• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 8
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 61
  • 61
  • 20
  • 12
  • 12
  • 11
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

An investigation into the acoustic behaviour, ecology, biogeography, genetic relatedness and species limits within the Pauropsalta annulata Goding and Froggatt species complex (Hemiptera: Cicadidae)

Lindsay Popple Unknown Date (has links)
This thesis investigates aspects of the ecology, morphology, bioacoustics, genetic relatedness, biogeography and taxonomy of cicadas in the Pauropsalta annulata Goding and Froggatt species complex, across their entire eastern Australian geographical distribution. These cicadas seem to emerge at the same sites annually, although the exact duration of their life cycle is not known. They are wary and mobile insects, with individuals generally taking flight at the first sign of disturbance, which makes them challenging to record, capture and observe. The males produce distinctive calling songs that have a consistent rhythmic structure, which is critically important for attracting females. In most cases, the songs are biphasic, with a penetrating introductory or "buzzing" component that apparently functions in mate attraction and a strongly structured cueing or "lilting" component for mate localisation. Initially Pauropsalta annulata was thought to comprise a single species with some degree of geographically structured variation in its calling song. Consequently, various "song types" had been recognised, but their precise relationship to one another had never been investigated. Therefore the structure of their calling songs were compared statistically across individuals of three song types, and this revealed four discrete clusters that were demonstrated to be independent of one another and consistent in their calling song structure. Plotting the geographical distributions of these cicadas revealed that each of the P. annulata song types is independently distributed geographically, with areas of overlap that are relatively small. Calling song structure is consistent for each song type across extensive geographical space and this structure holds even into areas of sympatry. One song type showed consistent differences from the others in male genitalia structure, and female ovipositor length differs significantly among three of the other song types. Each song type was found to be strongly associated with a small number of tree species and these associations are maintained into areas of sympatry. The spatial ecological and morphological comparisons in song structure, plant associations and morphology made in this study demonstrate that the P. annulata song types actually represent a complex of cryptic species. Two of the song types appear to intergrade in areas of sympatric overlap in terms of calling songs, plant associations and morphology, and thus represent subspecies as defined in population genetics terms. The components of the male calling song were then investigated to determine their specific functions and thus how they could delimit species boundaries. Significant differences were found in dominant song frequency between three of the four species, and may contribute to differential mate attraction. Both components of the song of each species have the same dominant frequency. Consistent differences were also evident, among species and subspecies, in the rhythmic structure of the "lilting" component of the male calling song. This component contains repeated phrases and each one of these provides a cue to which the conspecific female may respond. Her response is timed for the brief silent interval between the phrases. At this point the calling song becomes a duet, which enables the male to locate the female, as he actively searches for her on the surrounding branches at this stage. The calling song is discussed in terms of random mating within gene pools of these cicadas and in terms of its role as part of their broader fertilisation mechanism. A molecular analysis of the P. annulata species complex was performed to examine the phylogenetic relationships across 12 species and four subspecies defined in this study, and estimate divergence times within the group. Individual specimens were sampled widely across the geographical distributions of the species and subspecies where possible to account for genetic variation across space. DNA sequences from two loci were amplified: mitochondrial CO1 ("barcoding region") and a large intron from the dynamin nuclear gene. Separate phylogenies were reconstructed for each locus using maximum parsimony procedures and Bayesian posterior sampling with implementation of a relaxed molecular clock. The phylogenies from both genes provided strong support for the monophyly of the P. annulata species complex, and nine of the species were monophyletic based on the CO1 gene. The remaining three emerged non-monophyletic. Based on a clock calibration of 0.0165s/s/myr, the monophyletic clades represented by extant P. annulata species diverged about 4.5-8.0 million years ago. Those species that emerged non-monophyletic had shallower divergences, with the exception of one species, which exhibited haplotype diversity that conferred up to 13.2% sequence divergence between allopatric populations in CO1. Dynamin produced a broadly similar phylogenetic pattern to that of CO1, but the relationships among individuals across the species and subspecies that emerged non-monophyletic differed substantially. This lack of congruence between the two genomes, in combination with the dominance of internal haplotypes in both loci, indicates an overall pattern of deep coalescence rather than interspecific hybridization. Therefore the molecular data do not provide an alternative definition of species limits in the P. annulata species complex, despite some emerging non-monophyletic in this analysis. Sound interpretation of the phylogenetic pattern discovered here would not have been possible without the acoustic, ecological and geographical investigations on species limits that preceded this work. To determine what biological and climatic factors influence the present day distributions of these cicadas, the distributions of two of the most closely related species in the P. annulata species complex were compared with the distributions of the tree species with which each is mainly associated. Because a large part of their life cycle is subterranean, soil texture, pH, electrical conductivity and force required for surface penetration were compared across sites where each of the cicadas occur in sympatry and allopatry. Finally, the influence of temperature and rainfall variables were investigated by testing 'predicted distribution' models (formed using positive distribution records) against negative records for both sets of variables, individually and in combination. The results show that the extent of the distribution of the cicada species is substantially less than that of the associated tree species. The geographical distributions of one of the species may be influenced more by rainfall, or a combination of temperature and rainfall, whereas the other species appears to be more influenced by temperature alone. Both species tolerate soils with a wide range of pH levels, electrical conductivity and forces required for surface penetration. They both showed a strong association with soils that had a silt loam texture, with only few records from sandy soils. However, none of the soils sampled where the cicadas occurred were heavy clays, which suggests that the physical properties of such soils may provide an unsuitable environment for the nymphal stages of the life cycle of these particular cicadas. The resolution of species limits within the P. annulata species complex allowed the redescription of Pauropsalta annulata Goding and Froggatt sensu stricto and the description of 11 new species belonging to the P. annulata species group, all from eastern Australia. Two of these species comprise two subspecies each, also all new. New distribution records and calling song data are documented for the allied species, P. ayrensis Ewart, which is redescribed to include the characters newly recognised in the present study as significant taxonomically with respect to Pauropsalta cicadas. The treatment includes comprehensive descriptions of the morphology and calling songs of the species and subspecies, and separate descriptive keys are provided for both sets of characters. The new taxa comprise P. artatus sp. nov., P. corymbiae sp. nov., P. decorus sp. nov., P. graniticus sp. nov., P. inversus inversus subsp. nov., P. i. laboris subsp. nov., P. notialis notialis subsp. nov., P. notialis incitatus subsp. nov., P. simplex sp. nov., P. subtropicus sp. nov, P. torrensis sp. nov. and P. tremulus sp. nov. Areas of hybridization between P. n. notialis subsp. nov. and P. n. incitatus subsp. nov. are also documented, together with their calling songs and morphology, which justifies their subspecific status. The P. inversus subspecies are allopatric, but consistently differ in the duration between phrases of the calling song. Finally, the results and conclusions are amalgamated into a critical reassessment of what defines species limits and the most appropriate approaches to investigating species limits in sexual organisms. Some historical discussions are revisited, such as the question of the reality of species and how species are perceived under the premises of neoDarwinism. The realism of species demands that species limits are most realistically defined in terms of their fertilisation mechanism, for this delimits the gene pool and thus the distribution of adaptations (the calling song of cicadas, for example).
42

A behavioural and genomic approach to studying the evolution of reproductive isolation : a contact zone between closely related field crickets in the genus Teleogryllus

Moran, Peter January 2017 (has links)
What processes contribute to the evolution of reproductive isolation and the coexistence of interfertile species in the same habitat? This thesis investigates the relative roles of species interactions and intraspecific processes in contributing to reproductive isolation. I combine behavioural and genomic approaches to test hypotheses about what mechanisms maintain the general species boundary between two closely related field cricket species: Teleogryllus oceanicus and T. commodus. These species are a classic study system for sexual communication and readily hybridize in the laboratory, however little is known about species interactions in sympatric populations. I examine patterns of geographic variation in two key sexual traits: calling song and cuticular hydrocarbons (CHCs), and the geographic distribution of genetic variation across a broad sample of allopatric and sympatric populations. I test whether X chromosomes play a pronounced role in population divergence and reproductive isolation. Using close range mating trials and hybridization experiments I identify numerous pre-mating and post-mating barriers between the species. The results indicate that the species are currently reproductively isolated and the pattern of population differentiation does not strongly support contemporary species interactions contributing to phenotypic diversity. Numerous barriers exist between the species, in particular hybrid females are sterile in both cross directions, while hybrid males are relatively fertile. This provides a rare exception to Haldane's rule which is central to many genetic theories of speciation. Established theory predicts that X chromosomes should play a pronounced role in the evolution of both pre- and postzygotic barriers. Contrary to this, I found no evidence that X chromosomes contribute to hybrid female sterility. Moreover, X-linked loci exhibited an unexpected pattern of reduced population differentiation within species, but increased species divergence compared to autosomal loci, which may indicate selective sweeps or sex-biased processes. Taken together, the results suggest that the causes and consequences of X chromosome evolution, in particular among XO taxa, may contradict some of the established theories.
43

Divergence and reproductive isolation in the bushcricket Mecopoda elongata

Dutta, Rochishnu January 2015 (has links)
The evolution of isolating mechanisms within a species population impedes gene flow. This allows isolated populations to diverge along different trajectories, which may ultimately lead to the formation of new species. Our attempts to understand the evolution of isolating barriers have benefited enormously from studies of divergent populations that are still recognized as members of the same species. The co-occurrence of five acoustically distinct populations of the bushcricket Mecopoda elongata in south India provided us with the opportunity to study one such divergence of sympatric populations of a single species. In sympatric populations that share identical ecology, sexual selection has the potential to play a prominent role in the maintenance of reproductive isolation. Based on a previous traditional morphometric study, Mecopoda elongata in India were thought to be a morphologically indistinguishable cryptic species complex. The lack of morphological divergence suggests a less significant role of ecology in the divergence of the group. One possibility is that songtypes may be maintained by the preference of Mecopoda elongate females for mating with a specific songtype. In this thesis I show that female phonotaxis to their ‘own’ call has the potential to contribute to behavioural isolation among the songtypes and in particular between two songtypes with overlapping temporal call parameters. This finding is supported by an independent no-choice mating experiment utilizing the same two songtypes. To investigate the cues other than song that Mecopoda elongata females’ may use to exercise preference for their own type, I examined the composition of cuticular lipids in the cuticle and the detailed structure of secondary sexual characters. I was able to differentiate all Mecopoda elongata songtypes with high probability based on CHC profiles and geometric morphometrics of the sub genital plate and cerci. My study reveals that divergence in sexual traits other than acoustic signals, although dramatically less obvious in nature, is present among Mecopoda elongata populations. This provides potential mechanisms for premating isolation among Mecopoda elongata songtypes in the wild suggesting that reproductive isolation is maintained by female preferences for male sexual signals. Additionally, I discovered a parasitoid Tachinid fly responsible for infecting three different songtypes of Mecopoda elongata, namely Double Chirper, Two Part and Helicopter. This Tachinid fly appears to have specialized hearing organ to track down calling Mecopoda elongata males throwing light on potential selection pressure and possible mechanism for Mecopoda elongata song divergence.
44

Génétique et évolution de l'isolement reproducteur entre chêne sessile (Quercus petraea (Matt.) Liebl.) et pédonculé (Q. robur L.) / Genetics and evolution of reproductive isolation between sessile oak (Quercus petraea (Matt.) Liebl.) and pedunculate oak (Q. robur L.)

Abadie, Pierre 08 December 2011 (has links)
La spéciation peut être définie comme l’ensemble des processus conduisant à l’évolution de l’isolement reproducteur entre groupes d’individus. Ces dernières décennies, de nombreuses études ont souligné l’importance de la sélection naturelle comme processus majeur dans la formation de nouvelles espèces en conditions de sympatrie, notamment dans des modèles de spéciation écologique. Le chêne sessile (Quercus petraea (Matt.) Liebl.) et le chêne pédonculé (Q. robur L.) sont deux espèces sympatriques qui présentent de fortes divergences morphologiques et écologiques, malgré des taux d’hybridation naturelle estimés relativement importants. Cependant, très peu de données sont connues sur la nature et la force des barrières reproductives chez ces espèces. L’objectif de cette thèse était donc de caractériser ces barrières aux niveaux phénotypique et génétique, pour mieux comprendre leur importance relative, leur rôle dans le processus de divergence et leur évolution au sein de ce complexe d’espèces. Une première approche basée sur la réalisation de croisements contrôlés a montré tout d’abord (i) l’existence de fortes barrières reproductives au niveau pré-zygotique et de barrières significatives bien que plus faibles au niveau de la fitness des descendants hybrides, et (ii) une variabilité importante de ces barrières liée aux génotypes des individus et à leur expression dans des micro-environnements différents. Une deuxième approche de génomique des populations sur 33 gènes candidats à l’isolement reproducteur pré-zygotique a ensuite permis d’identifier des « gènes de spéciation » soumis à de la sélection divergente, liés en particulier à la phénologie de la floraison, et d’apporter des éléments de discussion supplémentaires au modèle de colonisation de ces espèces en peuplements naturels. / Speciation can be defined as the range of processes that lead to the evolution of reproductive isolation among groups of individuals. Past decades have witnessed a renewal in the recognition of natural selection as a primary force in the formation of new species, in particular for ecological speciation models in conditions of sympatry. Sessile oak (Quercus petraea (Matt.) Liebl.) and pedunculate oak (Q. robur L.) are two sympatric species which exhibit large morphological and ecological differences, despite relatively high estimated rates of natural hybridization. However, very little is known about the nature and strength of reproductive barriers between those two species. The objective of this thesis was therefore to characterize their isolating barriers at phenotypic and genetic levels, in order to better understand their relative importance, their role in the process of divergence and their evolution in that species complex. A first approach based on controlled crosses has shown (i) the existence of strong barriers at the pre-zygotic level and that of significant although weaker ones at the post-zygotic level, based on observations from fitness of hybrid progenies, and (ii) a large variability for traits linked to barriers phenotypes, across genotypes and also for their expression in different micro-environments. A second approach of population genomics used 33 candidate genes to reproductive isolation and allowed to identify «speciation genes» submitted to divergent selection, the strongest divergence being observed for genes involved in the flowering pathway. The model of colonization of these oak species in natural stands was discussed in the light of these new results.
45

Morfologie spermií v sekundární kontaktní zóně slavíka obecného a slavíka tmavého / Sperm morphology in the secondary contact zone of Common Nightingale and Thrush Nightingale

Opletalová, Kamila January 2017 (has links)
The male gametes (sperms) are under strong sexual selection and are therefore very diverse in their morphology and often differ even amongst closely related species. Sperms are thus assumed to play very important role in reproductive isolation between species, due to their fast evolution in morphology. In my master thesis, I have studied the possible role of sperm morphology divergence in reproductive isolation in two sister species of passerine birds, the common nightingale (Luscinia megarhynchos) and the thrush nightingale (L. luscinia). The areas of these species overlap in secondary contact zone running across central and Eastern Europe, where they occasionally hybridize. I have compared sperm morphology of males of both species originating in allopatric and sympatric localities as well as interspecies hybrids. The results showed significant differences in total sperm length which is approximately 20 % longer in the common nightingale. That is caused by great interspecies divergence in midpiece (containing mitochondria) length. Interspecific hybrids showed sperms with intermediate length but despite expectations completely morphologically normal. This outcome corresponds with observed fertility in F1 hybrid males. What I consider to be an essential finding is a significant divergence in head...
46

Experimental Studies of the Divergence of Pre- and Postcopulatory Phenotypes in Male Drosophila

Kwok, Kevin 13 May 2021 (has links)
ABSTRACT A major focus in biology is understanding the diversification of life and the processes that cause it. Much of this diversity is in the form of phenotypic variation among populations and species. In this thesis, I investigate two separate aspects of such phenotypic divergence. The first is the divergence of male mate preferences and their potential contribution to precopulatory sexual isolation and speciation. The second is the divergence of postcopulatory phenotypic divergence in the form of seminal fluid protein expression. With respect to the first aspect, in two separate experiments I investigated the contribution of male mate preferences to sexual isolation between two closely related fruit fly species experiencing differential costs to hybridization, Drosophila recens and Drosophila subquinaria. Male mate preferences are of particular interest because of their potential contribution to sexual isolation, a form of reproductive isolation which can contribute to speciation in sexually reproducing species. In the first experiment, I test for the presence of male mate preferences in each of the two species and whether the relative strength of the preference is concordant with the cost of hybridization. I found that that D. subquinaria males indiscriminately courted both their own (i.e. homospecific) females and heterospecific D. recens females. While D. recens from allopatry showed a similar pattern, those from sympatry courted their own females more than heterospecific females, indicating a pattern of reproductive character displacement. In the second experiment I test the role of learning in the context of these male mate preference in D. recens, and whether learning also showed a pattern of reproductive characteristic. I did not find evidence of learning in that D. recens males did not reduce their courting intensity towards heterospecific females after experiencing rejection by similar females. Consequently, I did not find an indication of reproductive character displacement. Finally, with respect to postcopulatory phenotypic divergence, I studied differences in seminal fluid protein expression between experimental populations of D. melanogaster experiencing one of three mating environments allowing for differing opportunities of mate competition and the environment in which it took place. These three mating environments include one in which mate competition was absent (MCabsent,), one in which mate competition occurred in a small, structurally simple environment (MCsimple), and one in which mate competition occurred in a larger, somewhat more complex environment (MCcomplex,). Male seminal fluids are of particular interest due to their ability to mediate postcopulatory competition between males and, therefore, can be used to manipulate females to a male’s own fitness benefit, potentially at her expense (i.e. sexual conflict). I investigated divergence in one particular seminal fluid protein implicated in sexual conflict, sex peptide (Acp70A). Whereas, gene expression levels among males from the three-mating treatment did not differ on average, relative stored quantities did, with MCcomplex males carrying significantly less sex peptide than either of MCabsent or MCsimple males (which did not differ from one another). This result suggests that mate competition and the environment in which it occurs play a significant role in the divergence of sex peptide phenotypes. ABSTRAIT Un objectif majeur de la biologie est de comprendre la diversification de la vie et les processus qui la provoquent. Une grande partie de cette diversité se présente sous la forme de variations phénotypiques entre les populations et les espèces. Dans cette thèse, j'étudie deux aspects distincts d'une telle divergence phénotypique. Le premier est la divergence des préférences des mâles et leurs contributions potentielles à l'isolement sexuel pré-copulatoire et à la spéciation. Le second est la différence de la divergence phénotypique post-copulatoire sous la forme de l'expression des protéines du liquide séminal. En ce qui concerne le premier aspect, dans deux expériences distinctes, j'ai étudié la contribution des préférences de compagnon mâle à l'isolement sexuel entre deux espèces de mouches des fruits étroitement liées subissant des coûts différentiels d'hybridation, Drosophila recens et Drosophila subquinaria. Les préférences des mâles sont particulièrement intéressantes en raison de leurs contributions potentielles à l'isolement sexuel, une forme d'isolement reproductif qui peut contribuer à la spéciation des espèces se reproduisant sexuellement. Dans la première expérience, je teste la présence de préférences de compagnon mâle dans chacune des deux espèces et si la force relative de la préférence est concordante avec le coût de l'hybridation. J'ai constaté que les mâles de D. subquinaria courtisaient sans discernement à la fois leurs propres femelles (c'est-à-dire homospécifiques) et les femelles hétérospécifiques de D. recens. Alors que D. recens de l'allopatrie a montré un modèle similaire, ceux de la sympatrie courtisaient leurs propres femelles plus que les femelles hétérospécifiques, indiquant un modèle de déplacement du caractère reproducteur. Dans la deuxième expérience, je teste le rôle de l'apprentissage dans le contexte de ces préférences de compagnon masculin dans D. recens, et si l'apprentissage a également montré un modèle de caractéristique de reproduction. Je n'ai pas trouvé de preuve d'apprentissage dans la mesure où les mâles D. recens ne réduisaient pas leur intensité de fréquentation envers les femelles hétérospécifiques après avoir été rejetés par des femelles similaires. Par conséquent, je n'ai pas trouvé d'indication de déplacement du caractère reproducteur. Enfin, en ce qui concerne la divergence phénotypique post-copulatoire, j'ai étudié les différences dans l'expression des protéines du liquide séminal entre les populations expérimentales de D. melanogaster connaissant l'un des trois environnements d'accouplement, permettant différentes possibilités de compétition de compagnon et l'environnement dans lequel elle a eu lieu. Ces trois environnements d'accouplement incluent un environnement dans lequel la compétition entre partenaires était absente (MCabsent,), un dans lequel la compétition entre partenaires se produisait dans un petit environnement structurellement simple (MCsimple) et un dans lequel la compétition entre partenaires se produisait dans un environnement plus grand et un peu plus complexe (MCcomplexe,). Les fluides séminaux mâles sont particulièrement intéressants en raison de leur capacité à négocier la compétition post-copulatoire entre les mâles et, par conséquent, peuvent être utilisés pour manipuler les femelles dans l'intérêt de la forme physique d'un mâle, potentiellement à ses dépens (c'est-à-dire conflit sexuel). J'ai étudié la divergence dans une protéine du liquide séminal particulière impliquée dans un conflit sexuel, le peptide sexuel (Acp70A). Alors que les niveaux d'expression génique chez les mâles du traitement à trois accouplements ne différaient pas en moyenne, les quantités relatives stockées le faisaient, les mâles MCcomplexe portant significativement moins de peptide sexuel que les mâles MCabsent ou MCsimple (qui ne différaient pas les uns des autres). Ce résultat suggère que la compétition de partenaire et l'environnement dans lequel elle se produit jouent un rôle important dans la divergence des phénotypes des peptides sexuels.
47

Genomická architektura a molekulární mechanismy hybridní sterility myši. / Genomic architecture and molecular mechanisms of hybrid sterility in mice.

Vališková, Barbora January 2021 (has links)
Hybrid sterility is one of the reproductive isolation mechanisms restricting gene flow between the related species and leading to speciation. PR domain containing 9 (Prdm9), the only known vertebrate hybrid sterility gene, determines the sites of programmed DNA double-strand breaks (DSBs) and thus specifies hotspots of meiotic recombination but in hybrids between two mouse subspecies causes failure of meiotic chromosome synapsis and hybrid male sterility. In the present study on sterile hybrids, the five smallest autosomes were more prone to asynapsis. To manipulate with the synapsis rate, random stretches of consubspecific homology were inserted into several autosomal pairs. Twenty seven or more megabases of consubspecific sequence fully restore synapsis in a given autosome. Further, at least two symetric DN double-strand breaks per chromosome were necessary for successful synapsis. Moreover, F1 hybrids had sperm when synapsis was rescued in at least three of four segregating chromosomes. To verify the assumption of a lack of symmetric DSBs in meiotic chromosomes of sterile males the chemotherapeutic drug cisplatin was used to induce exogenous DNA DSBs. Cells treated with 5 mg/kg and 10 mg/kg of cisplatin showed increased number of DSBs monitored by immunostaining of RPA and DMC1 sites and...
48

Evidence of Ecological Speciation in <em>Phacelia</em>.

Glass, Pamela Michele 15 December 2007 (has links) (PDF)
Phacelia purshii Buckley and P. fimbriata Micheaux are two species that are nearly morphologically indistinguishable. Seed germination experiments showed that the high elevation endemic, P. fimbriata requires lower temperatures to trigger germination. Following interspecific crosses, pollen tubes enter ovules and maternal tissue of the gynoecium matures but hybrid diploid and triploid organs fail to develop. DNA sequences from the ribosomal DNA internal transcribed region showed that P. fimbriata and P. purshii comprise a monophyletic clade but that P. fimbriata is more differentiated from related species. In contrast, P. purshii supported significantly higher levels of intraspecific polymorphism. Phacelia fimbriata and P. purshii are sister species with similar morphology but they are unable to hybridize, they are differentiated in physiological characteristics related to environment, and they inhabit different elevations. This pattern of relationship and differentiation suggests P. fimbriata may be the product of ecological speciation.
49

Déterminants historiques et sélectifs des échanges génétiques au cours de la spéciation chez la souris domestique : patrons de coalescence et introgression en zone hybride. / Historical and selective determinants of genetic exchanges during house mouse speciation : coalescence patterns and introgression in a hybrid zone.

Duvaux, Ludovic 18 November 2010 (has links)
Afin de comprendre le processus de spéciation, il est nécessaire d'appréhender les patrons de flux géniques entre espèces naissantes et le rôle de la sélection dans leur détermination. C'est ce que tente d'aborder cette thèse en utilisant comme modèle deux sous-espèces de la souris domestique, Mus musculus. Nous avons reconstitué l'histoire de leur différenciation sur la base du polymorphisme de séquence à 60 locus autosomaux. La simulation du coalescent de ces locus sous plusieurs scenarios historiques nous a permis d'inférer, via une méthode ABC (Approximate Bayesian Computation), une divergence ancienne des sous-espèces (1,5Ma). Elle fut suivie d'une longue phase d'isolement (1,2Ma) précédant une phase d'échanges génétiques débutant bien avant la formation de la zone hybride européenne actuelle. La phase d'isolement a été assez longue pour expliquer une grande partie des incompatibilités génétiques observées actuellement. Les flux génétiques anciens et prolongés pourraient avoir favorisé le renforcement comportemental de l'isolement reproductif. Nous étudions aussi la relation entre le mode d'évolution de 77 régions génomiques autosomales et leur comportement d'introgression à travers une zone hybride. Le taux de recombinaison locale semble déterminer en partie les introgressions symétriques et limitées de certains locus. Toutefois tel n'est pas le cas pour 40% des locus, qui présentent une introgression asymétrique dans l'une ou l'autre direction. Nous proposons que l'introgression coté musculus soit majoritairement contrôlée par la sélection et que l'introgression coté domesticus soit influencée par un déplacement de la zone hybride vers le territoire musculus. / Understanding the speciation process requires to appraise patterns of gene flow between incipient speices as well as the role of selection in their determination. This thesis attempts to do so using two subspecies of the house mouse, Mus musculus, as a model. We inferred the history of their differentiation based on sequence polymorphism data at 60 autosomal loci. By simulating the coalescent of these loci under several historical scenarios we were able to infer, using an ABC (Approximate Bayesian Computation) method, an ancient divergence of the subspecies (1.5 MY). This was followed by a long period of isolation (1.2 MY) preceding a phase of genetic exchanges that started well before the formation of the present European hybrid zone. The isolation phase lasted long enough to explain a majority of the present genetic incompatibilities. Ancient and lasting gene flow could have favoured a behavioural reinforcement of reproductive isolation. We a lso studied the relationship between the mode of evolution of 77 autosomal genomic regions and their introgression patterns across a hybrid zone. Local recombination rates variations seem to partly account for the patterns observed at some loci with limited and symmetrical introgression. However such is not the case for 40% of the the loci showing asymmetrical introgression in on direction or the other. domesticus results from a movement of the hybrid zone from domesticus to musculus.
50

Dissection of fertility barriers among lineages of Gibberella zeae

Fuentes-Bueno, Irazema January 1900 (has links)
Master of Science / Department of Plant Pathology / Robert L. Bowden / John F. Leslie / Fusarium graminearum Schwabe sensu lato (teleomorph: Gibberella zeae (Schwein.) Petch), a homothallic ascomycete fungus, is the causal agent of Fusarium head blight (FHB) of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and other small grains. FHB occurs worldwide and serious outbreaks have been reported in North America, South America, Asia, and Europe. According to the phylogenetic species concept (PSC), F. graminearum is composed of at least 15 phylogenetic lineages known as the Fusarium graminearum species complex. Although F. graminearum is homothallic, some members of different phylogenetic lineages are known to intercross in the laboratory. It has been suggested that F. graminearum sensu lato fits the biological species concept (BSC). According to the BSC, “species are groups of actually or potentially interbreeding natural populations, which are reproductively isolated from other such groups”. Previous reports of intercrossing were qualitative, so the degree of reproductive isolation, if any, is not clear. Since intrinsic reproductive isolation is the key criterion to identify species by the BSC, more detailed quantitative information is needed. Chromosome rearrangements between fungal strains may reduce fertility in sexual crosses through the production of genetically inviable recombinant progeny. As such, rearrangements can be important postzygotic reproductive barriers between species. Following methods used in Neurospora crassa, ascospore tetrads were analyzed for patterns of ascospore viability. Crosses were made with three lineage 7 (F. graminearum sensu stricto according to PSC) strains as female. Each female was a MAT1-2 knockout mutant that rendered it obligately heterothallic. Males were several members of lineages 6 (F. asiaticum according to PSC) and lineage 7. Crosses with lineage 7 males formed complete asci with 8 ascospores indicating that their genomes are isosequential with the testers. Crosses with one strain from lineage 6 with two known inversions produced asci containing 8, 6, and 4 ascospores, consistent with it not being isosequential. However, three other strains of lineage 6 appeared to be isosequential with the testers. Therefore, chromosome rearrangements did not appear to be common to strains of lineage 6 and probably do not contribute significantly to reproductive isolation of lineage 6 and lineage 7. Interlineage fertility studies with the three lineage 7 tester strains were performed to quantify interlineage fertility parameters including the total number of ascospores produced, perithecial density, and perithecium internal development scores. All lineage 7 female testers successfully crossed to all 23 male strains from lineages 1 to 9. For total ascospore production, one female tester crossed equally well with all lineages and the other two testers showed statistically significant differences for a few lineages. For perithecial density, there was a significantly lower density with all three testers when crossed with lineage 6, but the other lineages were not statistically different from lineage 7. For perithecial development, there was large variation for every lineage. Therefore, in the crosses with reduced fertility, the reduction can be attributed to a postzygotic effect since mature perithecia and asci developed. All of the tested lineages of the Fusarium graminearum species complex can produce viable progeny with F. graminearum lineage 7, which was the taxonomic type of the original species before it was split into phylogenetic species. There are a few examples of reduced fertility with two lineage 7 testers, the remaining tester crossed equally well with all lineages. Therefore members of lineages 1-9 all should be considered members of Fusarium graminearum according to the BSC. The existing female testers could be used to identify members of the F. graminearum clade by performing test crosses in the laboratory. The PSC and BSC species concepts do not agree for this group of fungi. This disagreement indicates that the F. graminearum species complex is in the early stages of speciation. The lack of intrinsic reproductive barriers supports the hypothesis that these lineages have developed in geographic isolation. As the lineages have apparently been brought together through global trade, interlineage hybrids have been reported in the field. The discrepancy between PSC and BSC will eventually be resolved by whether the lineages fuse or remain separate in nature. Even if the lineages remain separate, this study demonstrates the potential for gene flow between lineage 7 and lineages 1 through 9.

Page generated in 0.0949 seconds