• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 7
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 18
  • 16
  • 12
  • 11
  • 11
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Conception et caractérisation de filtres et systèmes antennaires reconfigurables chargés par des résonateurs Métamateriaux sub-longueurs d’onde / Design and characterizationof filters and reconfigurable antenna systems loaded by metamaterial resonators

Lalj, Hicham 14 April 2014 (has links)
Les structures de base de méta-matériaux nourrissent une alternative technologique prometteuse qui vise à répondre à de nouvelles contraintes de miniaturisation et de performances radioélectriques des systèmes reconfigurables à bas coût.Les travaux de cette thèse reposent sur l’association des cellules Métamateriaux unitaires sub-longueurs d’ondes miniatures et agiles, selon des conditions d’excitation électromagnétique en champ proche, à des dispositifs micro-ondes planaires afin de réaliser de nouvelles structures de filtres et de systèmes antennaires reconfigurables.Après une présentation de l’état de l’art, sur à la fois le concept des Métamateriaux micro-ondes et des modèles de filtres et d’antennes à base des Métamateriaux, nos travaux proposent ensuite sur quatre orientations. La première a trait à l’ingénierie de conception et de simulation électromagnétique des cellules unitaires Métamateriaux, ainsi qu’à l’étude de la miniaturisation et de l’agilité des paramètres électriques.La deuxième orientation est consacrée à la réalisation de nouveaux modèles de filtres agiles basés sur le chargement d’une ligne microruban par des résonateurs sub-longueurs d’onde. Deux modèles de filtres sont développés et validés expérimentalement. Le premier concerne un filtre coupe bande basée sur l’association d’une ligne microruban à des résonateurs de type SRR. Selon le même modèle, un filtre passe bande basé sur une ligne microruban associée à deux cellules résonantes à deux fréquences différentes est proposé. Le deuxième modèle concerne un filtre coupe bande à base d’une ligne microruban chargée par des cellules CSRR, une étude de miniaturisation de ce modèle a été présentée et utilise aussi bien l’optimisation des paramètres géométriques qu’électriques ; un facteur de réduction de 5 est obtenu par rapport au filtre coupe bande de base. Les techniques d’agilité étudiées sont basées sur le chargement de la cellule par des éléments électroniques actifs tels que les diodes PIN et Varactor qui sont logés en des positions appropriées. Les résultats obtenus ont montré une variation intéressante des paramètres du filtre en fonction de la tension de polarisation des diodes.La troisième orientation de la thèse vise à introduire de nouveaux modèles d’association en champ proche entre une antenne monopole ULB et des cellules Métamateriaux de type SRR et CSRR. Ces nouveaux modèles ont pour objectif de répondre à des verrous technologiques en termes de reconfigurabilité spectrale tout en préservant le caractère faible encombrement de l’antenne. Le premier modèle proposé concerne une antenne monopole associée à des cellules SRR imprimées sur le substrat à proximité de la ligne d’alimentation de l’antenne. Les résultats théoriques et expérimentaux confirment le comportement coupe bande autour de la fréquence de résonance de la cellule, et une stabilité des performances de rayonnement sur le reste de la bande passante de l’antenne de référence. Pour Le deuxième modèle, le monopole rayonnant est directement chargé par les cellules SRR et CSRR. Après optimisation des conditions d’alimentation des cellules, les résultats de simulation confirment à la fois le comportement coupe bande autour de la fréquence de résonance de la cellule et la stabilité de rayonnement.La dernière orientation concerne la réalisation de deux nouveaux systèmes antennaires à multi contraintes fréquentielles, pour le besoin de la Radio cognitive. Le premier système est basé sur une antenne monopole et des cellules SRR agiles. Les résultats de mesure et de simulation ont montré l’obtention d’un comportement ULB avec des deux bandes filtrées reconfigurables. Le deuxième nouveau système tente de répondre aux exigences antennaires de la technologie radio cognitive. L’ensemble des résultats obtenus ont montré une flexibilité de passage du mode antenne-capteur (ULB) à une antenne de communication à bande étroite reconfigurable. / The basic structures of metamaterial nourish a promising alternative technology, which aims to meet new demands of miniaturization and performance of reconfigurable radio systems. The work of this thesis based on the combination of miniature and agile cells, according to excitation conditions in the near-field electromagnetic, and a planar microwave devices to achieve a new structure of filters and reconfigurable antenna systems. After a presentation of the state of the art, on both the concept of metamaterial microwave and models of filters and antennas based on metamaterial, our work then propose four orientations. The first relates to the engineering design and simulation of electromagnetic metamaterial unit cells, and the study of miniaturization and agility of the electrical parameters. The second orientation is devoted to the realization of new models of filters based on loading the microstrip line with metamaterial resonators. Two filter models are developed and validated experimentally. The first concerns a band stop filter based on the combination of a microstrip line and SRR resonator. According to the same model, a band-pass filter based on a microstrip line associated with two cells in two different resonant frequencies is proposed. The second model provides a band stop filter based on a microstrip line loaded with CSRR cells, a study miniaturization of this model was presented and used both geometric and electrical optimization of parameters. The agility techniques studied are based on the loading of the cell by active electronic elements such as PIN and varactor diodes which are inserted in appropriate positions. The obtained results showed an interesting variation of the filter parameters. The third focus of the thesis is to introduce new models of association in the near-field, between UWB monopole antenna and metamaterial. The first model relates a monopole antenna associated with SRR cells printed in the substrate close to the excitation line of the antenna. The theoretical and experimental results confirm the behavior stop band around the cell resonance frequency, and a stable performance of radiation in the rest of the reference antenna bandwidth. For the second model the monopole is loaded by the SRRs CSRRs cells. After optimization of the cells excitation conditions, the simulation results confirm both the stop band behavior around the cell resonance frequency and the stability of the radiation pattern. The latest orientation concerns the realization of two new antenna systems with multi frequency constraints for cognitive radio application. The first system is based on a monopole antenna and tunable SRRs cells. The measurement and simulation results show a UWB behavior with two reconfigurable and controllable filtered bands. The second new systems tempt to reply the antennas systems requirements used in the cognitive radio. All results showed a flexibility of switching from antenna-sensor (ULB) to a communication antenna with tunable and controllable narrow band.
42

Synthesis of Planar Microwave Circuits based on Metamaterial Concepts through Aggressive Space Mapping

Rodríguez Pérez, Ana María 30 March 2015 (has links)
RF and microwave applications represent one of the fastest-growing segments of the high performance electronics market, where ongoing innovation is critical. Manufacturers compete intensively to meet market needs with reduced cost, size, weight and many other performance criteria demands. Under this scenario, transmission lines based on metamaterial concepts can be considered a very interesting alternative to the conventional transmission lines. They are more compact (compatible with planar manufacturing processes) and present higher degrees of design flexibility. Furthermore, metamaterial transmission lines can also provide many other unique properties not achievable with ordinary transmission lines, such as dispersion or impedance engineering. Nevertheless, the impact in the industry is still not relevant, mostly due to the complexity of the related synthesis and design procedures. These procedures are mainly based on the engineer’s experience, with the help of costly full-wave electromagnetic (EM) simulators and parameter extraction methods. The aim of this thesis is to contribute to simplify and speed up the synthesis and design procedures of artificial transmission lines. In particular, the lines obtained by periodically loading a conventional transmission line with electrically small resonators, such as split ring resonators (SSRs) or its complementary particle (CSRR). The design procedure is automated by using Space Mapping techniques. In contrast to other alternative methods, real synthesis is found from the circuit schematic (that provides a given target response) and without need of human intervention. Some efforts to make the method practical and useful have been carried out. Given a certain target response, it is determined whether it can be physically implemented with a chosen technology, and hence proceeding next to find the synthesis, or not. For this purpose, a two-step Aggressive Space Mapping approach is successfully proposed. In contrast to other methods, the real synthesis is found from certain target circuit values (corresponding to the equivalent circuit model that characterizes the structure to be synthesized). Different efforts have been carried out in order to implement a useful and practical method. Some of them were focused to determine if, given certain circuit parameters (which determine the target response) and certain given technology specifications (permittivity and height of the substrate, technology limits), that response is physically realizable (convergence region). This technique was successfully formulated and it is known as “Two-Step Aggressive Space Mapping Approach”. In this work, the latest improvements made till date, from the synthesis of basic unit cells until different applications and kinds of metamaterial-based circuits, are presented. The results are promising and prove the validity of the method, as well as its potential application to other basic cells and more complex designs. The general knowledge gained from these cases of study can be considered a good base for a coming implementation in commercial software tools, which can help to improve its competitiveness in markets, and also contribute to a more general use of this technology. / Rodríguez Pérez, AM. (2014). Synthesis of Planar Microwave Circuits based on Metamaterial Concepts through Aggressive Space Mapping [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48465 / TESIS
43

Modelování mikrovlnných rezonátorů z metamateriálů / Modeling metamaterial microwave resonators

Zvolenský, Tomáš January 2008 (has links)
Práce je věnována modelování mikrovlnných rezonátorů z metamateriálů (materiálů se záporným indexem lomu). V úvodu je rozebráno, co metamateriály jsou, jak se vytvářejí a které jejich vlastnosti jsou podstatné při návrhu rezonátorů. Následuje návrh planárního rezonátoru z metamateriálů. Pro tento účel byly naprogramovány funkce počítající rozměry jednotlivých součástí struktury. Simulace navržené struktury probíhala v programu Zeland IE3D. Simulované struktury byly optimalizovány s ohledem na požadované kmitočty rezonance. První rezonátor sestával z jedné elementární buňky, druhý ze dvou buněk, naladěných na rozdílné kmitočty. Rezonátory byly vyrobeny a experimentálně byly ověřeny jejich vlastnosti.
44

Design Guidelines for a Tunable SOI Based Optical Isolator in a Partially Time-Modulated Ring Resonator

Zarif, Arezoo, Mehrany, Khashayar, Memarian, Mohammad, Jamshidi, Kambiz 22 April 2024 (has links)
In this paper, we present the design guidelines for a tunable optical isolator in an SOI-based ring resonator with two small time-modulated regions. By considering a physical model, the proper geometrical and modulation parameters are designed, based on a standard CMOS foundry process. The effect of the variation of the key parameters on the performance of the isolator is explained by two counter-acting mechanisms, namely the separation between the resonance frequencies of counter-rotating modes and energy transfer to the side harmonic. We show that there is a trade-off between these parameters to obtain maximum isolation. Consequently, by applying the quadrature phase difference one can obtain the maximum separation between the resonance frequencies and hence the minimum insertion loss, while the maximum isolation is obtained at the modulation phase difference of −0.78π , which leads to a higher insertion loss. Robustness of the design is investigated through a sensitivity analysis for the fabrication variations in the distance and width of the modulated regions. We demonstrate that there is a trade-off between isolation and insertion loss, and by varying the modulation parameters, we can achieve isolation of 18 (5) dB with 7 (1.8) dB insertion loss.
45

Engineering Sensitivity: An Optical Optimization of Ring Resonator Arrays for Label-Free Whole Bacterial Sensing

Justin C. Wirth (5930402) 17 October 2019 (has links)
<p><a>The quick, reliable, and sensitive detection of bacterial contamination is desired in areas such as counter bioterrorism, medicine, and food/water safety as pathogens such as<i> E. coli</i> can cause harmful effects with the presence of just a few cells. However, standard high sensitivity techniques require laboratories and trained technicians, requiring significant time and expense. More desirable would be a sensitive point-of-care device that could detect an array of pathogens without sample pre-treatment, or a continuous monitoring device operating without the need for frequent operator intervention.<br> <br> Optical microring resonators in silicon photonic platforms are particularly promising as scalable, multiplexed refractive index sensors for an integrated biosensing array. However, no systematic effort has been made to optimize the sensitivity of microrings for the detection of relatively large discrete analytes such as bacteria, which differs from the commonly considered cases of fluid or molecular sensitivity. This work demonstrates the feasibility of using high finesse microrings to detect whole bacterial cells with single cell resolution over a full range of potential analyte-to-sensor binding scenarios. Sensitivity parameters describing the case of discrete analyte detection are derived and used to guide computational optimization of microrings and their constituent waveguides, after considering a range of parameters such as waveguide dimension, material, modal polarization, and ring radius. The sensitivity of the optimized 2.5 µm radius silicon TM O-band ring is experimentally demonstrated with photoresist cellular simulants. A multiplexed optimized ring array is then shown to detect <i>E. Coli</i> cells in an experimental proof of concept.</a></p>
46

Investigation of New Concepts and Solutions for Silicon Nanophotonics

Wang, Zhechao January 2010 (has links)
Nowadays, silicon photonics is a widely studied research topic. Its high-index-contrast and compatibility with the complementary metal-oxide-semiconductor technology make it a promising platform for low cost high density integration. Several general problems have been brought up, including the lack of silicon active devices, the difficulty of light coupling, the polarization dependence, etc. This thesis aims to give new attempts to novel solutions for some of these problems. Both theoretical modeling and experimental work have been done. Several numerical methods are reviewed first. The semi-vectorial finite-difference mode solver in cylindrical coordinate system is developed and it is mainly used for calculating the eigenmodes of the waveguide structures employed in this thesis. The finite-difference time-domain method and beam propagation method are also used to analyze the light propagation in complex structures. The fabrication and characterization technologies are studied. The fabrication is mainly based on clean room facilities, including plasma assisted film deposition, electron beam lithography and dry etching. The vertical coupling system is mainly used for characterization in this thesis. Compared with conventional butt-coupling system, it can provide much higher coupling efficiency and larger alignment tolerance. Two novel couplers related to silicon photonic wires are studied. In order to improve the coupling efficiency of a grating coupler, a nonuniform grating is theoretically designed to maximize the overlap between the radiated light profile and the optical fiber mode. Over 60% coupling efficiency is obtained experimentally. Another coupler facilitating the light coupling between silicon photonic wires and slot waveguides is demonstrated, both theoretically and experimentally. Almost lossless coupling is achieved in experiments. Two approaches are studied to realize polarization insensitive devices based on silicon photonic wires. The first one is the use of a sandwich waveguide structure to eliminate the polarization dependent wavelength of a microring resonator. By optimizing the multilayer structure, we successfully eliminate the large birefringence in an ultrasmall ring resonator. Another approach is to use polarization diversity scheme. Two key components of the scheme are studied. An efficient polarization beam splitter based on a one-dimensional grating coupler is theoretically designed and experimentally demonstrated. This polarization beam splitter can also serve as an efficient light coupler between silicon-on-insulator waveguides and optical fibers. Over 50% coupling efficiency for both polarizations and -20dB extinction ratio between them are experimentally obtained. A compact polarization rotator based on silicon photonic wire is theoretically analyzed. 100% polarization conversion is achievable and the fabrication tolerance is relatively large by using a compensation method. A novel integration platform based on nano-epitaxial lateral overgrowth technology is investigated to realize monolithic integration of III-V materials on silicon. A silica mask is used to block the threading dislocations from the InP seed layer on silicon. Technologies such as hydride vapor phase epitaxy and chemical-mechanical polishing are developed. A thin dislocation free InP layer on silicon is obtained experimentally. / QC20100705
47

Estudo do desempenho de filtros ópticos interferométricos: interferômetro Mach-Zehnder de fibra óptica e ressonador óptico em anel

Lima, José Luiz Sousa January 2006 (has links)
LIMA, José Luiz Sousa. Estudo do desempenho de filtros ópticos interferométricos: interferômetro Mach-Zehnder de fibra óptica e ressonador óptico em anel. 2006. 96 f. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2006. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2015-05-05T20:15:39Z No. of bitstreams: 1 2006_tese_jlslima.pdf: 688113 bytes, checksum: 11efdee52324ab34ae806b2466f4f088 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-05-07T14:27:12Z (GMT) No. of bitstreams: 1 2006_tese_jlslima.pdf: 688113 bytes, checksum: 11efdee52324ab34ae806b2466f4f088 (MD5) / Made available in DSpace on 2015-05-07T14:27:12Z (GMT). No. of bitstreams: 1 2006_tese_jlslima.pdf: 688113 bytes, checksum: 11efdee52324ab34ae806b2466f4f088 (MD5) Previous issue date: 2006
48

Metamaterial inspired improved antennas and circuits

Brito, Davi Bibiano 06 December 2010 (has links)
Made available in DSpace on 2014-12-17T14:54:58Z (GMT). No. of bitstreams: 1 DaviBB_DISSERT_1-70.pdf: 4567680 bytes, checksum: 150ff5afc1806ca374278b4c00a1f5a3 (MD5) Previous issue date: 2010-12-06 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Metamaterials exhibiting negative refraction have attracted a great amount of attention in recent years mostly due to their exquisite electromagnetic properties. These materials are artificial structures that exhibit characteristics not found in nature. It is possible to obtain a metamaterial by combining artificial structures periodically. We investigated the unique properties of Split Ring Resonators, High impedance Surfaces and Frequency Selective Surfaces and composite metamaterials. We have successfully demonstrated the practical use of these structures in antennas and circuits. We experimentally confirmed that composite metamaterial can improve the performance of the structures considered in this thesis, at the frequencies where electromagnetic band gap transmission takes place
49

Silicon Photonic Devices for Microwave Signal Generation and Processing

Ehteshami, Nasrin January 2016 (has links)
Silicon photonics as a one of the most promising photonic integration technologies has attracted many attentions in recent years. The major feature of this technology is its compatibility with complementary metal-oxide semiconductor (CMOS) processes which makes it possible to integrate optical and electronic devices in a same chip and reduce the cost significantly. Another reason of using silicon photonics is the high index contrast between the silicon core and silicon dioxide cladding which ensures the high density integration of photonic devices on a single chip. Monolithic integration with electronic and optical circuits makes silicon photonics technology suitable for numerous applications. One example is microwave photonics (MWP). MWP is an area that studies the interaction between microwave and optical signal for the generation, processing, control and distribution of microwave signals by means of photonics. Silicon photonics offers a reduction in footprint, losses, packaging cost and power dissipation in MWP systems. This research in this thesis is focused on the design and fabrication of the silicon photonic devices for MWP signal processing and generation. Four MWP systems based on silicon photonic devices are proposed and experimentally demonstrated. 1) A single pass-band frequency-tunable MWP filter based on phase-modulation to intensity-modulation conversion in an optically pumped silicon-on-insulator (SOI) microring resonator (MRR) is designed and experimentally demonstrated. In the proposed filter, a phase-modulated optical signal is filtered by the SOI MRR, to have one first-order sideband suppressed by the MRR notch. The phase-modulated optical signal is converted to an intensity-modulated single-sideband (SSB) signal and detected at a photodetector (PD). The entire operation is equivalent to a single pass-band filter. The frequency tunability is achieved by tuning the resonance wavelength of the MRR, which is realized by optically pumping the MRR. A single pass-band MWP filter with a tunable center frequency from 16 to 23 GHz is experimentally demonstrated. 2) A broadband optically tunable MWP phase shifter with a tunable phase shift using three cascaded SOI MRRs that are optically pumped is designed and experimentally demonstrated. A microwave signal to be phase shifted is applied to an optical single-sideband (OSSB) modulator to generate an optical carrier and an optical sideband. The phase shift is introduced to the optical carrier by placing the optical carrier within the bandwidth of one resonance of the three cascaded MRRs. The experimental results show that by optically pumping the cascaded MRRs, a broadband MWP phase shifter with a bandwidth of 7 GHz with a tunable phase shift covering the entire 360o phase shift range is achieved. 3) A multi tap MWP filter with positive and negative coefficients using a silicon ring resonator modulator (RRM) is proposed and experimentally demonstrated. The RRM is designed and fabricated to operate based on the carrier depletion effect. The positive and negative coefficients are obtained by using opposite slopes of the modulation transmission response of the RRM. Two filter responses with two and three taps are experimentally demonstrated, showing the proof-of-principle for frequencies up to 18 GHz. 4) An approach to generate microwave signal based on enhanced four wave mixing (FWM) in an active silicon waveguide (SiWG) is studied. This SiWG is designed and fabricated, and the use of the active SiWG for MWP frequency multiplication to generate a frequency-sextupled millimeter-wave signal is experimentally demonstrated. Thanks to a reverse-biased p-n junction across the SiWG, the conversion efficiency of the FWM is improved, which leads to the improvement of the microwave frequency multiplication efficiency.
50

Návrh planárních anténních struktur z metamateriálů / Design of planar antenna structures from metamaterials

Javora, Petr January 2009 (has links)
The thesis deals with basic principles of metamaterials, which exhibit unusual properties in microwave applications (e.g., negative permittivity and permeability). Different type of metamaterial antennas and parameters of such antennas are described in the thesis.

Page generated in 0.4924 seconds