• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 556
  • 176
  • 123
  • 54
  • 46
  • 38
  • 37
  • 29
  • 20
  • 8
  • 8
  • 5
  • 5
  • 4
  • 3
  • Tagged with
  • 1320
  • 312
  • 184
  • 169
  • 162
  • 160
  • 120
  • 112
  • 110
  • 101
  • 98
  • 87
  • 85
  • 84
  • 83
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Multidimensional Measurements on RF Power Amplifiers

Condo Neira, Edith Graciela January 2008 (has links)
<p>Measurements are important to specify and verify properties for components, modules and systems. The specifications for a certain figure of merit are usually given in a numerical value or a two dimensional plot. However, there are some devices, like power amplifiers with certain figure of merits that depends on two or more working conditions, requiring a three dimensional plot.</p><p>This thesis presents a measurement method including graphical user interface of three parameters gain, efficiency and distortion when two-tone or WCDMA signals are used as an input to the PA.</p>
92

Study of Interferer Canceling Systems in a Software Defined Radio Receiver / Studie av Störsignalsneutraliserande System i en Mjukvarudefinierad Radiomottagare

Holstensson, Oskar January 2013 (has links)
This thesis describes the work related to an interferer rejection system employing frequency analysis and cancellation through phase-opposed signal injection. The first device in the frequency analysis chain, an analog fast Fourier transform application-specific integrated circuit (ASIC), was improved upon. The second device, a chained fast Fourier transform followed by a frequency analysis module employing cross-correlation for signal detection was specified, designed and implemented in VHDL.
93

High aspect ratio microstructure coupler

Schaffer, Melissa Dawn 14 March 2011
<p>Couplers are one of the most frequently used passive devices in microwave circuitry. The main function of a coupler is to divide (or combine) a radio frequency signal into (from) two separate signals by a specific ratio and phase difference. With the need for smaller electronic devices, a reduction in the area of a distributed coupler would prove to be valuable. The purpose of this research is to develop, simulate, fabricate and test high aspect ratio microstructure couplers that are smaller in area than existing distributed couplers, and have comparable or better performance. One method used to reduce the area of a distributed coupler is to replace single or multiple transmission lines with lumped element equivalent circuits. One category of lumped elements that has not been extensively implemented is high aspect ratio lumped elements. High aspect ratio lumped elements fabricated with deep X-ray lithography are able to take advantage of using the vertical dimension, and reduce their planar area. In this thesis high aspect ratio lumped elements are used in the design of 3-dB microstructure couplers that show significant area reduction compared to equivalent distributed couplers.</p> <p>The designs of the microstructure couplers were based on the lumped element equivalent circuits of a 3-dB branch-line and a 3-dB rat-race distributed coupler. Simulations were performed to determine the lumped element values that would provide the largest 3-dB bandwidth while still maintaining close to ideal coupling and through values, return loss bandwidth, isolation bandwidth, and phase. These lumped element values were then implemented in the microstructure coupler designs as high aspect ratio microstructure lumped elements. 3-D electromagnetic simulations were performed which verified that the structures behaved electrically as couplers. The microstructure couplers were designed to be 220 &#x00B5;m tall nickel structures with capacitance gap widths of 6 µm.</p> <p>Fabrication of the microstructure couplers using deep X-ray lithography was performed by the microfabrication group at IMT/KIT in Karlsruhe, Germany. Before testing, detailed visual inspection and the etching of the structures was performed at the Canadian Light Source.</p> <p>A total of five microstructure couplers were tested. Four of the tested couplers were based on the 3-dB branch-line coupler, and the fifth coupler was based on the 3-dB rat-race coupler. The microstructure branch-line design that had the best overall results was fabricated on quartz glass substrate and had an operation frequency of 5.3 GHz. The 3-dB bandwidth of the coupler was measured to be better than 75.5% and extrapolated to be 95.0%. At the centre frequency the through and coupled values were -4.32 dB and -4.44 dB. The phase difference between the couplers output ports was designed to be 90.0° and was measured to be 95.8°. The ±5° phase bandwidth was measured to be 12.7% and the isolation bandwidth was 28.8%. The measured results from the other couplers were comparable to simulation results.</p> <p>The main advantage of the microstructure coupler designs over existing distributed couplers is that the microstructure couplers show a significant area reduction. The branch-line microstructure designs were at least 85% smaller in area than their distributed equivalent on quartz glass. The rat-race microstructure design showed an area reduction of 90% when compared to its distributed equivalent on quartz glass.</p>
94

Application of Parallel Imaging to Murine Magnetic Resonance Imaging

Chang, Chieh-Wei 1980- 14 March 2013 (has links)
The use of parallel imaging techniques for image acceleration is now common in clinical magnetic resonance imaging (MRI). There has been limited work, however, in translating the parallel imaging techniques to routine animal imaging. This dissertation describes foundational level work to enable parallel imaging of mice on a 4.7 Tesla/40 cm bore research scanner. Reducing the size of the hardware setup associated with typical parallel imaging was an integral part of achieving the work, as animal scanners are typically small-bore systems. To that end, an array element design is described that inherently decouples from a homogenous transmit field, potentially allowing for elimination of typically necessary active detuning switches. The unbalanced feed of this "dual-plane pair" element also eliminates the need for baluns in this case. The use of the element design in a 10-channel adjustable array coil for mouse imaging is presented, styled as a human cardiac top-bottom half-rack design. The design and construction of the homogenous transmit birdcage coil used is also described, one of the necessary components to eliminating the active detuning networks on the array elements. In addition, the design of a compact, modular multi-channel isolation preamplifier board is described, removing the preamplifiers from the elements and saving space in the bore. Several additions/improvements to existing laboratory infrastructure needed for parallel imaging of live mice are also described, including readying an animal preparation area and developing the ability to maintain isoflurane anesthesia delivery during scanning. In addition, the ability to trigger the MRI scanner to the ECG and respiratory signals from the mouse in order to achieve images free from physiological motion artifacts is described. The imaging results from the compact 10-channel mouse array coils are presented, and the challenges associated with the work are described, including difficulty achieving sample-loss dominance and signal-to-noise ratio (SNR) limitations. In conclusion, in vivo imaging of mice with cardiac and respiratory gating has been demonstrated. Compact array coils tailored for mice have been studied and potential future work and design improvements for our lab in this area are discussed.
95

Investigation of Skew on Differential High Speed Links

Ji, Jie January 2008 (has links)
Skew in telecommunication normally means the difference in arrival time of bits transmitted at the same time in differential transmission. As an increasing of transmission data bit rate and more importantly, a data and clock signal rise time of become faster, digital system interconnects became behaving as transmission line. The high speed signals become microwave in nature. The problem is that modern digital designs and verifications require knowledge that has formerly not been needed for a data bit rate of below than 100Mbit but also at the higher frequency range as 5 to 15GHz, however, most references on the necessary subjects are too abstract to be immediately applicable to the skew. For this reason a new method to investigate the skew were introduced, and with which, test board were measured. Since the test boards are made in devise material, and lines on the boards are configured out in distinct structures. In this paper, several methods were applied to find out the skew, and by comparing the results, it could be found that how factors affect the skew, not only the material factor, but some manufactory reason.
96

Multidimensional Measurements on RF Power Amplifiers

Condo Neira, Edith Graciela January 2008 (has links)
Measurements are important to specify and verify properties for components, modules and systems. The specifications for a certain figure of merit are usually given in a numerical value or a two dimensional plot. However, there are some devices, like power amplifiers with certain figure of merits that depends on two or more working conditions, requiring a three dimensional plot. This thesis presents a measurement method including graphical user interface of three parameters gain, efficiency and distortion when two-tone or WCDMA signals are used as an input to the PA.
97

CMOS Power Amplifier for IEEE 802.11g/n standard (2.4GHz) in 65nm process

Yousaf, Malik Muzammil January 2010 (has links)
Today, the mobile communication systems can be found everywhere due to thelow cost and high degree integration level which is achievable with CMOS. Theuser can use a number of applications using only one device. The transmitteris one of the main blocks in communication systems for transmitting the signal,where the RF power a mplifier (PA) amplifies the RF signal to the r equiredoutput power so that signal can reach the r eceiver. Nowadays mostly transmitteremploys such modulation schemes which have high data rate and to amplify suchsignals, a linear PA is required. The efficiency of the PA should also be high, sothat it can provide high output power to load without consuming much poweritself.This thesis work describes the “CMOS Power Amplifier for IEEE 802.11g/nstandard (2.4GHz) in 65nm process”. The PA is a two stage amplifier biasedin Class AB mode with LC type input matching. The inter-stage matching iscarried out by the RF choke of the driver stage and the input capacitance of thepower stage. The output of the PA is power matched to the load. A linearizingtechnique is implemented to make PA more linear. The simulation results showsthat the designed PA gives 1dB compression point of +23.36dBm, a gain of26.82dB, a power added efficiency of 30%, a linear current of 122.30mA providing18dBm power to load and saturated output power of 24.45dBm.
98

High aspect ratio microstructure coupler

Schaffer, Melissa Dawn 14 March 2011 (has links)
<p>Couplers are one of the most frequently used passive devices in microwave circuitry. The main function of a coupler is to divide (or combine) a radio frequency signal into (from) two separate signals by a specific ratio and phase difference. With the need for smaller electronic devices, a reduction in the area of a distributed coupler would prove to be valuable. The purpose of this research is to develop, simulate, fabricate and test high aspect ratio microstructure couplers that are smaller in area than existing distributed couplers, and have comparable or better performance. One method used to reduce the area of a distributed coupler is to replace single or multiple transmission lines with lumped element equivalent circuits. One category of lumped elements that has not been extensively implemented is high aspect ratio lumped elements. High aspect ratio lumped elements fabricated with deep X-ray lithography are able to take advantage of using the vertical dimension, and reduce their planar area. In this thesis high aspect ratio lumped elements are used in the design of 3-dB microstructure couplers that show significant area reduction compared to equivalent distributed couplers.</p> <p>The designs of the microstructure couplers were based on the lumped element equivalent circuits of a 3-dB branch-line and a 3-dB rat-race distributed coupler. Simulations were performed to determine the lumped element values that would provide the largest 3-dB bandwidth while still maintaining close to ideal coupling and through values, return loss bandwidth, isolation bandwidth, and phase. These lumped element values were then implemented in the microstructure coupler designs as high aspect ratio microstructure lumped elements. 3-D electromagnetic simulations were performed which verified that the structures behaved electrically as couplers. The microstructure couplers were designed to be 220 &#x00B5;m tall nickel structures with capacitance gap widths of 6 µm.</p> <p>Fabrication of the microstructure couplers using deep X-ray lithography was performed by the microfabrication group at IMT/KIT in Karlsruhe, Germany. Before testing, detailed visual inspection and the etching of the structures was performed at the Canadian Light Source.</p> <p>A total of five microstructure couplers were tested. Four of the tested couplers were based on the 3-dB branch-line coupler, and the fifth coupler was based on the 3-dB rat-race coupler. The microstructure branch-line design that had the best overall results was fabricated on quartz glass substrate and had an operation frequency of 5.3 GHz. The 3-dB bandwidth of the coupler was measured to be better than 75.5% and extrapolated to be 95.0%. At the centre frequency the through and coupled values were -4.32 dB and -4.44 dB. The phase difference between the couplers output ports was designed to be 90.0° and was measured to be 95.8°. The ±5° phase bandwidth was measured to be 12.7% and the isolation bandwidth was 28.8%. The measured results from the other couplers were comparable to simulation results.</p> <p>The main advantage of the microstructure coupler designs over existing distributed couplers is that the microstructure couplers show a significant area reduction. The branch-line microstructure designs were at least 85% smaller in area than their distributed equivalent on quartz glass. The rat-race microstructure design showed an area reduction of 90% when compared to its distributed equivalent on quartz glass.</p>
99

Reconfigurable Impedance Matching Networks Based on RF-MEMS and CMOS-MEMS Technologies

Fouladi Azarnaminy, Siamak January 2010 (has links)
Reconfigurable impedance matching networks are an integral part of multiband radio-frequency (RF) transceivers. They are used to compensate for the input/output impedance variations between the different blocks caused by switching the frequency band of operation or by adjusting the output power level. Various tuning techniques have been developed to construct tunable impedance matching networks employing solid-state p-i-n diodes and varactors. At millimeter-wave frequencies, the increased loss due to the low quality factor of the solid-state devices becomes an important issue. Another drawback of the solid-state tuning elements is the increased nonlinearity and noise at higher RF power levels. The objective of the research described in this thesis is to investigate the feasibility of using RF microelectromechanical systems (RF-MEMS) technology to develop reconfigurable impedance matching networks. Different types of tunable impedance matching networks with improved impedance tuning range, power handling capability, and lower insertion loss have been developed. Another objective is to investigate the realization of a fully integrated one-chip solution by integrating MEMS devices in standard processes used for RF integrated circuits (RFICs). A new CMOS-MEMS post-processing technique has been developed that allows the integration of tunable RF MEMS devices with vertical actuation within a CMOS chip. Various types of CMOS-MEMS components used as tuning elements in reconfigurable RF transceivers have been developed. These include tunable parallel-plate capacitors that outperform the available CMOS solid-state varactors in terms of quality factor and linearity. A tunable microwave band-pass filter has been demonstrated by employing the proposed RF MEMS tunable capacitors. For the first time, CMOS-MEMS capacitive type switches for microwave and millimeter-wave applications have been developed using TSMC 0.35-µm CMOS process employing the proposed CMOS-MEMS integration technique. The switch demonstrates an excellent RF performance from 10-20 GHz. Novel MEMS-based reconfigurable impedance matching networks integrated in standard CMOS technologies are also presented. An 8-bit reconfigurable impedance matching network based on the distributed MEMS transmission line (DMTL) concept operating at 13-24 GHz is presented. The network is implemented using standard 0.35-µm CMOS technology and employs a novel suspended slow-wave structure on a silicon substrate. To our knowledge, this is the first implementation of a DMTL tunable MEMS impedance matching network using a standard CMOS technology. A reconfigurable amplifier chip for WLAN applications operating at 5.2 GHz is also designed and implemented. The amplifier achieves maximum power gain under variable load and source impedance conditions by using the integrated RF-MEMS impedance matching networks. This is the first single-chip implementation of a reconfigurable amplifier using high-Q MEMS impedance matching networks. The monolithic CMOS implementation of the proposed RF MEMS impedance matching networks enables the development of future low-cost single-chip RF multiband transceivers with improved performance and functionality.
100

Novel adaptive time-domain techniques for the modeling and design of complex RF and wireless structures

Bushyager, Nathan Adam 19 November 2004 (has links)
A method is presented that allows the use of multiresolution principles in a time domain electromagnetic modeling technique that is applicable to general structures. Specifically, methods are presented that are compatible with the multiresolution time-domain (MRTD) technique using Haar basis functions that allow the modeling of general structures without limiting the cell size to the features of the modeled structure. Existing Haar techniques require that cells be homogenous in regard to PECs and other localized effects (with the exception that permeability and permittivity can vary throughout the cell). The techniques that are presented here allow the modeling of these structures using a subcell technique that permits the modeling of these effects at individual equivalent grid points. This is accomplished by transforming the application of the effects at individual points in the grid into the wavelet domain. There are several other contributions that are provided in this work. First, the MRTD technique is derived for a general wavelet basis using a relatively compact vector notation that both makes the technique easier to understand and allows the differences and similarities between different MRTD schemes more apparent. Second, techniques such as the uniaxial perfectly matched layer (UPML) for arbitrary wavelet resolution and non-uniform gridding are presented for the first time. Using these techniques, any structure that can be simulated in Yee-FDTD can be modeled with Haar-MRTD. For the first time, results for the use of a time-and-space-adaptive grid in an MRTD simulation are presented.

Page generated in 0.0508 seconds