• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 44
  • 16
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 296
  • 296
  • 129
  • 79
  • 79
  • 56
  • 50
  • 49
  • 47
  • 37
  • 30
  • 30
  • 29
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Avaliação de um sistema de dessalinização de água salobra em escala piloto

Bovaroti , Tatiane 12 April 2018 (has links)
Submitted by Eunice Novais (enovais@uepg.br) on 2018-07-31T12:05:01Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Tatiane Bovaroti.pdf: 1677408 bytes, checksum: 74791391260b47b48abc127d7af4af68 (MD5) / Made available in DSpace on 2018-07-31T12:05:01Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Tatiane Bovaroti.pdf: 1677408 bytes, checksum: 74791391260b47b48abc127d7af4af68 (MD5) Previous issue date: 2018-04-12 / Preocupados com a intrusão de água do mar, escassez e má qualidade das reservas de água doce no mundo, diversos países têm estudado e proposto sistemas de alta tecnologia que sejam viáveis para a dessalinização de água salobra ou salina. Este trabalho teve como objetivo principal avaliar a eficiência de um sistema de ultrafiltração (UF) como pré-tratamento, seguido de abrandamento e osmose reversa (OR) para a dessalinização de água salobra em escala piloto, instalado no balneário de Praia de Leste, litoral do estado do Paraná. Para a obtenção da água salobra foi realizada a mistura da água do rio das Pombas com a água do mar até a concentração de 1500 (± 100) mg. L-1 de sólidos dissolvidos totais (SDT). O sistema foi projetado para a produção de 1 m3.h-1 de água doce (permeado da OR) e operou por aproximadamente 3h por dia durante vinte dias não consecutivos. Analisaram-se amostras de nove pontos de coleta durante a primeira (A), segunda (B) e terceira (C) hora de operação. Para a avaliação da qualidade da água os parâmetros analisados foram: SDT, condutividade elétrica, pH, temperatura, cor aparente, turbidez, alcalinidade total, dureza total, cálcio, cloreto, sulfato, coliformes totais e E.coli. Para avaliação da eficiência do sistema, calculou-se a taxa de recuperação e o fluxo de filtração, bem como a leitura de outros parâmetros operacionais como a pressão osmótica. O sistema de UF apresentou remoção média de 95,1% de turbidez e de 98,6% de cor aparente na água salobra. Constatou-se ausência de coliformes totais e E.coli no permeado. Houve variação quanto à remoção de dureza total e cálcio pelo abrandador devido ao tempo de regeneração do sistema. O sistema de OR obteve remoção média de 99,4% de SDT e a maior taxa de recuperação global (UF e OR) foi de 57,4%. / Concerned about the intrusion of sea water, scarcity and poor quality of freshwater reserves in the world, several countries have studied and proposed high technology systems that are feasible for the desalination of brackish or saline water. The main objective of this work was to evaluate the efficiency of an ultrafiltration (UF) system as a pretreatment, followed by slowing and reverse osmosis (RO) for pilot scale saline water desalination, installed in Praia de Leste – coast of the state of Paraná. To obtain the brackish water, the water of the Pombas River was mixed with sea water up to the concentration of 1500 (± 100) mg. L-1 total dissolved solids (TDS). The system was designed to produce 1 m3.h-1 of freshwater (permeate from the RO) and was operated by approximately 3 hours per day during twenty non-consecutive days. Samples from nine collection points were analyzed during the first (A), second (B) and third (C) hours of operation. In order to evaluate the water quality, the parameters evaluated were: TDS, electric conductivity, pH, temperature, apparent color, turbidity, total alkalinity, total hardness, calcium, chloride, sulfate, total coliforms and E.coli. To evaluate the efficiency of the system, the recovery rate and the filtration flow were calculated, as well as the reading of other operational parameters such as osmotic pressure. It was found absence of total coliforms and E. coli in the permeate. There was variation regarding to the removal of total hardness and calcium by the softener due to the regeneration time of the system. The RO system obtained an average of 99.4% of the TDS removal and the highest overall (UF and RO) recovery rate was 57.4%.
222

Estabiliza??o de mol?culas bioativas presentes em suco de camucamu (Myrciaria d?bia (H.B.K) Mc Vaugh) pela integra??o dos processos de osmose inversa, evapora??o osm?tica e atomiza??o / Stabilization of bioactive molecules present in camucamu juice by means of interaction among the processes of reverse osmosis, osmotic evaporation and atomization

Souza, Andr? Luis Rodrigues 06 March 2012 (has links)
Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-04-27T13:51:34Z No. of bitstreams: 1 2012 - Andr? Luis R. de Souza.pdf: 1971622 bytes, checksum: 5237bc23d365c59e774d9f8776efabf1 (MD5) / Made available in DSpace on 2017-04-27T13:51:34Z (GMT). No. of bitstreams: 1 2012 - Andr? Luis R. de Souza.pdf: 1971622 bytes, checksum: 5237bc23d365c59e774d9f8776efabf1 (MD5) Previous issue date: 2012-03-06 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico - CNPq / Camu-camu is a native fruit from the Amazonian region, cultivated in the margins of rivers, lakes and Amazonian creeks called igarap?s. It is known as one of the fruit with the highest content of vitamin C. Reverse osmosis is a membrane concentration process in which the applied pressure is higher than the juice osmotic pressure. Such process favors the solvent permeation from the region with the highest concentration to the one with the lowest. Osmotic evaporation is another membrane concentration process in which a porous hydrophobic membrane separates the solution that is going to be concentrated from a concentrate brine solution. Microencapsulation is the process in which an active agent is entrapped by means of a polymer cover. Such process promotes the release of these active agents under specific conditions. The aim of this work is to evaluate the use of membrane separation processes and microencapsulation for the processing of camu-camu fruits. The camu-camu pulp, which has been obtained through the depulping of camu-camu fruits, was first centrifuged, in order to decrease its suspended solids content, and clarified by microfiltration with polysulfone membranes. Six clarification processes have carried out at 2.5 bar transmembrane pressure and 45?C. The clarified juice was concentrated by reverse osmosis at 60 bar and 20 ?C. The avarage permeate flux has been of 11.3 L/hm2. The preconcentrated juice had 28.8?Brix and the concentration degree of the process was 3.8. The pre-concentrated juice has been concentrated by osmotic evaporation in a laboratorial system with polytetrafluoroethylene membrane. The process presented an average pemeate flux of 2.4 Kg/hm2. The soluble solids content of the concentrated juice was of 56.6 ?Brix, presenting a concentration degree of 1.98. The retentate fraction of the microfiltration process was microencapsulated in a spray dryer. Three encapsulation agents were evaluated: starch, maltodextrin and the mixture of both. The values presented for the physicochemical caracterization of the pre-concentrated and concentrated camu-camu juices indicate that there has been an increase both in the physical characteristics of the juice, such as soluble solids, total solids and acidity, and in the concentration of camu-camu bioactive compounds. The dehydrated camu-camu juice presented a high concentration of bioactive substances. Nevertheless, there has been no stability of such compounds during storage. Through the results obtained in the present work, it is possible to observe that the integration of membrane processes proved efficient in the concentration of camu-camu juice, with a final product of high nutritional value / O camu-camu ? um fruto nativo da regi?o amaz?nica, cultivado as margens de rios, lagos e igarap?s. ? reconhecido como um dos frutos com um dos maiores teores de vitamina C. Osmose inversa ? o processo de concentra??o por membranas onde a press?o aplicada ? maior que a press?o osm?tica do suco, favorecendo a permea??o do solvente da regi?o de maior concentra??o para regi?o de menor concentra??o. Evapora??o osm?tica ? um outro processo de concentra??o, onde uma membrana hidrof?bica porosa separa a solu??o que ser? concentrada e uma salmoura concentrada. A microencapsula??o ? o processo onde um agente ativo ? protegido por meio de uma cobertura de pol?meros, ocorrendo a libera??o desses agentes ativos em condi??es espec?ficas. O objetivo desta disserta??o foi avaliar o uso dos processos de separa??o com membranas e microencapsulamento para o processamento de suco de camu-camu. Os frutos de camu-camu foram despolpados, sendo o suco submetido a centrifuga??o, com o objetivo de reduzir os s?lidos em suspens?o, e posteriormente clarificado por microfiltra??o em um sistema de membranas de polissulfona. Foram realizados seis processos de clarifica??o a 2,5 bar e 45?C. O suco clarificado foi pr?-concentrado por osmose inversa a 60 bar e 20 ?C. O fluxo permeado m?dio foi de 11,3 L/hm2. O suco pr?-concentrado apresentou teor de s?lidos sol?veis de 28,8?Brix e grau de concentra??o de 3,8. O suco pr?-concentrado foi processado por evapora??o osm?tica em um sistema laboratorial constitu?do por membranas de politetrafluoretileno. O processo apresentou fluxo m?dio permeado de 2,4 kg/hm2. O teor de s?lidos sol?veis do suco concentrado foi de 56,6 ?Brix, apresentando um grau de concentra??o de 1,98. O processo de microencapsula??o da fra??o retida do suco de camucamu foi realizado em um spray dryer Buchi Modelo B-190. Foram realizados tr?s ensaios com tr?s formula??es diferentes: mistura entre amido e maltodextrina, somente amido e somente maltodextrina. Os valores apresentados para a caracteriza??o f?sico-qu?mica do suco de camu-camu pr?-concentrado e concentrado indicam que houve um aumento nos s?lidos sol?veis e totais e da acidez, bem como no teor das subst?ncias bioativas do camucamu. O suco de camu-camu desidratado apresentou alto teor de subst?ncias bioativas, onde a estabilidade desses compostos durante o per?odo de armazenamento n?o foi alcan?ada. Observa-se que a integra??o dos processos com membranas se mostrou eficaz na concentra??o do suco de camu-camu, obtendo um produto com alta qualidade nutricional.
223

Avaliação de eficácia da sanitização de um sistema de purificação de água. Esterilização de artigos médicos, dissipação residual do óxido de etileno e uso da proteína verde fluorescente (GFP) como inidicador de controle do processo / Evaluation of effectiveness of the sanitization of a water purification system. Sterilization of medical devices, residual dissipation of ethylene oxide and the use of green fluorescent protein (GFP) as an indicator of process control

Dias, Fabio Nunes 22 August 2007 (has links)
A água exerce papel fundamental nas diferentes fases do processo de fabricação de artigos para saúde (médico-hospitalares, farmacêuticos, e clínicos), exigindo elevado grau de pureza, que certifique a sua inocuidade. Portanto, se faz necessário maior controle dos sistemas de purificação de água e suas etapas de tratamento, onde a formação de biofilmes pode contaminar os artigos para saúde e, consequentemente, causar injúria a pacientes submetidos à aplicação dos mesmos. Embora os artigos médicos sejam esterilizados por óxido de etileno (ETO), seu processo de manufatura deve prever o mínimo acréscimo possível de contaminantes. Considerando que a água purificada e a esterilização dos artigos para saúde são fatores determinantes para o sucesso de sua aplicação, este trabalho foi dividido em duas partes distintas. A primeira parte aborda o controle das etapas de purificação da água, que é destinada à lavagem de componentes termoplásticos, que são utilizados na fabricação de artigos para saúde. Os níveis máximos de carga microbiana (expressos em ciclos de log10 UFC/100mL) encontrados ao longo do sistema de purificação de água foram: 3,48 log10 na água de entrada; 3,57 log10 nos filtros multimeios; 3,75 log10 nos abrandadores; 4,97 log10 no filtro de carvão ativado; 2,53 log10 na osmose reversa; 2,70 log10 no tanque de estocagem e distribuição; 2,56 log10 na lâmpada ultravioleta; 2,53 log10 nos filtros 0,05 µm; 1,98 log10 nos pontos de uso. Flavimonas oryzihabitans e Micrococcus luteus foram as bactérias Gram-negativa e Grampositiva, respectivamente, isoladas e identificadas com maior freqüência na água, em diferentes estágios do sistema, inclusive após a passagem dessa através das membranas de osmose reversa. A segunda parte do estudo teve como objetivo determinar o tempo de aeração necessário para que os oxigenadores de sangue e conjuntos de tubos de PVC, após esterilização por ETO, permaneçam em aeração, para dissipação dos resíduos de ETO. Avaliou-se também a potencialidade da proteína verde fluorescente (GFP) como biossensor no processo de esterilização. O processo de esterilização destes artigos médicos foi monitorado com indicadores biológicos Bacillus atrophaeus, proteína verde fluorescente (GFP) e controles de temperatura, pressão e umidade em ciclos de 2 h (ciclo curto), 4 h (meio ciclo) e 8 h (ciclo longo). As curvas de dissipação, determinadas por cromatografia gasosa, confirmaram níveis residuais menores que 25 ppm para ETO e etileno cloridrina (EC); e inferiores a 250 ppm para etileno glicol (EG), ao final do processo de esterilização para os oxigenadores; e, após 221 horas de aeração, para os conjuntos de tubos de PVC. Nos ciclos de esterilização, as reduções na intensidade de fluorescência da GFP ocorreram em função do tempo de exposição ao ETO; enquanto germinação de esporos e/ou crescimento de B. atrophaeus não foi observado. / The water exerts important paper in different phases of critical items manufacture in the health care units, pharmaceutical industries, hospitals and clinics, becoming necessary a rigorous control of the water purification systems, storage and distribution, in order to prevent biofilms formation and cross-contamination between devices and patients, who are submitted to critical articles and parenteral solution application. The sterilization of critical devices by ethylene oxide (ETO) should predict minimum addition of possible contaminants and residues. Considering that the purified water and the sterilization are crucial factors for medical devices, this work was divided in two parts. The first part evaluated continuously the stages of the system for the purification of the water, which purity level is critical and determines the quality of the washing of thermoplastic components used in the manufacture of critical items. The maximum levels of heterotrophic load (log10 UFC/100mL) found throughout the water purification system were: 3.48 log10 in the water inlet; 3.57 log10 in the multimedium filters; 3.75 log10 in the softeners; 4.97 log10 in the activated carbon filter; 2.53 log10 in the reverse osmosis; 2.70 log10 in the tank of storage and distribution; 2.56 log10 in the UV lamp; 2.53 log10 in the 0.05µm filters; 1.98 log10 in the consumption points. Flavimonas oryzihabitans and Micrococcus luteus were the main Gram-negative and Grampositive bacteria, respectively found in the purified water after reverse osmosis. The second part of this study had as objective the determination of the needed aeration time for blood oxygenators and sets of PVC tubing must be kept in aeration room for dissipation of ETO residues; and also evaluated the possibility of GFP as biosensor. ETO is used as in a mixture (10% ETO and 90% CO2). Residual levels of ETO and its derivatives, ethylene chloridrin (ECH) and ethylene glycol (EG), which remain in these devices, must be controlled to prevent serious injuries to the patients. The sterilization process of the oxygenators and sets of PVC tubing was monitored with Bacillus atrophaeus and fluorescent green protein (GFP). The temperature, pressure and humidity were controlled in the sterilization cycles of 2 h (short cycle), 4 h (half cycle) and 8 h (long cycle). The dissipation curves of the residues were determined by gaseous chromatography and the residual concentrations were lower than 25 ppm of ETO and ECH and lower than 250 ppm of EG immediately after the sterilization processes for oxygenators and after 221 hours of aeration for the sets of PVC tubing. Reductions in the fluorescence intensity of GFP were observed as a function of the exposition time to the ETO. No growth of B. atrophaeus spores was observed after cycles.
224

Effects of Soluble Calcium-to-Protein Ratio on Age Gelation of Ultra

Ryue, Je Hong 01 May 1994 (has links)
Reverse osmosis (RO) and ultrafiltration (UF) retentates were ultra-high temperature (UHT) processed and compared for storage life at room temperature. Viscosity studies indicated that UHT-treated, RO retentate delayed age gelation longer than UF retentate at the same total solids level (26% TS). When compared at 6.4% protein level (2x RO vs 2.7x UF where x=ratio of the feed volume to concentrate volume), the storage life for both RO and UF retentates was about 6 to 8 months. Sodium hexametaphosphate (SHMP) and disodium phosphate (DSP) at 1, 3, 5, 10, and 20 mM concentrations were incorporated prior to UHT processing of each sample to improve the shelf life. SHMP at 1 and 3 mM concentrations was effective in delaying age gelation, whereas all levels of DSP accelerated gelation. However, SHMP accelerated age gelation at concentrations of 10 and 20 mM. SHMP at 1 mM in RO retentate was more effective in delaying age gelation than the same SHMP level in two UF samples (22 and 26% TS). Analysis showed that RO/UHT-treated samples had higher soluble calcium and ionic calcium than did UF/UHT-treated samples. The coefficient of determination (R2) was .80 between soluble calcium-to-protein ratio and shelf life.
225

UV Laser and LED Induced Fluorescence Spectroscopy for Detection of Trace Amounts of Organics in Drinking Water and Water Sources

Sharikova, Anna V 21 May 2009 (has links)
A UV Laser Induced Fluorescence (LIF) system, previously developed in our laboratory, was modified and used for a series of applications related to the development and optimization of UV LIF spectroscopic measurements of trace contaminants in drinking water and other water sources. Fluorescence spectra of a number of water samples were studied, including those related to the reverse osmosis water treatment and membrane fouling, domestic and international drinking water, industrial toxins, bacterial spores, as well as several fluorescence standards. Of importance was that the long term detection of the trace level of Dissolved Organic Compounds (DOC) was measured, for the first time to our knowledge, over a one week period and with a time resolution of 2.5 minutes. A comparison of LIF emission using both 266 nm and 355 nm excitation was also made for the first time. Such real-time and continuous measurements are important for future water treatment control. The LIF system was modified to accommodate UV Light Emitting Diodes (LED) as alternative excitation sources, and tested for the detection of trace organic species in water. In addition, a compact system using LED excitation and a spectrometer was xviii developed and underwent initial testing. The original LIF system had two laser sources, 266 nm and 355 nm. The additional sources incorporated in the system were UV LEDs emitting at 265 nm, 300 nm, 335 nm and 355 nm. The LED spectral emission was studied in detail, in terms of spectral variability and power output. It was found that all LEDs had some emission in the visible spectrum, and an optical filter was used to remove it. The signal-to-noise ratio for the LED-based systems was determined and compared with that of the LIF system. The fluorescent signal of the LED-based system was smaller by 1 to 2 orders of magnitude, despite the fact that the LED pulse energy was 2 to 3 orders of magnitude less than the laser's. As such, the fluorescent signal from the LED was greater than expected. Therefore, a UV LED may be a compact and much cheaper optical source for future water measurement instruments.
226

Reverse osmosis desalination in a mini renewable energy power supply system

Zhao, Yu January 2006 (has links)
The design, construction and testing of a reverse-osmosis (PV-RO) desalination system for fresh water shortage area is presented. The system operates from salt water or brackish water and can be embedded in a renewable energy power supply system, since many fresh shortage areas are remote and isolated. Special attention is given to the energy efficiency of small-scale reverse osmosis desalination systems. Limitations of conventional control strategy using toggle control are presented. Based on this, an objective of creating a small-scale reverse osmosis desalination system was set out. Initially, the background information is presented. This includes the natural resources crisis and main desalination technologies and the viability of the integration with renewable energy source. A reverse osmosis (RO) desalination system was assembled and set up at the Curtin University of Technology, Perth, Western Australia Supervisor Control And Data Acquisition (SCADA) system was built using a Human Machine Interface software and a programmable logic controller (PLC). Instrumentation that included signal conditioners was made in analysis of the system characteristics. Initial testing of the system was conducted after the system design and configuration was accomplished. Testing results were used as a guideline for the development of the whole system. / Modelling and simulation of the system components in MATLABSimulink is presented, together with a discussion of the control systems modelling and design procedure, in which the aim was to improve the efficiency of the reverse osmosis system. Simulations show the designed reverse osmosis system with Proportional Integral and Derivative (PID) controller has better performance than other controllers. This consequently leads to a lower overall cost of the water, as well as reducing full maintenance cost of the electric drives in the reverse osmosis unit. Additionally, the configuration of the remote control system through General Package Radio System (GPRS) network is depicted. After the PID control algorithm was programmed into the Programmable Logic Controller (PLC), system experiments were carried out in short durations and long durations. System performance was monitored and experimental results prove that the new control strategy applied increase the water productivity and is able to improve the system efficiency up to 35%. Based on the data obtained from the simulations and experiments, Mundoo Island was chosen to be the location for a case study. The electric load profile of the island was derived from the Island Development Committee in Mundoo. / A water demand profile was created and modelled in Matlab to be the input of the reverse osmosis system. The electric load of the reverse osmosis system was generated from Matlab simulation. This result was entered in Hybrid Optimisation Model for Electric Renewables (HOMER) simulator. Having the designed RO unit as one of the electric loads, the entire remote area power supply (RAPS) system was tested in simulations which shows the energy cost is AUS$0.174 per kWh, lower than the Island Development Committee budget estimation of AUS$0.25 per kWh. The cost of the water treatment is very promising at AUS$0.77 per m3.
227

Modeling the reserve osmosis processes performance using artificial neural networks / Modeling the Reverse Osmosis Processes Performance using Artificial Neural Networks

Libotean, Dan Mihai 14 November 2007 (has links)
Una de las aplicaciones más importante de los procesos de filtración por membrana es en el área de tratamiento de agua por ultrafiltración, nanofiltración u ósmosis inversa. Entre los problemas más serios encontrados en estos procesos destaca la aparición de los fenómenos de ensuciamiento y envejecimiento de las membranas que limitan la eficacia de la operación tanto en la separación de los solutos, como en el flujo de permeado, afectando también el ciclo de vida de las membranas.Para reducir el coste de la producción y mejorar la robustez y eficacia de estos procesos es imprescindible disponer de modelos capaces de representar y predecir la eficiencia y el comportamiento de las membranas durante la operación. Una alternativa viable a los modelos teóricos, que presentan varias particularidades que dificultan su postulado, la constituyen los modelos basados en el análisis de los datos experimentales, entre cuales destaca el uso de las redes neuronales. Dos metodologías han sido evaluadas e investigadas, una constando en la caracterización de las interacciones entre las membranas y los compuestos orgánicos presentes en el agua de alimentación, y la segunda basada en el modelado de la dinámica de operación de las plantas de desalinización por ósmosis inversa.Relaciones cuantitativas estructura‐propiedad se han derivado usando redes neuronales de tipo back‐propagation, para establecer correlaciones entre los descriptores moleculares de 50 compuestos orgánicos de preocupación para la salud pública y su comportamiento frente a 5 membranas comerciales de ósmosis inversa, en términos de permeación, absorción y rechazo. Para reducir la dimensión del espacio de entrada, y para evitar el uso de la información redundante en el entrenamiento de los modelos, se han usado tres métodos para seleccionar el menor número de los descriptores moleculares relevantes entre un total de 45 que caracterizan cada molécula. Los modelos obtenidos se han validado utilizando un método basado en el balance de materia, aplicado no solo a los 50 compuestos utilizados para el desarrollo de los modelos, sino que también a un conjunto de 143 compuestos orgánicos nuevos. La calidad de los modelos obtenidos es prometedora para la extensión de la presente metodología para disponer de una herramienta comprensiva para entender, determinar y evaluar el comportamiento de los solutos orgánicos en el proceso de ósmosis inversa. Esto serviría también para el diseño de nuevas y más eficaces membranas que se usan en este tipo de procesos.En la segunda parte, se ha desarrollado una metodología para modelar la dinámica de los procesos de ósmosis inversa, usando redes neuronales de tipo backpropagation y Fuzzy ARTMAP y datos experimentales que proceden de una planta de desalinización de agua salobre Los modelos desarrollados son capaces de evaluar los efectos de los parámetros de proceso, la calidad del agua de alimentación y la aparición de los fenómenos de ensuciamiento sobre la dinámica de operación de las plantas de desalinización por osmosis inversa. Se ha demostrado que estos modelos se pueden usar para predecir el funcionamiento del proceso a corto tiempo, permitiendo de esta manera la identificación de posibles problemas de operación debidas a los fenómenos de ensuciamiento y envejecimiento de las membranas. Los resultados obtenidos son prometedores para el desarrollo de estrategias de optimización, monitorización y control de plantas de desalinización de agua salobre. Asimismo, pueden constituir la base del diseño de sistemas de supervisón capaces de predecir y advertir etapas de operación incorrecta del proceso por fallos en el mismo, y actuar en consecuencia para evitar estos inconvenientes. / One of the more serious problems encountered in reverse osmosis (RO) water treatment processes is the occurrence of membrane fouling, which limits both operation efficiency (separation performances, water permeate flux, salt rejection) and membrane life‐time. The development of general deterministic models for studying and predicting the development of fouling in full‐scale reverse osmosis plants is burden due to the complexity and temporal variability of feed composition, diurnal variations, inability to realistically quantify the real‐time variability of feed fouling propensity, lack of understanding of both membrane‐foulants interactions and of the interplay of various fouling mechanisms. A viable alternative to the theoretical approaches is constituted by models developed based on direct analysis of experimental data for predicting process operation performance. In this regard, the use of artificial neural networks (ANN) seems to be a reliable option. Two approaches were considered; one based on characterizing the organic compounds passage through RO membranes, and a second one based on modeling the dynamics of permeate flow and separation performances for a full‐scale RO desalination plant.Organic solute sorption, permeation and rejection by RO membranes from aqueous solutions were studied via artificial neural network based quantitative structure‐property relationships (QSPR) for a set of 50 organic compounds for polyamide and cellulose acetate membranes. The separation performance for the organic molecules was modeled based on available experimental data achieved by radioactivity measurements to determine the solute quantity in feed, permeate and sorbed by the membrane. Solute rejection was determined from a mass balance on the permeated solution volume. ANN based QSPR models were developed for the measured organic sorbed (M) and permeated (P) fractions with the most appropriate set of molecular descriptors and membrane properties selected using three different feature selection methods. Principal component analysis and self‐organizing maps pre‐screening of all 50 organic compounds defined by 45 considered chemical descriptors were used to identify the models applicability domain and chemical similarities between the organic molecules. The ANN‐based QSPRs were validated by means of a mass balance test applied not only to the 50 organic compounds used to develop the models, but also to a set of 143 new compounds. The quality of the QSPR/NN models developed suggests that there is merit in extending the present compound database and extending the present approach to develop a comprehensive tool for assessing organic solute behavior in RO water treatment processes. This would allow also the design and manufacture of new and more performing membranes used in such processes.The dynamics of permeate flow rate and salt passage for a RO brackish water desalination pilot plant were captured by ANN based models. The effects of operating parameters, feed water quality and fouling occurrence over the time evolution of the process performance were successfully modeled by a back‐propagation neural network. In an alternative approach, the prediction of process performance parameters based on previous values was achieved using a Fuzzy ARTMAP analysis. The neural network models built are able to capture changes in RO process performance and can successfully be used for interpolation, as well as for extrapolation prediction, fact that can allow reasonable short time forecasting of the process time evolution. It was shown that using real‐time measurements for various process and feed water quality variables, it is possible to build neural network models that allow better understanding of the onset of fouling. This is very encouraging for further development of optimization and control strategies. The present methodology can be the basis of development of soft sensors able to anticipate process upsets.
228

PEG hydrogels as anti-fouling coatings for reverse osmosis membranes

Sagle, Alyson Conner 16 October 2012 (has links)
Water is becoming increasingly scarce as the demand for fresh water continues to rise. One potential new water resource is purified produced water. Produced water is generated during oil and gas production, and it is often contaminated with emulsified oil, high levels of salt, and particulate matter. Produced water purification using polymer membranes has been investigated, but its implementation is limited by membrane fouling. This study focused on the preparation and application of poly(ethylene glycol) (PEG) hydrogels as fouling-resistant coatings for commercial reverse osmosis (RO) membranes. To prepare fouling-resistant coatings for RO membranes, three series of copolymer hydrogel networks were synthesized using poly(ethylene glycol) diacrylate (PEGDA) as the crosslinker and acrylic acid (AA), 2-hydroxyethyl acrylate (HEA), or poly(ethylene glycol) acrylate (PEGA) as comonomers, and their transport properties were evaluated. The hydrogels have high water uptake and high water permeability, and crosslink density strongly influences water uptake and water permeability. For example, a 100 mol% PEGDA hydrogel contained 61% water by volume, but 80PEGA, which has essentially the same chemical composition but lower crosslink density, contained 72% water by volume. Hydrogel water permeability ranged from 10 to 26 (L [mu]m)/(m² hr bar) and correlates well with water uptake; high water uptake often leads to high water permeability. Additionally, the copolymers have hydrophilic surfaces with a low affinity for oil, based on contact angle measurements using n-decane in water. Commercial RO membranes (AG RO membrane from GE Water and Process Technologies) were coated with PEG hydrogels, and the desalination and fouling resistance properties of the coated membranes were tested. The water flux of coated membranes and a series-resistance model were used to estimate coating thickness; the coatings were approximately 2 [mu]m thick. NaCl rejection for both uncoated and coated membranes was 99.0% or greater. As determined by zeta potential measurements, both uncoated and coated RO membranes are negatively-charged, but coated membranes are less negatively-charged than uncoated RO membranes. Model oil/water emulsions, prepared with either a cationic or an anionic surfactant, were used to probe membrane fouling. In the absence of oil, surfactant charge, and therefore, electrostatic interactions play a significant role in membrane fouling. In the presence of DTAB, a cationic surfactant, the AG RO membrane water flux immediately dropped to 30% of its initial value, but in the presence of SDS, an anionic surfactant, its water flux gradually decreased to 74% of its initial value after 24 hours. However, in both cases, coated membranes exhibited less flux decline than uncoated membranes. Coated membranes also experienced little fouling in the presence of an n-decane/DTAB emulsion. After 24 hours, the water flux of a PEGDA-coated AG RO membrane was 73% of its initial value, while the water flux of an AG RO membrane fell to 26% of its initial value. Conversely, both coated and uncoated membranes fouled significantly in the presence of an n-decane/SDS emulsion, indicating that oil fouling is controlled both by electrostatic and hydrophobic interactions. Overall, this work provides answers to some of the fundamental questions posed regarding the viability of using modified membranes for produced water treatment. / text
229

Marine dissolved organic phosphorus composition: insights from samples recovered using combined electrodialysis/reverse osmosis

Jackson, Cindy 01 July 2009 (has links)
The dominant organic phosphorus compound classes were characterized in marine samples using a new, high recovery method for isolating and concentrating bulk dissolved organic matter (DOM) called combined electrodialysis+reverse osmosis (ED/RO). In contrast to earlier studies which use ultrafiltration (UF) to recover only the high molecular weight DOM, ED/RO is capable of isolating both low molecular weight (LMW) and high molecular weight (HMW) DOM. Samples were collected from a broad range of marine environments: along a transect incorporating coastal and offshore waters off the Southeastern United States, in Effingham Inlet, a Pacific fjord located on Vancouver Island, British Columbia and in the Amundsen Sea, Antarctica. Results from phosphorus nuclear magnetic resonance (31P NMR) analysis reveals a similar abundance of P compound classes between samples, phosphate esters (80-85%), phosphonates (5-10%) and polyphosphates (8-13%). These samples contain significantly higher proportions of polyphosphate P and P esters and lower proportions of phosphonates than measured in previous studies using the UF method. The much higher levels of polyphosphate detected in our samples suggests that polyphosphate is present mainly in the LMW DOM fraction. Polyphosphates in DOM may be present as (or derived from) dissolved nucleotides or organismal polyphosphate bodies, or both. Low molecular weight P esters are likely composed of phosphoamino acids and small carbohydrates, like simple sugar phosphates and/or dissolved nucleotides. Phosphonates in DOM are more prevalent as HMW phosphonate compounds, which suggests that LMW phosphonates are more readily utilized in marine ecosystems. Overall, the investigation of DOM across a size spectrum that includes both the HMW and the LMW fractions reveals a new picture of phosphorus distribution, cycling and bioavailability.
230

Impactos físico-químicos da disposição de rejeito de dessalinizadores das águas de poços em solos do Oeste Potiguar

Oliveira, André Moreira de 15 July 2016 (has links)
Submitted by Lara Oliveira (lara@ufersa.edu.br) on 2017-02-01T20:26:32Z No. of bitstreams: 1 AndréMO_TESE.pdf: 5450289 bytes, checksum: 5882a0a67b8d1b236c9a9b7e9ec60dfb (MD5) / Approved for entry into archive by Vanessa Christiane (referencia@ufersa.edu.br) on 2017-03-21T14:53:28Z (GMT) No. of bitstreams: 1 AndréMO_TESE.pdf: 5450289 bytes, checksum: 5882a0a67b8d1b236c9a9b7e9ec60dfb (MD5) / Approved for entry into archive by Vanessa Christiane (referencia@ufersa.edu.br) on 2017-03-21T15:07:13Z (GMT) No. of bitstreams: 1 AndréMO_TESE.pdf: 5450289 bytes, checksum: 5882a0a67b8d1b236c9a9b7e9ec60dfb (MD5) / Made available in DSpace on 2017-03-21T15:07:20Z (GMT). No. of bitstreams: 1 AndréMO_TESE.pdf: 5450289 bytes, checksum: 5882a0a67b8d1b236c9a9b7e9ec60dfb (MD5) Previous issue date: 2016-07-15 / In spite of the fact that crystalline basement predominates with brackish water wells in Brazilian thirstland, desalination technology by reverse osmosis enables its potabilization. Since the late nineties, reverse osmosis desalination devices have been deployed in order to meet the water demand for human consumption, especially in the rural Northeast. Nevertheless, difficulties are present in such deployment like lack of operation and proper maintenance, causing stoppage thereof and producing high-level reject brine, which is usually discharged to the ground without any criteria, and its main consequence has been soil salinity increase over time. Thus, this works aims at evaluating the outcome of the reverse osmosis desalination discharge and its influence in physicochemical attributes of distinct receiver soils in rural communities from Potiguar west. This research was conducted between 2013 and 2014. At first, the communities which were supplied by catchment and treatment of desalinated water centers were registered through a cadastral survey. In order to do so, four data collection expeditions took place in different periods, raining season and drought, on the soils receiving reject brine. Three distances were used (0, 1 and 2 meters from the discharge points) with two layers for each point (0-20cm and 20-40 cm) as well as the evaluation of a) the reverse osmosis treated water quality, b) the well, c) the reject brine. Physicochemical attributes of water for irrigation was also analyzed as well as soil samples for a fertility evaluation. Data were subjected to statistical average tests by Scott Knott to verify the behavior within the points and layers according to each period and between all four periods. The waters were classified according to its use for irrigation; leakage risks and toxicity in plants. The soils were classified according to salinity, Ph considering CE and PST. In the monitored rural communities, the reversed osmosis water treatment stations produce desalinated water with low concentrations of salts, with 68% of all samples are in C1S1 rating class; 25% in C2S1 and class; only 7% in C3S1 class. Regarding the reject brine, 93% of waste water samples were classified as C3 or C4 during the four collecting periods, that is, at high or extremely high salinization risk. The different types of receiver soils of reject brine coming from such communities show meaningful alteration of their attributes and of their qualities throughout the periods, being that more noticeable during the drought periods and on the layers of soils with greater amount of clay, promoting different ratings for the same soil, being such ratings influenced directly by the waste water from desalination process / Ainda que, no Semiárido brasileiro, predomine o embasamento cristalino, com poços de água salobra, a tecnologia da dessalinização permite a sua potabilização. Desde o final da década de 1990, vem sendo implantados equipamentos de dessalinização por osmose reversa visando o atendimento da demanda hídrica para consumo humano, especialmente na zona rural do Nordeste. No entanto, dificuldades estão presentes na implantação dos equipamentos, tais como a falta de operação e manutenções adequadas que causam a paralisação dos mesmos, e a produção de rejeitos com elevados teores de sais, normalmente despejados ao solo sem qualquer critério, cujo maior impacto tem sido o aumento da salinidade do solo ao longo do tempo. Desta forma, o objetivo deste trabalho foi avaliar o rejeito gerado pela osmose reversa e sua influência nas alterações dos atributos físico-químicos de distintos solos receptores em comunidades rurais do Oeste Potiguar. A pesquisa ocorreu no período de 2013 e 2014, inicialmente, foram identificadas as comunidades abastecidas com as unidades de captação e tratamento de água por dessalinização, por meios de um levantamento cadastral. Para isto, foram realizadas 4 campanhas de coletas em diferentes períodos de seca e chuva nos solos receptores do rejeito salino, usando três distâncias (0; 1 e 2 metros do ponto de despejo), com duas camadas para cada ponto (0-20 e 20-40 cm), bem como avaliação da qualidade das águas tratadas por osmose reversa, poço e rejeito salino, dentro de cada período. Foram analisados atributos físico-químicos das águas para fins de irrigação e as amostras de solo para avaliação da fertilidade. Os dados foram submetidos a testes estatísticos de médias, por Scott Knott, verificando o comportamento dentro dos pontos e camadas de cada período e entre os 4 períodos. As águas foram classificadas quanto ao uso na irrigação; aos riscos de infiltração e toxicidade em plantas. Os solos foram classificados de acordo com a salinidade, considerando pH, CEes e PST. As estações de tratamento de água por osmose reversa nas comunidades rurais monitoradas produzem uma água dessalinizada com concentrações baixas de sais, com 68% do total das amostras estão na classe de classificação C1S1; 25% na classe C2S1 e; apenas 7% na classe C3S1. Com relação ao rejeito gerado, 93% das amostras de água de rejeito se classificaram como C3 ou C4 nos quatro períodos de coleta, ou seja, águas de alto ou extremamente alto risco de salinização. As diferentes classes de solos receptores do rejeito salino das comunidades apresentaram alterações significativas dos seus atributos e sua qualidade ao longo dos períodos, sendo mais evidente nos períodos secos e camadas de solos com maior presença de argila, promovendo classificações distintas para um mesmo solo, influenciadas diretamente pela água de rejeito do processo de dessalinização / 2017-02-01

Page generated in 0.0675 seconds