Spelling suggestions: "subject:"resolvente"" "subject:"resolventes""
1 |
Rational matrix equations in stochastic control /Damm, Tobias. January 2004 (has links)
Univ., Diss.--Bremen, 2002.
|
2 |
Berechnung von Galoisgruppen über Zahl- und FunktionenkörpernGeißler, Katharina. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2003--Berlin.
|
3 |
Teoria de espalhamento em variedades assintoticamente hiperbólicasHORA, Raphael Falcão da January 2006 (has links)
Made available in DSpace on 2014-06-12T18:32:49Z (GMT). No. of bitstreams: 2
arquivo8671_1.pdf: 601731 bytes, checksum: f20a6ee84c7991662d9be28e066128fd (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2006 / Nesta Dissertação de mestrado descrevemos aspectos da Teoria clássica dos operadores pseudodiferenciais, apresentando suas definições básicas e o cálculo pseudodiferencial clássico. Em seguida introduzimos as variedades assintoticamente hiperbólicas, e damos importantes resultados obtidos por R. Melrose e R. Mazzeo sobre extensões meromorfas do resolvente modificado, a quase todo o plano complexo. Finalmente fazemos referência a resultados obtidos por A. Sá Barreto e M. Joshi sobre a Matriz de Espalhamento
|
4 |
On the resolvent of the Laplacian on functions for degenerating surfaces of finite geometry / Über die Resolvente des Laplace-Operators auf Funktionen für degenerierende Flächen endlicher GeometrieSchulze, Michael 13 October 2004 (has links)
No description available.
|
5 |
Fecho Galoisiano de sub-extensões quárticas do corpo de funções racionais sobre corpos finitos / Galois closures of quartic sub-fields of rational function fields over finite fieldsMonteza, David Alberto Saldaña 26 June 2017 (has links)
Seja p um primo, considere q = pe com e ≥ 1 inteiro. Dado o polinômio f (x) = x4+ax3+bx2+ cx+d ∈ Fq[x], consideremos o polinômio F(T) = T4 +aT3 +bT2 +cT + d - y ∈ Fq(y)[T], com y = f (x) sobre Fq(y). O objetivo desse trabalho é determinar o número de polinômios f (x) que tem seu grupo de galois associado GF isomorfo a cada subgrupo transitivo (prefixado) de S4. O trabalho foi baseado no artigo: Galois closures of quartic sub-fields of rational function fields, usando equações auxiliares associadas ao polinômio minimal F(T) de graus 3 e 2 (DUMMIT, 1994); bem como uma caraterização das curvas projetivas planas de grau 2 não singulares. Se car(k) ≠ 2, associamos a F(T) sua cúbica resolvente RF(T) e seu discriminante ΔF. Em seguida obtemos condições para GF ≅ C4 (vide Teorema 2.9), que é ocaso fundamental para determinação dos demais casos. Se car(k) = 2, procuramos determinar condições para GRF ≅ A3, associando ao polinômio RF(T) sua quadrática resolvente P(T) (vide a Proposição 2.13). Apos ter homogeneizado P(T), usamos uma das consequências do teorema de Bézout, a saber, uma curva algébrica projetiva plana C de grau 2 é irredutível se, e somente se, C não tem pontos singulares. Nesta dissertação obtemos resultados semelhantes com uma abordagem relativamente diferente daquela usada pelo autor R. Valentini. / Let be p a prime, q = pe whit e ≥ 1 integer. Let a polynomial f (x) = x4+ax3+bx2+cx+d ∈ Fq[x], considering the polynomial F(T)=T4+aT3+bT2+cT +d, with y= f (x) over Fq(y)[T]. The purpose of the current research is to determine the numbers of polynomials f (x) which have its associated Galois group GF, this GF is isomorphic for each transitive subgroup (prefixed) of A4. This project is based on the article: Galois closures of quartic sub-fields of rational function fields, using auxiliary equations associated to the minimal polynomial F(T) of degrees 3 and 2 (DUMMIT, 1994); besides a characterization of non-singular projective plane curves of degree 2 was used. If car(k) ≠ 2, associated to F(T) the resolvent cubic RF(T) and its discriminant ΔF then conditions for GF are obtained as GF ≅ C4 which is the fundamental case for determining the other cases (Theorem 2.9). If car(k) = 2, to find conditions for GRF ≅ A3, associated to the polynomial RF(T) its resolvent quadratic p(T) (Proposition 2.13). Homogenizing p(T), one of the consequences of the Bezout theorem was applied. It is, a projective plane curve C, which grade 2, is irreducible if and only if C is smooth. In the current dissertation, similar results were obtained using a different approach developed by the author R. Valentini.
|
6 |
Fecho Galoisiano de sub-extensões quárticas do corpo de funções racionais sobre corpos finitos / Galois closures of quartic sub-fields of rational function fields over finite fieldsDavid Alberto Saldaña Monteza 26 June 2017 (has links)
Seja p um primo, considere q = pe com e ≥ 1 inteiro. Dado o polinômio f (x) = x4+ax3+bx2+ cx+d ∈ Fq[x], consideremos o polinômio F(T) = T4 +aT3 +bT2 +cT + d - y ∈ Fq(y)[T], com y = f (x) sobre Fq(y). O objetivo desse trabalho é determinar o número de polinômios f (x) que tem seu grupo de galois associado GF isomorfo a cada subgrupo transitivo (prefixado) de S4. O trabalho foi baseado no artigo: Galois closures of quartic sub-fields of rational function fields, usando equações auxiliares associadas ao polinômio minimal F(T) de graus 3 e 2 (DUMMIT, 1994); bem como uma caraterização das curvas projetivas planas de grau 2 não singulares. Se car(k) ≠ 2, associamos a F(T) sua cúbica resolvente RF(T) e seu discriminante ΔF. Em seguida obtemos condições para GF ≅ C4 (vide Teorema 2.9), que é ocaso fundamental para determinação dos demais casos. Se car(k) = 2, procuramos determinar condições para GRF ≅ A3, associando ao polinômio RF(T) sua quadrática resolvente P(T) (vide a Proposição 2.13). Apos ter homogeneizado P(T), usamos uma das consequências do teorema de Bézout, a saber, uma curva algébrica projetiva plana C de grau 2 é irredutível se, e somente se, C não tem pontos singulares. Nesta dissertação obtemos resultados semelhantes com uma abordagem relativamente diferente daquela usada pelo autor R. Valentini. / Let be p a prime, q = pe whit e ≥ 1 integer. Let a polynomial f (x) = x4+ax3+bx2+cx+d ∈ Fq[x], considering the polynomial F(T)=T4+aT3+bT2+cT +d, with y= f (x) over Fq(y)[T]. The purpose of the current research is to determine the numbers of polynomials f (x) which have its associated Galois group GF, this GF is isomorphic for each transitive subgroup (prefixed) of A4. This project is based on the article: Galois closures of quartic sub-fields of rational function fields, using auxiliary equations associated to the minimal polynomial F(T) of degrees 3 and 2 (DUMMIT, 1994); besides a characterization of non-singular projective plane curves of degree 2 was used. If car(k) ≠ 2, associated to F(T) the resolvent cubic RF(T) and its discriminant ΔF then conditions for GF are obtained as GF ≅ C4 which is the fundamental case for determining the other cases (Theorem 2.9). If car(k) = 2, to find conditions for GRF ≅ A3, associated to the polynomial RF(T) its resolvent quadratic p(T) (Proposition 2.13). Homogenizing p(T), one of the consequences of the Bezout theorem was applied. It is, a projective plane curve C, which grade 2, is irreducible if and only if C is smooth. In the current dissertation, similar results were obtained using a different approach developed by the author R. Valentini.
|
7 |
Uma teoria de regularidade para equações de volterra fracionárias com dados iniciais locais e não locaisCRUZ, Thamires Santos 26 February 2016 (has links)
Submitted by Irene Nascimento (irene.kessia@ufpe.br) on 2017-03-29T19:13:09Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Tese-Thamires.pdf: 818214 bytes, checksum: 5697cce4e93e09e89c5150c064df333e (MD5) / Made available in DSpace on 2017-03-29T19:13:09Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Tese-Thamires.pdf: 818214 bytes, checksum: 5697cce4e93e09e89c5150c064df333e (MD5)
Previous issue date: 2016-02-26 / CNPQ / Este trabalho trata da teoria de existência, unicidade, regularidade, continuação e alternativa de Blow-up de solução brandas para Equação de Volterra Fracionarias com condições iniciais locais cujo termo não linear satisfaz certas propriedades localmente Lipschitz. Analisamos também o caso de condições iniciais não locais e não linearidades verificando condições do tipo Caratheodory. Neste caso estudamos as propriedades topológicas do conjunto soluções de tais equações. / his work deals with existence, uniqueness, regularity, continuation and Blow up
Alternative of mild solutions for Fractional Volterra Equations with local initial conditions,
whose nonlinear terms satisfy some locally Lipschitz properties. Moreover we analyse thecase of nonlocal initial conditions and nonlinearities of Caratheodory type. In this case, we study topological properties of the solution set of such equations.
|
8 |
Zero-one law for (a,k)-regularized resolvent families and the Blackstock-Crighton-Westervelt equation on Banach spaces /Gambera, Laura Rezzieri. January 2020 (has links)
Orientador: Andréa Cristina Prokopczyk Arita / Abstract: This work presents some results of the theory of the (a,k)-regularized resolvent families, that are the main tool used in this thesis. Related with this families, one result proved in this work is the zero-one law, providing new insights on the structural properties of the theory of (a,k)-regularized resolvent families including strongly continuous semigroups, strongly continuous cosine families, integrated semigroups, among others. Moreover, an abstract nonlinear degenerate hyperbolic equation is considered, that includes the semilinear Blackstock-Crighton-Westervelt equation. By proposing a new approach based on strongly continuous semigroups and resolvent families of operators, it is proved an explicit representation of the strong and mild solutions for the linearized model by means of a kind of variation of parameters formula. In addition, under nonlocal initial conditions, a mild solution of the nonlinear equation is established. / Resumo: Este trabalho apresenta alguns resultados da teoria de famílias resolventes (a,k)- regularizadas, que é a principal ferramenta utilizada nesta tese. Relacionado com estas famílias, um resultado provado neste trabalho é a lei zero-um, que fornece novas percepções de propriedades estruturais da teoria de famílias resolventes (a,k)- regularizadas, incluindo os semigrupos fortemente contínuos, as famílias cosseno fortemente contínuas, os semigrupos integrados, entre outras. Além disso, uma equação hiperbólica degenerada não-linear abstrata é considerada, a qual inclui a equação semilinear de Blackstock-Crighton-Westervelt. Propondo uma nova abordagem baseada em semigrupos fortemente contínuos e famílias resolvente, é demonstrada uma representação explícita das soluções forte e branda para a linearização do modelo por uma espécie de método de variação dos parâmetros. Por fim, sob condições iniciais não-locais, uma solução branda da equação não-linear é estabelecida. / Doutor
|
9 |
Exponential dichotomy and smooth invariant center manifolds for semilinear hyperbolic systemsLichtner, Mark 25 August 2006 (has links)
Es wird gezeigt, dass ein Satz über die Abbildung spektraler Lücken, welcher exponentielle Dichotomie charakterisiert, für eine allgemeine Klasse (SH) von semilinearen hyperbolischen Systemen von partiellen Differentialgleichungen in einem Banach-Raum X von stetigen Funktionen gilt. Dies beantwortet ein Schlüsselproblem für die Existenz und Glattheit invarianter Mannigfaltigkeiten semilinearer hyperbolischer Systeme. Unter natürlichen Annahmen an die Nichtlinearitäten wird gezeigt, dass schwache Lösungen von (SH) einen glatten Halbfluß im Raum X bilden. Für Linearisierungen werden hochfrequente Abschätzungen für Spektren sowie Resolventen unter Verwendung von reduzierten (block)diagonal Systemen hergestellt. Darauf aufbauend wird der Abbildungssatz für spektrale Lücken im kleinen Raum X bewiesen: Eine offene spektrale Lücke des Generators wird exponentiell auf eine offene spektrale Lücke der Halbruppe abgebildet und umgekehrt. Es folgt, dass ein Phänomen wie im Gegenbeispiel von Renardy nicht auftreten kann. Unter Verwendung der allgemeinen Theorie implizieren die Ergebnisse die Existenz von glatten Zentrumsmannigfaltigkeiten für (SH). Die Ergebnisse werden auf traveling wave Modelle für die Dynamik von Halbleiter Lasern angewandt. Für diese werden Moden Approximationen (Systeme von gewöhnlichen Differentialgleichungen, welche die Dynamik auf gewissen Zentrumsmannigfaltigkeiten approximativ beschreiben) hergeleitet und gerechtfertigt, die generische Bifurkation von modulierten Wellen aus rotierenden Wellen wird gezeigt. Globale Existenz und glatte Abhängigkeit von nichtautonomen traveling wave Modellen werden betrachtet, außerdem werden Moden Approximationen für solche nichtautonomen Modelle rigoros hergeleitet. Insbesondere arbeitet die Theorie für die Stabilitäts- und Bifurkationsanalyse von Turing Modellen mit korellierter Zufallsbewegung. Ferner beinhaltet die Klasse (SH) neutrale und retardierte funktionale Differentialgleichungen. / A spectral gap mapping theorem, which characterizes exponential dichotomy, is proven for a general class of semilinear hyperbolic systems of PDEs in a Banach space X of continuous functions. This resolves a key problem on existence and smoothness of invariant manifolds for semilinear hyperbolic systems. It is shown that weak solutions to (SH) form a smooth semiflow in X under natural conditions on the nonlinearities. For linearizations high frequency estimates of spectra and resolvents in terms of reduced diagonal and blockdiagonal systems are given. Using these estimates a spectral gap mapping theorem in the small Banach space X is proven: An open spectral gap of the generator is mapped exponentially to an open spectral gap of the semigroup and vice versa. Hence, a phenomenon like in Renardy''s counterexample cannot appear for linearizations of (SH). By the general theory the results imply existence of smooth center manifolds for (SH). Moreoever, the results are applied to traveling wave models of semiconductor laser dynamics. For such models mode approximations (ODE systems which approximately describe the dynamics on center manifolds) are derived and justified, and generic bifurcations of modulated waves from rotating waves are shown. Global existence and smooth dependence of nonautonomous traveling wave models with more general solutions, which possess jumps, are considered, and mode approximations are derived for such nonautonomous models. In particular the theory applies to stability and bifurcation analysis for Turing models with correlated random walk. Moreover, the class (SH) includes neutral and retarded functional differential equations.
|
10 |
Proximal Splitting Methods in Nonsmooth Convex OptimizationHendrich, Christopher 25 July 2014 (has links) (PDF)
This thesis is concerned with the development of novel numerical methods for solving nondifferentiable convex optimization problems in real Hilbert spaces and with the investigation of their asymptotic behavior. To this end, we are also making use of monotone operator theory as some of the provided algorithms are originally designed to solve monotone inclusion problems.
After introducing basic notations and preliminary results in convex analysis, we derive two numerical methods based on different smoothing strategies for solving nondifferentiable convex optimization problems. The first approach, known as the double smoothing technique, solves the optimization problem with some given a priori accuracy by applying two regularizations to its conjugate dual problem. A special fast gradient method then solves the regularized dual problem such that an approximate primal solution can be reconstructed from it. The second approach affects the primal optimization problem directly by applying a single regularization to it and is capable of using variable smoothing parameters which lead to a more accurate approximation of the original problem as the iteration counter increases. We then derive and investigate different primal-dual methods in real Hilbert spaces. In general, one considerable advantage of primal-dual algorithms is that they are providing a complete splitting philosophy in that the resolvents, which arise in the iterative process, are only taken separately from each maximally monotone operator occurring in the problem description. We firstly analyze the forward-backward-forward algorithm of Combettes and Pesquet in terms of its convergence rate for the objective of a nondifferentiable convex optimization problem. Additionally, we propose accelerations of this method under the additional assumption that certain monotone operators occurring in the problem formulation are strongly monotone. Subsequently, we derive two Douglas–Rachford type primal-dual methods for solving monotone inclusion problems involving finite sums of linearly composed parallel sum type monotone operators. To prove their asymptotic convergence, we use a common product Hilbert space strategy by reformulating the corresponding inclusion problem reasonably such that the Douglas–Rachford algorithm can be applied to it. Finally, we propose two primal-dual algorithms relying on forward-backward and forward-backward-forward approaches for solving monotone inclusion problems involving parallel sums of linearly composed monotone operators.
The last part of this thesis deals with different numerical experiments where we intend to compare our methods against algorithms from the literature. The problems which arise in this part are manifold and they reflect the importance of this field of research as convex optimization problems appear in lots of applications of interest.
|
Page generated in 0.0663 seconds