• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 19
  • 2
  • 2
  • 1
  • Tagged with
  • 69
  • 69
  • 26
  • 19
  • 18
  • 18
  • 16
  • 16
  • 16
  • 15
  • 15
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Controle e filtragem para sistemas lineares discretos incertos sujeitos a saltos Markovianos / Control and filtering for uncertain discrete-time Markovian jump linear systems

Cerri, João Paulo 21 June 2013 (has links)
Esta tese de doutorado aborda os projetos robustos de controle e estimativa de estados para Sistemas Lineares sujeitos a Saltos Markovianos (SLSM) de tempo discreto sob a influência de incertezas paramétricas. Esses projetos são desenvolvidos por meio de extensões dos critérios quadráticos clássicos para SLSM nominais. Os critérios de custo quadrático para os SLSM incertos são formulados na forma de problemas de otimização min-max que permitem encontrar a melhor solução para o pior caso de incerteza (máxima influência de incerteza). Os projetos robustos correspondem às soluções ótimas obtidas por meio da combinação dos métodos de funções penalidade e mínimos quadrados regularizados robustos. Duas situações são investigadas: regular e estimar os estados quando os modos de operações são observados; e estimar os estados sob a hipótese de desconhecimento da cadeia de Markov. Estruturalmente, o regulador e as estimativas de estados assemelham-se às respectivas versões nominais. A recursividade é estabelecida em termos de equações de Riccati sem a necessidade de ajuste de parâmetros auxiliares e dependente apenas das matrizes de parâmetros e ponderações conhecidas. / This thesis deals with recursive robust designs of control and state estimates for discretetime Markovian Jump Linear Systems (MJLS) subject to parametric uncertainties. The designs are developed considering extensions of the standard quadratic cost criteria for MJLS without uncertainties. The quadratic cost criteria for uncertain MJLS are formulated in the form of min-max optimization problems to get the best solution for the worst uncertainty case. The optimal robust schemes correspond to the optimal solution obtained by the combination of penalty function and robust regularized least-squares methods. Two cases are investigated: to control and estimate the states when the operation modes are observed; and, to estimate the states when the Markov chain is unobserved. The optimal robust LQR and Kalman-type state estimates resemble the respective nominal versions. The recursiveness is established by Riccati equations in terms of parameter and weighting matrices previously known and without extra offline computations.
32

Reguladores robustos recursivos para sistemas lineares sujeitos a saltos Markovianos com matrizes de transição incertas / Recursive robust regulators for Markovian jump linear systems with uncertain transition matrices

Bortolin, Daiane Cristina 05 May 2017 (has links)
Esta tese aborda o problema de regulação para sistemas lineares sujeitos a saltos Markovianos de tempo discreto com matrizes de transição incertas. Considera-se que as incertezas são limitadas em norma e os estados da cadeia de Markov podem não ser completamente observados pelo controlador. No cenário com observação completa dos estados, a solução é deduzida com base em um funcional quadrático dado em termos das probabilidades de transição incertas. Enquanto que no cenário sem observação, a solução é obtida por meio da reformulação do sistema Markoviano como um sistema determinístico, independente da cadeia de Markov. Três modelos são propostos para essa reformulação: um modelo é baseado no primeiro momento do sistema Markoviano, o segundo é obtido a partir da medida de Dirac e resulta em um sistema aumentado, e o terceiro fornece um sistema aumentado singular. Os reguladores recursivos robustos são projetados a partir de critérios de custo quadrático, dados em termos de problemas de otimização restritos. A solução é derivada da técnica de mínimos quadrados regularizados robustos e apresentada em uma estrutura matricial. A recursividade é estabelecida por equações de Riccati, que se assemelham às soluções dos reguladores clássicos, para essa classe de sistemas, quando não estão sujeitos a incertezas. / This thesis deals with regulation problem for discrete-time Markovian jump linear systems with uncertain transition matrix. The uncertainties are assumed to be normbounded type. The states of the Markov chain can not be completely observed by the controller. In the scenario with complete observation of the states, the solution is deduced based on a quadratic functional given in terms of uncertain transition probabilities. While in the scenario without observation, the solution is obtained from reformulation of the Markovian system as a deterministic system, independent of the Markov chain. Three models are proposed for the reformulation process: a model is based on the first moment of the Markovian system, the second is obtained from Dirac measure which results in an augmented system, and the third provides a singular augmented system. Recursive robust regulators are designed from quadratic cost criteria given in terms of constrained optimization problems. The solution is derived from the robust regularized least-square approach, whose framework is given in terms of a matrix structure. The recursiveness is established by Riccati equations which resemble the solutions of standard regulators for this class of systems, when they are not subject to uncertainties.
33

Controle e filtragem para sistemas lineares discretos incertos sujeitos a saltos Markovianos / Control and filtering for uncertain discrete-time Markovian jump linear systems

João Paulo Cerri 21 June 2013 (has links)
Esta tese de doutorado aborda os projetos robustos de controle e estimativa de estados para Sistemas Lineares sujeitos a Saltos Markovianos (SLSM) de tempo discreto sob a influência de incertezas paramétricas. Esses projetos são desenvolvidos por meio de extensões dos critérios quadráticos clássicos para SLSM nominais. Os critérios de custo quadrático para os SLSM incertos são formulados na forma de problemas de otimização min-max que permitem encontrar a melhor solução para o pior caso de incerteza (máxima influência de incerteza). Os projetos robustos correspondem às soluções ótimas obtidas por meio da combinação dos métodos de funções penalidade e mínimos quadrados regularizados robustos. Duas situações são investigadas: regular e estimar os estados quando os modos de operações são observados; e estimar os estados sob a hipótese de desconhecimento da cadeia de Markov. Estruturalmente, o regulador e as estimativas de estados assemelham-se às respectivas versões nominais. A recursividade é estabelecida em termos de equações de Riccati sem a necessidade de ajuste de parâmetros auxiliares e dependente apenas das matrizes de parâmetros e ponderações conhecidas. / This thesis deals with recursive robust designs of control and state estimates for discretetime Markovian Jump Linear Systems (MJLS) subject to parametric uncertainties. The designs are developed considering extensions of the standard quadratic cost criteria for MJLS without uncertainties. The quadratic cost criteria for uncertain MJLS are formulated in the form of min-max optimization problems to get the best solution for the worst uncertainty case. The optimal robust schemes correspond to the optimal solution obtained by the combination of penalty function and robust regularized least-squares methods. Two cases are investigated: to control and estimate the states when the operation modes are observed; and, to estimate the states when the Markov chain is unobserved. The optimal robust LQR and Kalman-type state estimates resemble the respective nominal versions. The recursiveness is established by Riccati equations in terms of parameter and weighting matrices previously known and without extra offline computations.
34

Distributed Cooperative Communications and Wireless Power Transfer

Wang, Rui 22 February 2018 (has links)
In telecommunications, distributed cooperative communications refer to techniques which allow different users in a wireless network to share or combine their information in order to increase diversity gain or power gain. Unlike conventional point-to-point communications maximizing the performance of the individual link, distributed cooperative communications enable multiple users to collaborate with each other to achieve an overall improvement in performance, e.g., improved range and data rates. The first part of this dissertation focuses the problem of jointly decoding binary messages from a single distant transmitter to a cooperative receive cluster. The outage probability of distributed reception with binary hard decision exchanges is compared with the outage probability of ideal receive beamforming with unquantized observation exchanges. Low- dimensional analysis and numerical results show, via two simple but surprisingly good approximations, that the outage probability performance of distributed reception with hard decision exchanges is well-predicted by the SNR of ideal receive beamforming after subtracting a hard decision penalty of slightly less than 2 dB. These results, developed in non-asymptotic regimes, are consistent with prior asymptotic results (for a large number of nodes and low per-node SNR) on hard decisions in binary communication systems. We next consider the problem of estimating and tracking channels in a distributed transmission system with multiple transmitters and multiple receivers. In order to track and predict the effective channel between each transmit node and each receive node to facilitate coherent transmission, a linear time-invariant state- space model is developed and is shown to be observable but nonstabilizable. To quantify the steady-state performance of a Kalman filter channel tracker, two methods are developed to efficiently compute the steady-state prediction covariance. An asymptotic analysis is also presented for the homogenous oscillator case for systems with a large number of transmit and receive nodes with closed-form results for all of the elements in the asymptotic prediction covariance as a function of the carrier frequency, oscillator parameters, and channel measurement period. Numeric results confirm the analysis and demonstrate the effect of the oscillator parameters on the ability of the distributed transmission system to achieve coherent transmission. In recent years, the development of efficient radio frequency (RF) radiation wireless power transfer (WPT) systems has become an active research area, motivated by the widespread use of low-power devices that can be charged wirelessly. In this dissertation, we next consider a time division multiple access scenario where a wireless access point transmits to a group of users which harvest the energy and then use this energy to transmit back to the access point. Past approaches have found the optimal time allocation to maximize sum throughput under the assumption that the users must use all of their harvested power in each block of the "harvest-then-transmit" protocol. This dissertation considers optimal time and energy allocation to maximize the sum throughput for the case when the nodes can save energy for later blocks. To maximize the sum throughput over a finite horizon, the initial optimization problem is separated into two sub-problems and finally can be formulated into a standard box- constrained optimization problem, which can be solved efficiently. A tight upper bound is derived by relaxing the energy harvesting causality. A disadvantage of RF-radiation based WPT is that path loss effects can significantly reduce the amount of power received by energy harvesting devices. To overcome this problem, recent investigations have considered the use of distributed transmit beamforming (DTB) in wireless communication systems where two or more individual transmit nodes pool their antenna resources to emulate a virtual antenna array. In order to take the advantages of the DTB in the WPT, in this dissertation, we study the optimization of the feedback rate to maximize the energy efficiency in the WPT system. Since periodic feedback improves the beamforming gain but requires the receivers to expend energy, there is a fundamental tradeoff between the feedback period and the efficiency of the WPT system. We develop a new model to combine WPT and DTB and explicitly account for independent oscillator dynamics and the cost of feedback energy from the receive nodes. We then formulate a "Normalized Weighted Mean Energy Harvesting Rate" (NWMEHR) maximization problem to select the feedback period to maximize the weighted averaged amount of net energy harvested by the receive nodes per unit of time as a function of the oscillator parameters. We develop an explicit method to numerically calculate the globally optimal feedback period.
35

Regulador robusto recursivo para sistemas lineares de tempo discreto no espaço de estado / Recursive robust regulator for discrete-time state-space systems

Cerri, João Paulo 29 May 2009 (has links)
Esta dissertação de mestrado aborda o problema de regulação robusta recursiva para sistemas lineares discretos sujeitos a incertezas paramétricas. Um novo funcional quadrático, baseado na combinação de função penalidade e função custo do tipo jogos, é projetado para lidar com este problema. Uma característica interessante desta abordagem é que a recursividade pode ser realizada sem a necessidade do ajuste de parâmetros auxiliares. Bastante útil para aplicações online. A solução proposta é baseada numa equação recursiva de Riccati. Também, a convergência e a estabilidade do regulador para o sistema linear incerto invariante no tempo são garantidas. / This dissertation deals with robust recursive regulators for discrete-time systems subject to parametric uncertainties. A new quadratic functional based on the combination of penalty functions and game theory is proposed to solve this class of problems. An important issue of this approach is that the recursiveness can be performed without the need of adjusting auxiliary parameters. It is useful for online applications. The solution proposed is based on Riccati equation which guarantees the convergence and stability of the time-invariant system.
36

Regulador robusto recursivo para sistemas lineares de tempo discreto no espaço de estado / Recursive robust regulator for discrete-time state-space systems

João Paulo Cerri 29 May 2009 (has links)
Esta dissertação de mestrado aborda o problema de regulação robusta recursiva para sistemas lineares discretos sujeitos a incertezas paramétricas. Um novo funcional quadrático, baseado na combinação de função penalidade e função custo do tipo jogos, é projetado para lidar com este problema. Uma característica interessante desta abordagem é que a recursividade pode ser realizada sem a necessidade do ajuste de parâmetros auxiliares. Bastante útil para aplicações online. A solução proposta é baseada numa equação recursiva de Riccati. Também, a convergência e a estabilidade do regulador para o sistema linear incerto invariante no tempo são garantidas. / This dissertation deals with robust recursive regulators for discrete-time systems subject to parametric uncertainties. A new quadratic functional based on the combination of penalty functions and game theory is proposed to solve this class of problems. An important issue of this approach is that the recursiveness can be performed without the need of adjusting auxiliary parameters. It is useful for online applications. The solution proposed is based on Riccati equation which guarantees the convergence and stability of the time-invariant system.
37

Reguladores robustos recursivos para sistemas lineares sujeitos a saltos Markovianos com matrizes de transição incertas / Recursive robust regulators for Markovian jump linear systems with uncertain transition matrices

Daiane Cristina Bortolin 05 May 2017 (has links)
Esta tese aborda o problema de regulação para sistemas lineares sujeitos a saltos Markovianos de tempo discreto com matrizes de transição incertas. Considera-se que as incertezas são limitadas em norma e os estados da cadeia de Markov podem não ser completamente observados pelo controlador. No cenário com observação completa dos estados, a solução é deduzida com base em um funcional quadrático dado em termos das probabilidades de transição incertas. Enquanto que no cenário sem observação, a solução é obtida por meio da reformulação do sistema Markoviano como um sistema determinístico, independente da cadeia de Markov. Três modelos são propostos para essa reformulação: um modelo é baseado no primeiro momento do sistema Markoviano, o segundo é obtido a partir da medida de Dirac e resulta em um sistema aumentado, e o terceiro fornece um sistema aumentado singular. Os reguladores recursivos robustos são projetados a partir de critérios de custo quadrático, dados em termos de problemas de otimização restritos. A solução é derivada da técnica de mínimos quadrados regularizados robustos e apresentada em uma estrutura matricial. A recursividade é estabelecida por equações de Riccati, que se assemelham às soluções dos reguladores clássicos, para essa classe de sistemas, quando não estão sujeitos a incertezas. / This thesis deals with regulation problem for discrete-time Markovian jump linear systems with uncertain transition matrix. The uncertainties are assumed to be normbounded type. The states of the Markov chain can not be completely observed by the controller. In the scenario with complete observation of the states, the solution is deduced based on a quadratic functional given in terms of uncertain transition probabilities. While in the scenario without observation, the solution is obtained from reformulation of the Markovian system as a deterministic system, independent of the Markov chain. Three models are proposed for the reformulation process: a model is based on the first moment of the Markovian system, the second is obtained from Dirac measure which results in an augmented system, and the third provides a singular augmented system. Recursive robust regulators are designed from quadratic cost criteria given in terms of constrained optimization problems. The solution is derived from the robust regularized least-square approach, whose framework is given in terms of a matrix structure. The recursiveness is established by Riccati equations which resemble the solutions of standard regulators for this class of systems, when they are not subject to uncertainties.
38

Method for Improving the Efficiency of Image Super-Resolution Algorithms Based on Kalman Filters

Dobson, William Keith 01 December 2009 (has links)
The Kalman Filter has many applications in control and signal processing but may also be used to reconstruct a higher resolution image from a sequence of lower resolution images (or frames). If the sequence of low resolution frames is recorded by a moving camera or sensor, where the motion can be accurately modeled, then the Kalman filter may be used to update pixels within a higher resolution frame to achieve a more detailed result. This thesis outlines current methods of implementing this algorithm on a scene of interest and introduces possible improvements for the speed and efficiency of this method by use of block operations on the low resolution frames. The effects of noise on camera motion and various blur models are examined using experimental data to illustrate the differences between the methods discussed.
39

Adaptative high-gain extended Kalman filter and applications

Boizot, Nicolas 30 April 2010 (has links) (PDF)
The work concerns the "observability problem"--the reconstruction of a dynamic process's full state from a partially measured state-- for nonlinear dynamic systems. The Extended Kalman Filter (EKF) is a widely-used observer for such nonlinear systems. However it suffers from a lack of theoretical justifications and displays poor performance when the estimated state is far from the real state, e.g. due to large perturbations, a poor initial state estimate, etc. . . We propose a solution to these problems, the Adaptive High-Gain (EKF). Observability theory reveals the existence of special representations characterizing nonlinear systems having the observability property. Such representations are called observability normal forms. A EKF variant based on the usage of a single scalar parameter, combined with an observability normal form, leads to an observer, the High-Gain EKF, with improved performance when the estimated state is far from the actual state. Its convergence for any initial estimated state is proven. Unfortunately, and contrary to the EKF, this latter observer is very sensitive to measurement noise. Our observer combines the behaviors of the EKF and of the high-gain EKF. Our aim is to take advantage of both efficiency with respect to noise smoothing and reactivity to large estimation errors. In order to achieve this, the parameter that is the heart of the high-gain technique is made adaptive. Voila, the Adaptive High-Gain EKF. A measure of the quality of the estimation is needed in order to drive the adaptation. We propose such an index and prove the relevance of its usage. We provide a proof of convergence for the resulting observer, and the final algorithm is demonstrated via both simulations and a real-time implementation. Finally, extensions to multiple output and to continuous-discrete systems are given.
40

Filtros de Kalman para sistemas singulares em tempo discreto / Kalman filters for discrete time singular systems

Aline Fernanda Bianco 13 September 2004 (has links)
Esta dissertação apresenta um estudo dos filtros de Kalman para sistemas singulares em tempo discreto. Novos algoritmos são formulados para as estimativas filtradas, preditoras e suavizadas com as correspondentes equações de Riccati para sistemas singulares variantes no tempo. Nesta dissertação considera-se também uma aproximação do problema de filtragem de Kalman como um problema determinístico de ajuste ótimo de trajetória. A formulação proposta permite considerar um atraso no sinal de medida, sendo permitida a correlação entre os estados e os ruídos da medida. Apresentam-se também as provas da estabilidade e da convergência destes filtros. / This dissertation presents a study of Kalman filters for singular systems in discrete time. New algorithms are developed for the Kalman filtered, predicted and smoothed estimate recursions with the corresponding Riccati equations for time-variant singular systems. This dissertation addresses the Kalman filtering problem as a deterministic optimal trajectory fitting problem. The problem is formulated taking into account one delay in the measured signals and correlations between state and measurement noises. In the final, this work presents the stability and convergence proofs of these filters.

Page generated in 0.1102 seconds