• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 9
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 60
  • 60
  • 35
  • 15
  • 14
  • 12
  • 11
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Optimisation de la conductivité électrique transverse de composites structuraux PAEK-fils submicroniques d'argent/fibres de carbone continues avec ensimage conducteur / Optimization of transverse electrical conductivity for structural composites PAEK–Silver nanowires / carbon fiber with electrically conductive sizing

Audoit, Jérémie 17 January 2017 (has links)
Ce travail propose une optimisation de la conductivité électrique transverse des composites structuraux matrice/fibres de carbone. L'influence de la fonctionnalisation électrique de l'ensimage sur la conductivité des composites est particulièrement étudiée. Des feuillets submicroniques d'argent (AgNpts) ont été élaborés en présence de citrate de sodium (TSC). Leur morphologie plane est particulièrement adaptée à une dispersion dans un ensimage. Les feuillets ont été dispersés dans une matrice modèle. Le seuil de percolation électrique des feuillets est déterminé à 5,9 %. Cette valeur est cohérente avec un facteur de forme modéré, compris entre 12 et 28. L'ensimage fonctionnalisé a ensuite été déposé sur une mèche de fibres de carbone, elle-même imprégnée par une matrice PAEK hautes performances. Avant imprégnation des fibres de carbone, des fils submicroniques d'argent ont été introduits dans la matrice PAEK. Des composites matrice-fils submicroniques d'argent/fibres de carbone avec ensimage conducteur ont été mis en œuvre. Leur conductivité électrique est élevée (7 S.m-1), alors que la fraction volumique en particules d'argent (fils et feuillets) est inférieure à 1 % en volume. / This PhD thesis deals with the optimization of transverse electrical conductivity of Thermoplastic Carbon Fiber Reinforced Polymer. The influence of an electrically conductive sizing has been investigated. Silver nanoplates (AgNpts) have been successfully synthesized by a soft chemical reduction, with trisodiumcitrate (TSC) as surfactant. Silver nanoplates have been dispersed into a model matrix, percolation threshold has been determined near 5.9 % in volume fraction. This value is consistent with their moderate aspect ratio (between 12 and 28). Size and morphology of silver nanoplates are suitable for their dispersion in the sizing. Carbon fiber has been coated with conductive sizing. Carbon fiber will be further impregnated by a PAEK thermoplastic matrix. A higher conductivity level has been achieved by introducing silver nanowires in the PAEK matrix. Structural composites consisting of matrix-silver nanowires / continuous carbon fiber sized with conductive sizing have been elaborated. Their electrical conductivity reached 7 S.m-1 for a total silver volume fraction of 1 %.vol.
52

On The Effect Of Material Uncertainty And Matrix Cracks On Smart Composite Plate

Umesh, K 07 1900 (has links) (PDF)
Recent developments show the applications of smart structure in different engineering fields. Smart structures can be used for shape and vibration control, structural health monitoring etc. Smart materials can be integrated to composite structure to enhance its abilities. Fiber reinforced composites are the advanced materials of choice in aerospace applications due to its high strength and stiffness, light weight and ability to tailor according to the design requirements. Due to complex manufacturing process and varying operating conditions, composites are susceptible to variation in material properties and damages. The present study focuses on the effect of uncertainties in material properties and damages on a smart composite structure. A cantilevered composite plate with surface mounted piezoelectric sensor/ actuator is considered in this study. The sensors and the actuators are connected through a conventional feedback controller and the controller is configured for vibration control application. Matrix cracks are considered as damage in the composite plate. To study the effect of material uncertainty, probabilistic analysis is performed considering composite material properties and piezoelectric coefficients as independent Gaussian random variables. Numerical results show that there is substantial change in dynamic response of the smart composite plate due to material uncertainties and damage. Deviation due to material uncertainty and damage can be compensated by actively tuning the feedback control system. Feedback control parameters can be properly adjusted to match the baseline response. Here baseline case represents the response of the undamaged smart composite plate with deterministic material properties. The change in feedback control parameters are identified as damage indicator. Feedback control based damage detection method is proposed for structural health monitoring in smart composite structure and robustness of the method is studied considering material uncertainties. Fractal dimension based damage detection method is proposed to detect localized matrix cracks in a composite plate with spatially varying material properties. Variation in material properties follows a two dimensional homogeneous Gaussian random field. Fractal dimension is used to extract the damage information from the static response of composite plate with localized matrix cracks. It is found that fractal dimension based approach is capable of detecting the location of the single and multiple damages from the static deflection curve. Robustness of the fractal dimension based damage detection method is studied considering spatial uncertainties in material properties.
53

Konstrukční návrh extruderu pro 3D tisk kompozitních součástí / Design of the extruder for 3D printing the composite parts

Šmalec, Petr January 2017 (has links)
The diploma thesis is focused on 3D printing of composites parts. Thesis deals with methods of additive manufacturing and describes principle of selected 3D printing technologies. In addition to additive technologies, the theoretical part presents an overview of composite materials and methods of composite production. Then there are four concepts that lead to 3D printing of continuous fiber reinforced composites components. The final concept is selected according to multi-criteria analysis and then designed. Designed extruder allows 3D printing of composite materials. The principle of the function consists of fiber impregnation by matrix inside the heat chamber and then deposition of composite on printing platform. The extruder also consist of fiber cutting mechanism. The extruder's ability is verified by the experiment.
54

Effect of Composition on Adhesion Strength Between Particle Filled Composite and Fiber Reinforced Composite. / Vliv složení na pevnost adheze mezi částicovými a vláknovými kompozity.

Trautmann, Radoslav January 2010 (has links)
Disertační práce se zabývala vlivem adheze mezi vláknovým (FRC) a částicovým (PFC) kompozitem a složením obou komponent na mechanické vlastnosti a způsob porušování modelových bi-materiálových kompozitních těles při statickém namáhání. Zkoumán byl také vliv způsobu přípravy bi-materiálového kompozitního tělesa na pevnost adheze mezi jeho kompozitními komponentami. K hodnocení mechanických vlastností bi-materiálových PFC/FRC těles byl použit jak 3 tak 4-bodový ohybový test za pokojové teploty a relativní vlhkosti 70%. Modifikovaný vytrhávací test byl použit k měření smykové pevnosti adheze mezi vláknovým a částicovým kompozitem. Tyto výsledky byly korelovány s výsledky ze strukturní a fraktografické analýzy (TGA, SEM). Experimentální data byla poté analyzována pomocí existujících mikromechanických modelů a byl nalezen vztah mezi tuhostí modelových bi-materiálových těles, složením a geometrií uspořádání jejich komponent a pevností adheze mezi těmito komponentami. Na základě těchto výsledků byl navržen optimální způsob vrstvení a přípravy PFC/FRC bimateriálových těles. Navržené postupy byly použity k přípravě a pre-klinickým testům nosných konstrukcí zubních můstků.
55

Pokročilé vrstevnaté kompozity pro stomatologické aplikace / Advanced Layered Composites for Dental Applications

Šedivý, Zbyněk January 2013 (has links)
Disertační práce se zabývá mechanickou odezvou vrstevnatých kompozitů pro stomatologické aplikace. Různé skladby vrstev a různé částicové a vláknové kompozity jsou studovány v tříbodovém ohybu za pokojové teploty. Tyto výsledky jsou korelovány s výstupy dynamické termomechanické analýzy (DMTA) a optické analýzy (vysokorychlostní video záznam, SEM). Exeprimentální data byla použita pro srovnání s výsledky analytických a numerických modelů s cílem určit nejvhodnější model pro predikci základních mechanických vlastností vrstevnatých kompozitů. Na základě těchto analýz jsou navržena základní pravidla pro klinické použití vrstevnatých kompozitů ve stomatologických aplikacích jako jsou minimálně invazivní můstky nebo stabilizační dlahy.
56

Study of improving interfacial strength between matrix and reinforcement for green composites / グリーンコンポジットのマトリックスと強化材の界面強度の向上に関する研究 / グリーン コンポジット ノ マトリックス ト キョウカザイ ノ カイメン キョウド ノ コウジョウ ニカンスル ケンキュウ

南 基法, Gibeop Nam 22 March 2015 (has links)
In this study, several types of modified methods were tried for improving natural fiber reinforced composites and also three kind of natural fibers were used for reinforced composite. Plasma polymerization increased fiber tensile and composites mechanical properties. It is higher effect than alkali treatment. Resin impregnation was expected cheaper method than plasma polymerization. Polyvinyl Alcohol resin impregnation method can increase fiber tensile strength, interfacial shear strength between fiber and composites mechanical properties. And with Bamboo/polypropylene/maleic anhydride polypropylene water absorption ratio also can decrease. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
57

Contribution à la compréhension de la fonctionnalisation mécanique de surface des composites à matrice thermoplastique (PEEK) destinés à l'assemblage par collage

Ourahmoune, Reda El Hak 20 December 2012 (has links)
L’assemblage des matériaux composites thermoplastiques tel que le PEEK est l’une des problématiques majeure de l’industrie aéronautique. Actuellement, différentes techniques sont développées pour assurer l’assemblage structural de ces matériaux, tels que : le soudage, le rivetage, le boulonnage et le collage. Les enjeux industriels majeurs sont principalement, à l’heure actuelle, la conception des structures simplifiées au maximum afin de réduire les coûts de production et la réduction des consommations énergétiques. A cet effet, l’industrie aéronautique fait fréquemment appel à l’assemblage par collage en raison de nombreux avantages qu’il offre (gain de poids, distribution régulière des contraintes, absence de trous) par rapport aux autres techniques existantes. Le PEEK (PolyEtherEtherKetone), est un matériau polymère semi-cristallin thermoplastique, à hautes performances. Ce matériau est souvent utilise dans l’industrie aéronautique principalement renforce par des fibres de carbone ou de verre. Cependant, du fait du niveau élevé de sa résistance chimique l’assemblage par collage du PEEK et de ses composites nécessitent des traitements de surfaces appropries et optimises. Or, afin d’obtenir un system collé à haute performance, la problématique scientifique et technique doit être concentrée sur la jonction entre les éléments à assembler. En effet, la qualité de cette jonction est de la plus haute importance car elle doit permettre un transfert optimal des contraintes thermomécaniques lorsque l’assemblage est soumis a ses conditions d'usage. Cette étude concerne donc, l’amélioration des propriétés mécaniques (monotones et cycliques) de l’assemblage par collage PEEK/PEEK. Dans cette optique, un traitement de surface simple de mise en œuvre est proposé. Ce traitement est le sablage, qui permet la modification topographique (morphologique) de surface. La compréhension des différents phénomènes d’interaction aux interfaces intervenant dans l’amélioration du comportement mécanique du joint de colle et qui s’inscrit dans la triptyque : « Rhéologie, Physico-chimie et topographie », est l’enjeu scientifique majeur dans cette thèse. Dans un premier temps, l’influence des paramètres du traitement tels que le temps de projection, la taille des particules, sur la morphologie de surface de différents matériaux à base de PEEK a été analysée, permettant ainsi d’établir la corrélation entre les paramètres morphologiques et les mécanismes de modification topographique de surface intervenant pendant le traitement de surface. L’un des facteurs clefs pour la compréhension des mécanismes d’interaction entre l’adhésif liquide et le substrat solide est la mouillabilité. L’analyse du comportement au mouillage en fonction des différents paramètres du traitement a été réalisée. La mouillabilité des surfaces traitées est fortement affectée par la rugosité de surface créée après ce traitement. La relation entre les paramètres morphologiques et la mouillabilité a été discutée. Enfin, l’influence des paramètres du traitement par sablage sur le comportement mécanique monotone et à long terme (essais de fatigue) sur la résistance du joint colle a été étudié à l’aide d’essais de cisaillement sur éprouvettes à simple recouvrement. Ceci a conduit, à la proposition de paramètres morphologiques surfaciques spécifiques pour l’optimisation du comportement mécanique du joint de colle des matériaux composites à matrice PEEK. / One of most problematic in the aeronautical industries is the structural joining of the high performance thermoplastic composites like PEEK composites. Actually, a lot of technologies are used for joining thermoplastic composites like welding, bolting, riveting, fastening and adhesive bonding. Due to the various advantages that characterize the adhesive bonding method, such an uniform stress distribution along the joint, weight‐light and cost reduction, makes this technique more desirable to join thermoplastic composites materials compared to the other joining techniques. PEEK (PolyEtherEtherKetone) is a semi‐crystalline thermoplastic material with high performance. This material is wildly used in aeronautical industries, principally, reinforced with carbon of glass fibres. However, its high chemical resistance makes the adhesive bonding of PEEK and its composites difficult and therefore an appropriate and optimised surface treatment is necessary. In the aim to obtain a bonded system with high performance, scientific and technical problematic should be focussed on the junction between adherents. Indeed, the quality of this junction is of utmost importance because it must allow optimum transfer of thermomechanical stresses when the assembly is subject to its terms of use. Though, at this time it is well known that thermoplastic composite materials are difficult to bond with‐out surface treatment. This study, therefore, relates to the improvement of mechanical properties (monotonic and cyclic) of the adhesive bonding system PEEK / PEEK. In this context, a surface treatment, easy to implement, is proposed. This surface treatment is sandblasting, which enables surface topographic (morphological) modifications. Understanding of various phenomena of interfaces interaction involved in the improvement of the mechanical behavior of the adhesive joint and is part of the triptych "Rheology, Physico‐chemistry and topography" is the major scientific challenge in this thesis. Initially, the influence of processing parameters such as the projection time, the particle size on surface morphology of various materials based on PEEK was analysed, thus allowing establishing the correlation between morphological parameters and modification mechanisms involved during surface treatment surface. One of the key factors for understanding the mechanisms of interaction between the liquid adhesive and the solid substrate is wettability. The analysis of the wetting behavior as a function of various parameters of the treatment was performed. The wettability of treated surfaces is strongly affected by surface roughness created after this treatment. The relationship between morphological parameters and wettability was discussed. Finally, the influence of sandblasting processing parameters on the mechanical behavior in monotoning and long‐term (fatigue tests) of the adhesive joint strength was studied, using single lap shear tests specimens. This has led to the proposal of specific surface morphological parameters for the optimization of the mechanical behavior of the adhesive joint of PEEK and its composites.
58

An Advanced Study on Jute-Polyester Composites for Mechanical Design and Impact Safety Applications

Mache, Ashok Ranganath January 2015 (has links) (PDF)
Natural fiber-reinforced composites are now finding extensive uses in various fields from household articles to automobiles. These composites can score high compared to common synthetic fiber-based composites, notably glass fiber-reinforced composites, in areas such as occupational safety and health, and impact on environment. The current research work is motivated by the need for exploring jute fibers as replacement for glass fibers for various engineering design applications including more demanding impact protection applications as in automotive body structures. In the current work, detailed mechanical characterization of jute-polyester (JP) composite laminates till failure has been carried out for tensile, compressive and flexural loads by varying volume fraction of jute fibers. The effect of fiber volume fraction on mechanical properties is shown. Because of the potency of closed thin-walled components as structural energy-absorbers, a comprehensive experimental study has been performed, for the first time, comparing the behaviors of various geometric sections of JP and glass-polyester (GP) composite tubes under axial quasi-static and low velocity impact loading. Additionally, for jute-reinforced plastic panels to be feasible solutions for applications such as automotive interior trim panels, laminates made of such materials should have adequate perforation resistance. Thus, a detailed comparative study has been carried out for assessing the performance of JP laminates vis-a-vis GP plates under low velocity impact perforation conditions. As high-end product design is heavily driven by CAE (Computer-Aided Engineering), the current research work has also focused on the challenging task of developing reliable modeling procedures for explicit finite element analysis using LS-DYNA for predicting load-displacement responses and failures of JP composites under quasi-static and impact loading conditions. In order to extend the applications of JP composites to structurally demanding applications, hybrid laminates made of jute-steel composites and jute with nanoclay-reinforced polyester have been investigated and the considerable enhancement of mechanical properties due to hybridization is shown. Furthermore, a comprehensive study has been conducted on the behavior of JP laminates for varying degrees of moisture content until saturation, and the efficacy of hybrid laminates in this context has been shown.
59

Modeling and Analysis of Wave and Damaging Phenomena in Biological and Bioinspired Materials

Nicolas Guarin-Zapata (6532391) 06 May 2021 (has links)
<p> There is a current interest in exploring novel microstructural architectures that take advantage of the response of independent phases. Current guidelines in materials design are not just based on changing the properties of the different phases but also on modifying its base architecture. Hence, the mechanical behavior of composite materials can be adjusted by designing microstructures that alternate stiff and flexible constituents, combined with well-designed architectures. One source of inspiration to achieve these designs is Nature, where biologically mineralized composites can be taken as an example for the design of next-generation structural materials due to their low density, high-strength, and toughness currently unmatched by engineering technologies.</p><p><br></p> <p>The present work focuses on the modeling of biologically inspired composites, where the source of inspiration is the dactyl club of the Stomatopod. Particularly, we built computational models for different regions of the dactyl club, namely: periodic and impact regions. Thus, this research aimed to analyze the effect of microstructure present in the impact and periodic regions in the impact resistance associated with the materials present in the appendage of stomatopods. The main contributions of this work are twofold. First, we built a model that helped to study wave propagation in the periodic region. This helped to identify possible bandgaps and their influence on the wave propagation through the material. Later on, we extended what we learned from this material to study the bandgap tuning in bioinspired composites. Second, we helped to unveil new microstructural features in the impact region of the dactyl club. Specifically, the sinusoidally helicoidal composite and bicontinuous particulate layer. For these, structural features we developed finite element models to understand their mechanical behavior.</p><p><br></p> <p>The results in this work help to elucidate some new microstructures and present some guidelines in the design of architectured materials. By combining the current synthesis and advanced manufacturing methods with design elements from these biological structures we can realize potential blueprints for a new generation of advanced materials with a broad range of applications. Some of the possible applications include impact- and vibration-resistant coatings for buildings, body armors, aircraft, and automobiles, as well as in abrasion- and impact-resistant wind turbines.</p><br>
60

Study on the effects of matrix properties on the mechanical properties of carbon fiber reinforced plastic composites / 炭素繊維強化複合材料の機械特性に及ぼす母材特性の影響に関する研究 / タンソ センイ キョウカ フクゴウ ザイリョウ ノ キカイ トクセイ ニ オヨボス ボザイ トクセイ ノ エイキョウ ニカンスル ケンキュウ

邵 永正, Yongzheng Shao 22 March 2015 (has links)
It was found that a significant improvement of mechanical properties of CFRPs can be achieved by the adjustment of the matrix properties such as toughness and CF/matrix adhesion via the chemical modification, as well as the physical modification by a small amount of cheap and environment-friendly nano fibers. Based on investigation of fracture mechanisms at macro/micro scale, the effects of matrix properties and nano fiber on the mechanical properties of CFRP have been discussed. Subsequently, the relationship has been characterized by a numerical model to show how to modulate the parameters of the matrix properties to achieve excellent fatigue properties of CFRP. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University

Page generated in 0.0815 seconds