon at the sample-water interface with oblique incidence, ultrasonic immersion testing provides information to calculate the elastic constants of the specimen by measuring longitudinal and shear wave speeds. There are three different modes of waves, one longitudinal and two shear waves, for any given direction of propagation in an anisotropic medium. If the elastic constants of a medium are known, it is possible to obtain the three wave speeds in particular propagations directions by solving the Christoffel equation. Inverting the Christoffel equation, it is possible to obtain the elastic constants from the measured wave speed in several specific directions of the anisotropic material. Measurements were carried out on unidirectional and bidirectional glass-epoxy composite samples, using transducers with central frequency of 0.5 MHz, 1 MHz, and 2.25 MHz. The experimental results obtained with both techniques are compared with a model denominated “Rule of Mixture” estimation and with the literature.
42

Efeito do pré-aquecimento e da pós-polimerização nas propriedades mecânicas e grau de conversão de um compósito experimental reforçado com fibra de vidro / Effect of pre-heating and post-curing on mechanical properties and degree of conversion of an experimental composite reinforced with glass fiber

Almeida, Letícia Nunes de 25 February 2016 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2016-09-21T13:42:33Z No. of bitstreams: 2 Dissertação - Letícia Nunes de Almeida - 2016.pdf: 4956536 bytes, checksum: ff3b7edcf1cb8b45c40f2292cb032676 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-09-21T13:45:21Z (GMT) No. of bitstreams: 2 Dissertação - Letícia Nunes de Almeida - 2016.pdf: 4956536 bytes, checksum: ff3b7edcf1cb8b45c40f2292cb032676 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-09-21T13:45:21Z (GMT). No. of bitstreams: 2 Dissertação - Letícia Nunes de Almeida - 2016.pdf: 4956536 bytes, checksum: ff3b7edcf1cb8b45c40f2292cb032676 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-02-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The pre-heating and post-curing can improve the mechanical properties of composites, even though there be no studies of fiber reinforced composites. The aim of this study was to evaluate the effect of pre-heating and post-curing autoclave and microwave in flexural strength (FS), diametral tensile strength (DTS), knoop microhardness (KHN) and degree of conversion (DC) of a experimental fiber- reinfoced composite. The experimental material was prepared with 30% glass fibers (3 mm), 22.5% of the resin matrix (40/60 Bis-GMA / TEGDMA) and 47.5% barium silicate particles. Six experimental groups were created by the interaction between the factors under study: heating, on two levels (without heating and heating at 60°C) and post-curing in 3 levels (conventional curing without post-curing, autoclave (120°C for 15 minutes) and microwaves (540 W for 5 minutes) The groups were: F - curing at 1500 mW/cm2 for 40 seconds; F + M - curing and post- polymerization in microwave; F + A - curing and post-curing in an autoclave , AQ + F - the composite heating prior to curing, AQ + F + M - heating prior to curing and post-curing in microwave;. AQ + F + A - heating prior to curing and post-curing and autoclave heating was conducted digital oven for 5 minutes at 60°C. Ten samples of the RF dimensions 25 x 2 x 2 mm and DTS in dimensions of 3 x 6 mm were tested in a universal testing machine Instron 5965, 0.5 mm/min. the KHN test was performed on samples of 3 x 6 mm with a load of 50 g for 30 sec, totaling 50 indentations per group. GC was obtained by Spectroscopy Fourier Transform Infrared (FTIR) on 5 samples. Data were analyzed by a factorial 2x3 and general linear model ANOVA and Tukey tests (α = 0.05). Factor analysis showed significant interaction between the factors just for RTD (p = 0.0001); preheating was significant factor for RF (p = 0.0001), RTD (p = 0.020) and KHN (p = 0.0001); post-curing factor for KHN was significant (p = 0.0001). ANOVA and Tukey tests showed statistically significant differences between groups for DTS (p = 0.001: AQ + F ≥ AQ + F + M = F + A = AQ + F + A = F + M ≥ F), FS (p = 0.016: AQ + F + M ≥ AQ + F + A + F = AQ = AQ + A + M ≥ F ≥ F) and KHN (p = 0.0001: AQ + F + M ≥ AQ + A + F = F = F + A + M ≥ F ≥ M + AQ). GC results showed no statistically significant difference. Through the Pearson correlation coefficient was observed significant positive correlation between the GC and RTD (r = 0.473, p = 0.008) and between DTS and FS (r = 0.263, p = 0.042). The pre-heating and post- polymerization were shown to be favorable to promote better mechanical properties of fiber reinforced composite by studied, specific for each property being analyzed. / O aquecimento prévio à polimerização e a pós-polimerização podem melhorar propriedades mecânicas em compósitos, embora inexistam estudos em compósitos reforçados com fibra. O objetivo deste estudo foi avaliar o efeito do pré- aquecimento e da pós-polimerização em autoclave e microondas na resistência flexural (RF), resistência à tração diametral (RTD), microdureza knoop (KHN) e grau de conversão (GC) de um compósito experimental reforçado por fibra de vidro. O material experimental foi confeccionado com 30% de fibras de vidro (3 mm), 22,5% de matriz resinosa (40/60 Bis-GMA/TEGDMA) e 47,5% de partículas de silicato de bário. Seis grupos experimentais foram criados pela interação entre os fatores em estudo: aquecimento, em dois níveis (controle sem aquecimento e aquecimento a 60oC) e pós-polimerização, em 3 níveis (fotopolimerização convencional sem pós- polimerização, autoclave (120oC por 15 minutos) e microondas (540 W por 5 minutos). Os grupos foram: F - fotopolimerização à 1500 mW/cm2 por 40 segundos; F+M - fotopolimerização e pós- polimerização em microondas; F+A - fotopolimerizacão e pós-polimerização em autoclave; AQ+F - aquecimento do compósito previamente à fotopolimerização; AQ+F+M - aquecimento previamente à fotopolimerização e pós-polimerização em microondas; AQ+F+A - aquecimento previamente à fotopolimerização e pós-polimerização e autoclave. O aquecimento foi realizado em estufa digital por 5 minutos a 60oC. Dez amostras de RF nas dimensões de 25 x 2 x 2 mm e de RTD nas dimensões de 3 x 6 mm foram testadas em máquina de ensaio universal Instron 5965, a 0,5mm/min. O teste de KHN foi realizado em amostras de 3 x 6 mm com carga de 50 g por 30 s, totalizando 50 indentações por grupo. O GC foi obtido através de Espectroscopia de Infravermelho por Transformada de Fourrier (FTIR) em cinco amostras. Os dados foram analisados por um modelo linear geral fatorial 2x3 e testes de ANOVA e Tukey (α=0,05). A análise fatorial mostrou interação significativa entre os fatores apenas para RTD (p=0,0001); o fator pré-aquecimento foi significante para RF (p=0,0001), RTD (p=0,020) e KHN (p=0,0001); o fator pós-polimerização foi significante para KHN (p=0,0001). Os testes de ANOVA e Tukey mostraram diferença estatística entre os grupos para RTD (p = 0,001: AQ+F ≥ AQ+F+M = F+A = AQ+F+A = F+M ≥ F), RF (p = 0,016: AQ+F+M ≥ AQ+F+A = AQ+F = AQ+A ≥ F+M ≥ F) e KHN (p = 0,0001: AQ+F+M ≥ AQ+F+A = F+A= F+M ≥ AQ+F ≥ F). Os resultados de GC não apresentaram diferença estatisticamente significante. Através do coeficiente de correlação de Pearson foi possível observar correlação positiva significante entre o GC e RTD (r = 0,473, p = 0,008) e entre RTD e RF (r = 0,263, p = 0,042) . O pré- aquecimento e a pós-polimerização mostraram-se favoráveis para promover melhores propriedades mecânicas do compósito reforçado por fibra estudado, sendo específicos para cada propriedade analisada.
43

Resistência à flexão, sorção, solubilidade e estabilidade de cor de compósitos odontológicos reforçados por fibras / Flexural strength, water sorption, solubility and color stability of some fiber reinforced composite

Renata Souza Medeiros 10 August 2012 (has links)
Os objetivos deste estudo foram: 1) avaliar a resistência à flexão em três pontos de um compósito para uso direto (Filtek Z350 XT, 3M ESPE) e um para uso indireto (Signum, Heraeus, Kulzer) reforçados por uma ou duas camadas de fibras de polietileno (Ribbond -THM, Ribbond®) ou de vidro (Interlig, Ângelus) tratados termicamente (170°C por 10 minutos), comparados com os grupos controle (não reforçados por fibras e/ou não tratados termicamente; 2) avaliar a sorção, a solubilidade e a estabilidade de cor dos compósitos reforçados, após armazenamento em água destilada à 37°C por 14 dias. A estabilidade de cor foi avaliada com auxílio de um espectrofotômetro de contato dental (Vita EasyShade, Vident, CA, USA). Para o ensaio de resistência à flexão, foram confeccionados espécimes retangulares com dimensões de 12 x 2 x 2mm (n=10), com os seguintes fatores de variação: a) compósito (para uso direto ou indireto); b) tipo e número de camadas de fibras (vidro ou polietileno/uma ou duas camadas); c) submetidos ou não a tratamento térmico. O tratamento térmico foi realizado 24 horas após fotoativação em estufa à temperatura de 170°C por 10 minutos. O ensaio foi realizado 24 horas após fotoativação ou tratamento térmico. Para avaliação de sorção/solubilidade e estabilidade de cor, foram confeccionados espécimes em forma de disco com dimensões de 15 x 2mm (n=5), em que foram analisados os seguinte fatores: a) compósito (para uso direto ou indireto); b) tipo de fibra (vidro ou polietileno); c) número de camadas de fibras (uma ou duas). Foi realizada análise dos parâmetros de cor antes e após imersão em água deionizada por 14 dias. Os resultados foram analisados por ANOVA e teste de contraste de Tukey, com nível de significância de 5% e revelaram que a fibra de vidro, quando utilizada em duas camadas, propiciou os maiores valores de resistência à flexão para os dois compósitos testados (165,4 MPa Z350XT e 208,7MPa Signum ). O tratamento térmico não apresentou significância estatística quanto à resistência à flexão do compósito direto. Para o compósito para uso indireto (Signum ) foi encontrada diferença estatisticamente significante para o fator tratamento térmico, que indicou valores de resistência à flexão inferiores para os grupos tratados termicamente. O compósito para uso direto apresentou valor de sorção superior (33,6/cm3) ao do compósito para uso indireto (19,1/cm3). Para solubilidade, foi encontrada interação para os fatores compósito e tipo de fibra, indicando maiores valores para o compósito para uso direto associado à fibra de vidro. A análise de alteração de cor demonstrou maior valor de E para a fibra de polietileno (E =1,5) quando comparado à fibra de vidro (E=1,0). Concluiu-se que: 1) a adição de fibras propicia aumento dos valores de resistência à flexão de compósitos para uso direto e indireto, o aumento da resistência foi observado quando do uso de duas camadas de fibras; 2) o tratamento térmico à 170°C por 10 minutos não indicou melhora nas propriedades mecânicas dos compósitos reforçados; 3) adicionar fibras aos compósitos não aumentou os valores de sorção/solubilidade quando imersos em água; 4) Imersão em água não produziu alterações de cor relevantes para os compósitos reforçados com fibras se comparados aos sem fibras. / The aims of this study were: 1) to evaluate the flexural strength of one composite for direct use (Filtek Z350 XT, 3M ESPE) and one for indirect use (Signum, Heraeus, Kulzer) as a function of the reinforcement by one or two layers of polyethylene (THM-Ribbond, Ribbond ®) or glass fibers (Interlig, Angelus) submitted to heat treatment (170°C for 10 minutes) compared with control groups (not reinforced by fibers and/or not heat-treated; 2) evaluate water sorption, solubility and color stability of the reinforced composites, after storage in distilled water at 37°C for 14 days. Color stability was evaluated using a spectrophotometer (Vita Easyshade, Vident, CA, USA). For three point flexural bending test, rectangular specimens were prepared with dimensions of 12 x 2 x 2 mm (n=10), according to the following variation factors: a) composite (for direct or indirect use); b) type of fibers and number of layers (glass or polyethylene/one or two layers; c) subjected or not to heat treatment. The heat treatment was performed 24 hours after curing, in a furnace, at 170 ° C for 10 minutes. Tests were performed 24 hours after curing or heat treatment. To evaluate the water sorption/solubility and color stability, disc-shaped specimens were prepared with dimensions of 15 x 2 mm (n=5) according to the following variation factors: a) composite (for direct or indirect uses); b) fiber type (glass or polyethylene); c) number of fiber layers (one or two). Color parameters were analyze before and after immersion in deionized water for 14 days. The results were analyzed by ANOVA and Tukeys test with significance level of 5%, and indicated that the glass fiber when used in two layers, showed the highest flexural strength for the two tested composites (165.4 MPa - Z350XT and 208.7 MPa - Signum ). The heat treatment did not significantly affect the flexural strength of the direct composite. For the composite for indirect use (Signum ), a statistical significance for the factor heat treatment was found, indicating lower values of flexural strength for heat-treated groups. The composite for direct use showed higher water sorption value (33.6 /cm3) when compared to the composite for indirect use (19.1 /cm3). For solubility, a significant interaction was found for composite and fiber type, indicating higher values for direct composite and glass fiber. Color stability analysis showed higher color difference value for polyethylene fiber (E =1.5) when compared to glass fiber (E=1.0). It was concluded that: a) adding fibers increased the flexural strength values of the composites for direct or indirect use, the increase in strength was more pronounced when using two fiber layers; 2) heat treatment at 170 ° C for 10 minutes showed no improvement of the mechanical properties of fiber reinforced composites; 3) adding fibers to the composite did not increase the sorption/solubility after water immersion, 4) Immersion in water did not change the color of the fiber reinforced composites when compared with those without fibers.
44

A Synergetic Micromechanics Model For Fiber Reinforced Composites

Padhee, Srikant Sekhar 06 1900 (has links) (PDF)
Composite materials show heterogeneity at different length scales. hence concurrent multiscale analysis is the only reliable method to analyze them. But unfortunately there is no concurrent multi-scale strategy that is efficient, and accurate while addressing all kinds of problems. This lack of reliability is partly because there is no micro-mechanical model which inherently keeps all relevent global information with it. This thesis tries to fill this gap. The presented micro-mechanical model not only homogenizes the micro-structure but also keeps the global information with it. Most of the micro-mechanical models in the literature extract the Representative Volume Element (RVE) from the continuum for analysis which results in loss of information and accuracy. In the present approach also, the RVE has been extracted from the continuum but with the major difference that all the macro/meso-scopic parameters are accounted for. Five macro/meso-scopic one dimensional parameters have been defined which completely define the effect of continuum. 11 for one dimensional stretch, _1 for torsion, __ (_ = 2, 3) for bending and _33 for uniform pressurization due to the presence of the continuum. Further, the above macro/meso-scopic parameters are proven, by the asymptotic, theory to be constant at a cross section but vary, in general, over the length of the fiber. Hence, the analysis is valid for any location and is not restricted to any local domain. Three major problems have been addressed: • Homogenization and analysis of RVE without any defects • Homogenization and analysis of RVE with fiber-matrix de-bonding • Homogenization and analysis of RVE with radial matrix cracking. Variational Asymptotic Method (VAM) has been used to solve the above mentioned problems analytically. The results have been compared against standard results in the literature and against 3D FEA. At the end, results for “Radial deformation due to torsion” problem will be presented which was solved “accidentally.”
45

Modélisation du comportement des composites à fibres courtes non-alignées en dynamique / Constitutive behaviour modelling of short fibre reinforced composites under dynamic loading

Nciri, Mariem 11 May 2017 (has links)
L’utilisation de composites à matrice thermoplastique renforcée par fibres courtes (TRFC) connait une forte croissance pour une large gamme d’applications industrielles pour des conditions de chargement extrêmes (e.g. pare-chocs d’automobiles). Il est donc indispensable de développer des modèles de comportement des TRFC tenant compte des spécificités du matériau pour une large gamme de vitesse de déformation. Toutefois, le comportement de ces composites est complexe. Cette complexité est due, en premier lieu, au comportement viscoélastique (VE)-viscoplastique (VP) de la matrice avec une sensibilité à la pression. A cela s’ajoute les caractéristiques complexes du renfort en termes de distributions d’orientation des fibres courtes. De plus, le comportement de ces composites est affecté par des phénomènes d’endommagement coexistants (e.g. endommagement de la matrice et décohésion l’interface fibre/matrice). Dans ce travail, un modèle permettant la prise en compte de l’ensemble de ces phénomènes est proposé. Sa formulation est basée sur la décomposition du matériau en un milieu matriciel et plusieurs milieux de fibres, sur la base d’une décomposition additive du potentiel thermodynamique. Cette approche permet une implémentation simplifiée avec une résolution successive (mais non indépendante) du comportement de chaque milieu. Un avantage immédiat est la possibilité de prendre en compte tout type de comportement matriciel et tout type d’orientation. L’interface fibre/matrice, siège de la transmission de l’effort est modélisée par un transfert par cisaillement, avec sur une hypothèse locale d’iso-déformation dans la direction de la fibre. L’endommagement ductile de la matrice est pris en compte par un modèle d’endommagement anisotrope. La dégradation de l’interface fibre/matrice est décrite par un modèle de décohésion initiée en pointe de fibres. Un critère de rupture se basant sur le taux maximal de vide crée par décohésion est enfin introduit. La caractérisation du modèle est basée sur des campagnes d’essais quasi-statiques et dynamiques pour le cas de polypropylène pur et renforcé par fibres courtes de verre, à différents angles de chargement par rapport à la direction d’injection. Ces essais sont complétés par des observations au microtomographe permettant la caractérisation des distributions d’orientation locale des fibres. Des observations au MEB ont enfin permis de constater une éventuelle influence de la vitesse de sollicitation sur les mécanismes d’endommagement. / Short fibre-reinforced composites are commonly used in a variety of engineering applications, including automotive and aerospace industry. Today, their use is progressively extended to parts possibly subjected to severe loading conditions (e.g. crash...), characterised by high strain rates. Therefore, an efficient modelling that takes into account material’s specificities at a large strain rate range is needed. A constitutive model of viscous behaviour of short-fibre reinforced composites (SFRC) where complex distributions of fibre orientations are taken into account is proposed in this work. The approach considered for the computation of composite macroscopic behavior is based on an additive decomposition of the state potential. The SFRC is assimilated to an assembly of several fibre media embedded in a polymeric matrix medium. One of the main assets of this approach is the possibility to model reinforcement with complex distributions of fibre orientations. Moreover, this decomposition allows the implementation of complex behaviour laws coupled with damage models. The polymeric matrix behaviour is typically strain-rate sensitive, i.e. viscoelastic-viscoplastic. This property has to be taken into account when the modelling of the composite behaviour over a large range of strain rate is intended. Therefore, a viscoelastic constitutive model, based on generalised Maxwell model, and a viscoplastic correction scheme, based on an overstress approach, are implemented for matrix material. The developed constitutive model is then coupled to two damage laws. The first one is introduced in the framework of Continuum Damage Mechanics in order to model the anisotropic ductile damage behaviour of the matrix material. The second one deals with fibre/matrix interfacial degradation through an interfacial debonding law. In order to identify the parameters involved in the present model, experimental tests are performed (case of polypropylene reinforced with short glass fibres). Microcomputed tomography is used for the characterisation of the fibres distribution of orientation. The efficiency of the proposed model is demonstrated by comparisons between numerical and experimental responses in different loading conditions, including dynamic loadings.
46

Mechanical behaviors of bio-inspired composite materials with functionally graded reinforcement orientation and architectural motifs

Di Wang (8782580) 01 May 2020 (has links)
<p>Naturally-occurring biological materials with stiff mineralized reinforcement embedded in a ductile matrix are commonly known to achieve excellent balance between stiffness, strength and ductility. Interestingly, nature offers a broad diversity of architectural motifs, exemplify the multitude of ways in which exceptional mechanical properties can be achieved. Such diversity is the source of bio-inspiration and its translation to synthetic material systems. In particular, the helicoid and the “brick and mortar” architectured materials are two key architectural motifs we are going to study and to synthesize new bio-inspired materials. </p> <p>Due to geometry mismatch(misorientation) and incompatibilities of mechanical properties between fiber and matrix materials, it is acknowledged that misoriented stiff fibers would rotate in compliant matrix beneath uniaxial deformation. However, the role of fiber reorientation inside the flexible matrix of helicoid composites on their mechanical behaviors have not yet been extensively investigated. In the present project, fiber reorientation values of single misoriented laminae, mono-balanced laminates and helicoid architectures under uniaxial tensile are calculated and compared. In the present work, we introduce a Discontinuous Fiber Helicoid (DFH) composite inspired by both the helicoid microstructure in the cuticle of mantis shrimp and the nacreous architecture of the red abalone shell. We employ 3D printed specimens, analytical models and finite element models to analyze and quantify in-plane fiber reorientation in helicoid architectures with different geometrical features. We also introduce additional architectures, i.e., single unidirectional lamina and mono-balanced architectures, for comparison purposes. Compared with associated mono-balanced architectures, helicoid architectures exhibit less fiber reorientation values and lower values of strain stiffening. The explanation for this difference is addressed in terms of the measured in-plane deformation, due to uniaxial tensile of the laminae, correlated to lamina misorientation with respect to the loading direction and lay-up sequence.</p> <p>In addition to fiber, rod-like, reinforced laminate, platelet reinforced composite materials, “brick and mortar” architectures, are going to be discussed as well, since it can provide in-plane isotropic behavior on elastic modulus that helicoid architecture can offer as well, but with different geometries of reinforcement. Previous “brick and mortar” models available in the literature have provided insightful information on how these structures promote certain mechanisms that lead to significant improvement in toughness without sacrificing strength. In this work, we present a detailed comparative analysis that looks at the three-dimensional geometries of the platelet-like and rod-like structures. However, most of these previous analyses have been focused on two-dimensional representations. We 3D print and test rod-like and tablet-like architectures and analyze the results employing a computational and analytical micromechanical model under a dimensional analysis framework. In particular, we focus on the stiffness, strength and toughness of the resulting structures. It is revealed that besides volume fraction and aspect ratio of reinforcement, the effective shear and tension area in the matrix governs the mechanical behavior as well. In turns, this leads to the conclusion that rod-like microstructures exhibit better performance than tablet-like microstructures when the architecture is subjected to uniaxial load. However, rod-like microstructures tend to be much weaker and brittle in the transverse direction. On the other hand, tablet-like architectures tend to be a much better choice for situations where biaxial load is expected.</p> <p>Through varying the geometry of reinforcement and changing the orientation of reinforcement, different architectural motifs can promote in-plane mechanical properties, such as strain stiffening under uniaxial tensile, strength and toughness under biaxial tensile loading. On the other hand, the various out-of-plane orientation of the reinforcement leads to functionally graded effective indentation stiffness. The external layer of nacre shell is composed of calcite prisms with graded orientation from surface to interior. This orientation gradient leads to functionally graded Young’s modulus, which is confirmed to have higher fracture resistance than homogenous materials under mode I fracture loading act.</p> <p>Similar as graded prism orientation in calcite layer of nacre, the helicoid architecture found in nature exhibits gradients on geometrical parameters as well. The pitch distance of helicoid architecture is found to be functionally graded through the thickness of biological materials, including the dactyl club of mantis shrimp and the fish scale of coelacanth. This can be partially explained by the long-term evolution and selection of living organisms to create high performance biological materials from limited physical, chemical and geometrical elements. This naturally “design” procedure can provide us a spectrum of design motifs on architectural materials. </p> <p>In the present work, linear gradient on pitch distance of helicoid architectures, denoted by functionally graded helicoid (FGH), is chose to be the initial pathway to understand the functionality of graded pitch distance, associated with changing pitch angle. Three-point bending on short beam and low-velocity impact tests are employed in FEA to analyze the mechanical properties of composite materials simultaneously. Both static(three-point bending) and dynamic(low-velocity impact) tests reveal that FGH with pitch angle increasing from surface to interior can provide multiple superior properties at the same time, such as peak load and toughness, while the helicoid architectures with constant pitch angle can only provide one competitive property at one time. Specifically, helicoid architectures with smaller pitch angle, such as 15-degree, show higher values on toughness, but less competitive peak load under static three-point bending loading condition, while helicoid architectures with middle pitch angle, larger than or equal to 22.5-degree and smaller than 45-degree, exhibit less value of toughness, but higher peak load. The explanation on this trend and the benefits of FGH is addressed by analyzing the transverse shear stresses distribution through the thickness in FEA, combined with analytical prediction. In low-velocity impact tests, the projected delamination area of helicoid architectures is observed to increase when the pitch angle is decreasing. Besides, laminates with specific pitch angles, such as 45-degree, classical quasi-isotropic laminate, 60-degree, specific angle ply, and 90-degree, cross-ply, are designed to compare with helicoid architectures and FGH.</p>
47

Comparative evaluation of in vivo biocompatibility and biodegradability of regenerated silk scaffolds reinforced with/without natural silk fibers

Mobini, Sahba, Taghizadeh-Jahed, Masoud, Khanmohammadi, Manijeh, Moshiri, Ali, Naderi, Mohammad-Mehdi, Heidari-Vala, Hamed, Ashrafi Helan, Javad, Khanjani, Sayeh, Springer, Armin, Akhondi, Mohammad-Mehdi, Kazemnejad, Somaieh 11 October 2019 (has links)
Nowadays, exceptional advantages of silk fibroin over synthetic and natural polymers have impelled the scientists to application of this biomaterial for tissue engineering purposes. Recently, we showed that embedding natural degummed silk fibers in regenerated Bombyx mori silk-based scaffold significantly increases the mechanical stiffness, while the porosity of the scaffolds remains the same. In the present study, we evaluated degradation rate, biocompatibility and regenerative properties of the regenerated 2% and 4% wt silk-based composite scaffolds with or without embedded natural degummed silk fibers within 90 days in both athymic nude and wild-type C57BL/6 mice through subcutaneous implantation. In all scaffolds, a suitable interconnected porous structure for cell penetration was seen under scanning electron microscopy. Compressive tests revealed a functional relationship between fiber reinforcement and compressive modulus. In addition, the fiber/fibroin composite scaffolds support cell attachment and proliferation. On days 30 to 90 after subcutaneous implantation, the retrieved tissues were examined via gross morphology, histopathology, immunofluorescence staining and reverse transcription-polymerase chain reaction as shown in Figure 1. Results showed that embedding the silk fibers within the matrix enhances the biodegradability of the matrix resulting in replacement of the composite scaffolds with the fresh connective tissue. Fortification of the composites with degummed fibers not only regulates the degradation profile but also increases the mechanical performance of the scaffolds. This report also confirmed that pore size and structure play an important role in the degradation rate. In conclusion, the findings of the present study narrate key role of additional surface area in improving in vitro and in vivo biological properties of the scaffolds and suggest the potential ability of these fabricated composite scaffolds for connective tissue regeneration.
48

Macroscale Modeling of the Piezoresistive Effect in Nanofiller-Modified Fiber-Reinforced Composites

Sultan Mohammedali Ghazzawi (18369387) 16 April 2024 (has links)
<p dir="ltr">The demand and utilization of fiber-reinforced composites are increasing in various sectors, including aerospace, civil engineering, and automotive industries. Non-destructive methods are necessary for monitoring fiber-reinforced composites due to their complex and often visually undetectable failure modes. An emerging method for monitoring composite structures is through the integration of self-sensing capabilities. Self-sensing in nanocomposites can be achieved through nanofiller modifications, which involve introducing an adequate amount of nanofillers into the matrix, such as carbon nanotubes (CNTs) and carbon nanofillers (CNFs). These fillers form an electrically well-connected network that allows the electrical current to travel through conductive pathways. The disruption of connectivity of these pathways, caused by mechanical deformations or damages, results in a change in the overall conductivity of the material, thereby enabling intrinsic self-sensing.</p><p dir="ltr">Currently, the majority of predictive modeling attempts in the field of self-sensing nanocomposites have been dedicated to microscale piezoresistivity. There has been a lack of research conducted on the modeling of strain-induced resistivity changes in macroscale fiber-matrix material systems. As a matter of fact, no analytical macroscale model that addresses the impact of continuous fiber reinforcement in nanocomposites has been presented in the literature. This gap is significant because it is impossible to make meaningful structural condition predictions without models relating observed resistivity changes to the mechanical condition of the composite. Accordingly, this dissertation presents a set of three research contributions. The overall objective of these contributions is to address this knowledge gap by developing and validating an analytical model. In addition to advancing our theoretical understanding, this model provides a practical methodology for predicting the piezoresistive properties of continuous fiber-reinforced composites with integrated nanofillers.</p><p dir="ltr">To bridge the above-mentioned research gap, three scholarly contributions are presented in this dissertation. The first contribution proposes an analytical model that aims to predict the variations in resistivity within a material system comprising a nanofiller-modified polymer and continuous fiber reinforcement, specifically in response to axial strain. The fundamental principle underlying our methodology involves the novel use of the concentric cylindrical assembly (CCA) homogenization technique to model piezoresistivity. The initial step involves the establishment of a domain consisting of concentric cylinders that represent a continuous reinforcing fiber phase wrapped around by a nanofiller-modified matrix phase. Subsequently, the system undergoes homogenization to facilitate the prediction of changes in the axial and transverse resistivity of the concentric cylinder as a consequence of longitudinal deformations. The second contribution investigates the effect of radial deformations on piezoresistivity. Here, we demonstrate yet another novel application of the CCA homogenization technique to determine piezoresistivity. This contribution concludes by presenting closed-form analytical relations that describe changes in axial and transverse resistivity as functions of externally applied radial strain. The third contribution involves computationally analyzing piezoresistivity in fiber-reinforced laminae by using three-dimensional representative volume elements (RVE) with a CNF/epoxy matrix. By comparing the single-fiber-based analytical model with the computational model, we can investigate the impact of interactions between multiple adjacent fibers on the piezoresistive properties of the material. The study revealed that the differences between the single-fiber CCA analytical model and the computational model are quite small, particularly for composites with low- to moderate-fiber volume fractions that undergo relatively minor deformations. This means that the analytical methods herein derived can be used to make accurate predictions without resorting to much more laborious computational methods.</p><p dir="ltr">In summary, the impact of this dissertation work lies in the development of novel analytical closed-form nonlinear piezoresistive relations. These relations relate the electrical conductivity/resistivity changes induced by axial or lateral mechanical deformations in directions parallel and perpendicular to the reinforcing continuous fibers within fiber-reinforced nanocomposites and are validated against in-depth computational analyses. Therefore, these models provide an important and first-ever bridge between simply observing electrical changes in a self-sensing fiber-reinforced composite and relating such observations to the mechanical state of the material.</p>
49

Mechanical Characterization of Adhesively Bonded Jute Composite Joints under Monotonic and Cyclic Loading Conditions

Mittal, Anshul January 2017 (has links) (PDF)
Fiber-reinforced composites comprise an important class of lightweight materials which are finding increasing applications in engineering structures including body components of automobiles and aircraft. Traditionally, synthetic fibers made of glass, carbon, etc. along with a polymeric resin have constituted the most common composites. However, due to environmental concern, occupational health safety considerations, higher cost, etc., research has been focused on substituting synthetic fibers, especially glass fibers with safer, economic and biodegradable natural fibers. Due to the ease of availability and affordability in terms of cost, woven jute mats, among a wide variety of natural fiber-based reinforcements, offer a good choice in combination with a suitable resin such as polyester or epoxy for fabrication of composite laminates. In structural applications, joining of parts made of jute fiber-reinforced composites (JFRCs) would be a natural requirement. Alternatives to joining processes for metals such as welding, riveting, etc. are required for composites. A joining process of high potential is adhesive bonding which has the advantages of reducing stress concentration, permitting fastening of dissimilar materials, etc. In the present study, adhesively bonded joints of JFRCs and their mechanical behavior are investigated under quasi-static and cyclic loading conditions. Initially, characterization of substrates is carried out under monotonic loading. This is followed by determination of stress- Strain curves, failure load and mean shear strength of bonded joints as functions of joint curing temperature and overlap length using a two-part structural epoxy adhesive. All tests are carried out according to relevant ASTM standards. It has been observed that higher curing temperatures give rise to only marginally high failure load and mean shear stress at failure compared to curing at room temperature. For a given curing temperature, failure load increases while mean shear strength decreases with respect to overlap length in both types of joints. As fatigue failure is a crucial consideration in design, the behavior of adhesively bonded JFRC joints is studied for the first time under cyclic loading conditions leading to the commonly-used S-N curve for characterization of failure of materials at different loading-unloading cycles. Interestingly, the fatigue strength for infinite life of adhesively bonded JFRC joints turns out to be approximately 30% of the quasi-static strength, a correlation which usually applies to materials in general. The effect of joint overlap length on fatigue life is studied and it is observed that the above relation between fatigue and quasi static strength is retained for different overlap lengths. Additionally, insights are provided into failure modes of joints under different loading conditions and for varying overlap lengths. Various empirical predictors such as exponent, power and hybrid models fitting the S-N curve are obtained and their relative efficacy (in terms of Coefficient of Determination R2, Adjusted-R2, Akaike’s Information Criterion and Residual Sum of Squares) enumerated in prediction of failure load including quasi-static failure load. As numerical simulation is an indispensable tool in designing geometrically complex structures under nonlinear conditions including failure and contact, finite element modeling of JFRC substrates, bulk adhesive and adhesively bonded joints has been investigated using implicit and explicit LS-DYNA solvers. In this context, the effects of various modeling parameters (mesh size and loading rate) and details of constitutive models capable of capturing plasticity and failure in an orthotropic composite and isotropic adhesive are discussed. Mesh size has been found to be an important parameter affecting computed results. Finally, a good correlation within ~(4% - 7%) was found between the predicted and experimental results for JFRC substrates, bulk adhesive and adhesively bonded single lap joints.
50

Modélisation de la compression de SMCs haute-performance / Modeling of High Performance SMC Behavior ˸ Applications to 3D Compression Molding Simulation

Salazar Betancourt, Luis Fernando 21 April 2017 (has links)
Ce travail porte sur la simulation numérique et la modélisation du comportement thermo-mécanique des matériaux composites renforcés par des fibres. Spécifiquement les matériaux SMC (Sheet Moulding Compound) sont utilisés dans le processus de moulage par compression pour construire des pièces automobiles de haute performance. Ce travail est divisé en quatre chapitres, décrivant tout d’abord un modèle thermo-mécanique entièrement couplé pour les matériaux SMC standards et innovants à haute concentration en fibres (> 25% en volume). Le SMC est traité comme un mélange incompressible de fibre et de résine complété éventuellement par une phase de porosité compressible. Son anisotropie est modélisée au moyen de tenseurs structurels. La cinétique de réaction et de consolidation de la pièce est également modélisée et étudiée. Les données expérimentales mécaniques et thermiques enregistrées sur des échantillons de matériaux SMC sont comparées au modèle et à la solution numérique fournie par ce travail. D’un point de vue numérique, nous utilisons la méthode des domaines immergées o`u chaque phase est distinguée par une fonction distance signée. Nous décrivons le procédé de moulage par compression en proposant une résolution compressible anisotrope unifiée capable de décrire la transition compressible / incompressible du matériau SMC sous déformation. Cela permet de décrire la réponse mécanique du SMC et de prédire localement la consolidation (durcissement) de la pièce le long du cycle thermique. / This work deals with the numerical simulation and modeling of thermomechanical analysis of fiber reinforcedcomposites materials. Specifically for SMC (Sheet Molding Compound) materials that are used in compression molding processes to build automotive high performance parts. The work is divided into fourchapters, firstly describing a fully coupled thermo-mechanical model for standard SMC materials and for innovative SMC with high fiber concentration (> 25% in volume). The SMC is treated as an incompressible mixtureof fibers and paste complemented by a compressible porosity phase. Its anisotropy is modeled by means of structural tensors. Kinetic of reaction and consolidation of the part is also modeled and studied. Mechanicaland thermal experimental data recorded on samples of SMC materials are compared to the model and numerical solution provided in this work. A numerical framework, we use the immersed boundary method and the level set method. We describe the compression molding process by proposing an unified anisotropic compressible resolution able to describe the transition between compressible/ incompressible of SMC materials under deformation. We are able to describe the mechanical response of the SMC and to predict locally the consolidation (curing) of thepart throughout the thermal cycle.

Page generated in 0.0801 seconds