• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 199
  • 24
  • 17
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 5
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 325
  • 325
  • 71
  • 58
  • 45
  • 40
  • 23
  • 20
  • 20
  • 20
  • 17
  • 17
  • 17
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Auswertung und Interpretation gebirgsmechanischer Messungen im Kalibergwerk Werra

Tonn, Frieder, Zienert, Holger, Schleinig, Jan-Peter 29 July 2016 (has links)
Exploitation of difficult potash deposits requires the adaption of mining procedures to the specific local situation. Based on geomechanical models describing the expected rock mechanic behavior the mining procedure is planned and realized. Both mining surveying results and validation of geomechanical models are essential for a safe mining process. The text gives an overview about the current state of mining survey techniques and the procedure to ensure a successful Sylvinite mining process. The interaction of geomechanical prognosis, adapted mining techniques and proactive mining survey support the safe exploitation of difficult potash deposits. / Für die Gewinnung von Kalisalzen in anspruchsvollen Lagerstättenbereichen müssen vorhandene Abbauverfahren an die lokalen Verhältnisse angepasst werden. Auf der Grundlage standortspezifisch entwickelter, geomechanischer Modellvorstellungen zur Vorhersage des Gebirgsverhaltens wird der Abbau geplant und durchgeführt. Vorbereitende und begleitende messtechnische Beobachtungen ermöglichen die Validierung und ggf. erforderliche Anpassung der Modelle und schaffen so die Voraussetzung für einen sicheren Abbau. Der Beitrag soll einen Überblick über den aktuellen Stand der im Werk Werra eingesetzten Messtechnik geben sowie das gesamte Vorgehen am Beispiel eines erfolgreich durchgeführten Sylvinitabbaus in drei Phasen vorstellen. Das dargestellte Zusammenwirken von geomechanischer Prognose, Abbauanpassung und messtechnischer Beobachtung erlaubt die Durchführung eines sicheren Abbaus bei der Gewinnung anspruchsvoller Lagerstättenbereiche.
312

Numerical Modeling Of Jointed Rock Mass

Jade, (B) Sridevi 04 1900 (has links)
The behavior of jointed rock mass is very complex and is influenced by many factors such as location of joints, joint frequency, joint orientation and joint strength. A thorough review of literature on different aspects of jointed rock mass indicate that the discontinuities or planes of weakness present in rock mass significantly influence its behavior. Numerous experimental tests were conducted to study the behavior of natural as well as artificial joints in rocks. Laboratory tests are time consuming and give results applicable to specific joint fabric and confining pressure. Numerical methods are the best alternative to laboratory tests to study the behavior of jointed rock mass. With the advent of computers numerical methods of analysis have become very popular, as they are highly flexible and can represent all complex geometries and material behavior. The accuracy of a numerical model depends upon the how well constitutive relations for the jointed rock mass are defined in the analysis. Empirical relationships for describing the mechanical behavior of discontinuities obtained from scaling the laboratory data is crucial unresolved problem, which will affect the quality of results obtained. One more important aspect in the numerical model is strength criteria used for jointed rock mass. The applicability of existing strength criteria to a particular jointed rock has to be carefully examined before they are used. Equivalent continuum approach simplifies the modeling of jointed rock mass as the joints are not modeled separately. Instead in equivalent continuum approach the jointed rock mass is represented by an equivalent continuum whose properties are defined by a combination of intact rock properties and joint properties. The accuracy of this kind of modeling depends upon the relationships used to define the jointed rock mass properties as a function of intact rock properties and joint properties. In the present study, an effort has been made (i) to establish empirical relations to define the properties of jointed rock mass as a function of intact rock properties and joint factor (ii) to develop a numerical model based on equivalent continuum approach using the empirical relations derived above, for easy and efficient modeling of jointed rock mass (iii) comparison of existing strength criteria for jointed rock masses using the equivalent continuum model developed above (iv) Modeling of joints explicitly and comparing these results with the equivalent continuum model results. Empirical relationships expressing the uniaxial compressive strength and elastic modulus of jointed rock as a function of corresponding intact rock properties and joint factor have been derived based on the statistical analysis of large amount of experimental data of uniaxial and triaxial tests collected from the literature. The effect of joints in the jointed rock is taken in to account by the joint factor. A comparative study of the empirical relationships arrived by the above analysis has been made to choose the best relation for the numerical analysis. Empirical relationships thus arrived for jointed rock mass are used in the equivalent continuum approach to represent the jointed rock properties as a combination of intact rock properties and joint factor. Equivalent continuum model developed is thoroughly tested, validated and applied for single, multiple and block jointed rocks. The equivalent continuum model developed has been applied for analysis of the power cavern for Shiobara power station. Different strength criteria available for jointed rock namely Mohr-Coulomb, Hoek and Drown, Yudhbir et al. and Rarnamurthy are incorporated in the equivalent continuum model to evaluate their applicability for jointed rock masses. Ramarnurthy's strength criterion gives the best values of failure stress for almost all the test cases and hence used in the equivalent continuum model. Alternatively, the joints in jointed rock mass are represented explicitly using interface element in the nonlinear finite element analysis. The explicit finite element model has been tested and validated using the experimental stress strain curves and failure stress values. Comparison of results obtained using equivalent continuum analysis and explicit modeling of joints has been given in the form of stress strain curves and failure stress plots for jointed rock masses along with the experimental results. Some of the major conclusions from the present study are as follows. Statistical relationships arrived to express the properties of the jointed rock as a function of intact rock and joint factor give a fair estimate of jointed rock in the absence of experimental data. Equivalent continuum model developed using statistical relations arrived above simplifies the numerical modeling of jointed rock to a large extent and also gives a fair estimate of jointed rock behavior with minimum input data. From the equivalent continuum analysis of Shiobara power cavern, it can be concluded that this approach is very advantageous for modeling highly discontinuous systems provided the joint factor is estimated properly so that it represents the real fabric of the joints present in the system. Comparison of different strength criteria shows that Ramamurthy's strength criterion is the best for jointed rocks. When the rock mass has one or two major joints it is advantageous to model it explicitly so that the behavior of the joint can be studied in detail. Explicit representation of the joints in the finite element analysis gives a lair estimate of the zones most susceptible to failure in a jointed rock. From comparison of experimental values, equivalent continuum model results and the explicit joint model results, it can be concluded that results obtained using equivalent continuum model are nearest to the experimental results in almost all the cases.
313

Factors Affecting The Static And Dynamic Response Of Jointed Rock Masses

Garaga, Arunakumari 01 September 2008 (has links)
Infrastructure is developing at an extremely fast pace which includes construction of metros, underground storage places, railway bridges, caverns and tunnels. Very often these structures are found in or on the rock masses. Rock masses are seldom found in nature without joints or discontinuities. Jointed rocks are characterized by the presence of inherent discontinuities of varied sizes with different orientations and intensities, which can have significant effect on their mechanical response. Constructions involving jointed rocks often become challenging jobs for Civil Engineers as the instability of slopes or excavations in these jointed rocks poses serious concerns, sometimes leading to the failure of structures built on them. Experimental investigations on jointed rock masses are not always feasible and pose formidable problems to the engineers. Apart from the technical difficulties of extracting undisturbed rock samples, it is very expensive and time consuming to conduct the experiments on jointed rock masses of huge dimensions. The most popular methods of evaluating the rock mass behaviour are the Numerical methods. In this thesis, numerical modelling of jointed rock masses is carried out using computer program FLAC (Fast Lagrangian Analysis of Continua). The objective of the present study is to study the effect of various joint parameters on the response of jointed rock masses in static as well as seismic shaking conditions. This is achieved through systematic series of numerical simulations of jointed rocks in triaxial compression, in underground openings and in large rock slopes. This thesis is an attempt to study the individual effect of different joint parameters on the rock mass behaviour and to integrate these results to provide useful insight into the behaviour of jointed rock mass under various joint conditions. In practice, it is almost impossible to explore all of the joint systems or to investigate all their mechanical characteristics and implementing them explicitly in the model. In these cases, the use of the equivalent continuum model to simulate the behaviour of jointed rock masses could be valuable. Hence this approach is mainly used in this thesis. Some numerical simulations with explicitly modelled joints are also presented for comparison with the continuum modelling. The applicability of Artificial Neural Networks for the prediction of stress-strain response of jointed rocks is also explored. Static, pseudo-static and dynamic analyses of a large rock slope in Himalayas is carried out and parametric seismic analysis of rock slope is carried out with varying input shaking, material damping and shear strength parameters. Results from the numerical studies showed that joint inclination is the most influencing parameter for the jointed rock mass behaviour. Rock masses exhibit lowest strength at critical angle of joint inclination and the deformations around excavations will be highest when the joints are inclined at an angle close to the critical angle. However at very high confining pressures, the influence of joint inclination gets subdued. Under seismic base shaking conditions, the deformations of rock masses largely depend on the acceleration response with time, frequency content and duration rather than the peak amplitude or the magnitude of earthquake. All these aspects are discussed in the light of results from numerical studies presented in this thesis.
314

Gefügeabhängigkeit technischer Gesteinseigenschaften / Fabric dependency of technical rock properties

Strohmeyer, Daniel 03 November 2003 (has links)
No description available.
315

Lifetime prediction for rocks

Li, Xiang 13 November 2013 (has links) (PDF)
A lifetime prediction scheme is proposed based on the assumption that the lifetime (time to failure) of rocks under load is governed by the growth of microstructual defects (microcracks). The numerical approach is based on linear elastic fracture mechanics. The numerical calculation scheme is implemented as a cellular automat, where each cell contains a microcrack with length and orientation following certain distributions. The propagation of the microcrack is controlled by the Charles equation, based on subcritical crack growth. The zone inside the numerical model fails if the microcrack has reached the zone dimension or the stress intensity factor of the crack reached the fracture toughness. Macroscopic fractures are formed by these coalesced propagating microcracks, and finally lead to failure of the model. In the numerical approaches, elasto-plastic stress redistributions take place during the forming of the macroscopic fractures. Distinct microcrack propagation types have been programmed and applied to the proposed numerical models. These numerical models are studied under different loading conditions. Numerical results with excellent agreement with the analytical solutions are obtained with respective to predicted lifetime, important parameters for the microcracks, fracture pattern and damage evolution. Potential applications of the proposed numerical model schemes are investigated in some preliminary studies and simulation results are discussed. Finally, conclusions are drawn and possible improvements to the numerical approaches and extensions of the research work are given. / 本文认为微结构缺陷(微裂纹)的扩展决定了受力岩石的寿命(破坏时间)。基于此假设,提出了岩石寿命预测方法。利用线弹性断裂力学理论,通过FLAC进行了数值模拟。数值模型中每个单元定义一条初始裂纹,其长度与方向服从特定分布。基于亚临界裂纹扩展理论,由Charles方程决定微裂纹的扩展(速度)。如微裂纹发展至单元边界,或应力强度系数到达断裂韧度,则单元破坏。宏观裂纹由微裂纹所联合形成,并最终贯穿模型导致破坏。在形成宏观裂纹的过程中,发生弹塑性应力重分布。在数值模型中,编制了不同类型的微裂纹扩展方式,并在不同的受力条件下加以分析。数值模型的岩石寿命,裂纹形状,破坏方式以及一些重要的参数的数值模拟结果与解析解有较好的一致性。对本文所提出的数值模型的初步实际应用进行了分析,并讨论了计算结果。最后讨论了本文所提出的岩石寿命预测方法的可能改良与发展,并对进一步的研究工作给出建议。
316

A porosity-based model for coupled thermal-hydraulic-mechanical processes

Liu, Jianxin January 2010 (has links)
[Truncated abstract] Rocks, as the host to natural chains of coupled thermal, hydraulic and mechanical processes, are heterogeneous at a variety of length scales, and in their mechanical properties, as well as in the hydraulic and thermal transport properties. Rock heterogeneity affects the ultimate hydro-carbon recovery or geothermal energy production. This heterogeneity has been considered one important and difficult problem that needs to be taken into account for its effect on the coupled processes. The aim of this thesis is to investigate the effect of rock heterogeneity on multi-physical processes. A fully coupled finite element model, hereinafter referred to as a porosity-based model (PBM) was developed to characterise the thermal-hydraulic-mechanical (THM) coupling processes. The development of the PBM consists of a two-staged workflow. First, based on poromechanics, porosity, one of the inherent rock properties, was derived as a variant function of the thermal, hydraulic and mechanical effects. Then, empirical relations or experimental results, correlating porosity with the mechanical, hydraulic and thermal properties, were incorporated as the coupling effects. In the PBM, the bulk volume of the model is assumed to be changeable. The rate of the volumetric strain was derived as the difference of two parts: the first part is the change in volume per unit of volume and per unit of time (this part was traditionally considered the rate of volumetric strain); and the second is the product of the first part and the volumetric strain. The second part makes the PBM a significant advancement of the models reported in the literature. ... impact of the rock heterogeneity on the hydro-mechanical responses because of the requirement of large memory and long central processing unit (CPU) time for the 3D applications. In the 2D PBM applications, as the thermal boundary condition applied to the rock samples containing some fractures, the pore pressure is generated by the thermal gradient. Some pore pressure islands can be generated as the statistical model and the digital image model are applied to characterise the initial porosity distribution. However, by using the homogeneous model, this phenomenon cannot be produced. In the 3D PBM applications, the existing fractures become the preferential paths for the fluid flowing inside the numerical model. The numerical results show that the PBM is sufficiently reliable to account for the rock mineral distribution in the hydro-mechanical coupling processes. The applications of the statistical method and the digital image processing technique make it possible to visualise the rock heterogeneity effect on the pore pressure distribution and the heat dissipation inside the rock model. Monitoring the fluid flux demonstrates the impact of the rock heterogeneity on the fluid product, which concerns petroleum engineering. The overall fluid flux (OFF) is mostly overestimated when the rock and fluid properties are assumed to be homogeneous. The 3D PBM application is an example. As the rock is heterogeneous, the OFF by the digital core is almost the same as that by the homogeneous model (this is due to that some fractures running through the digital core become the preferential path for the fluid flow), and around 1.5 times of that by the statistical model.
317

[en] ROCK MECHANICS AND COMPUTATIONAL MECHANICS FOR THE DESIGN OF OIL WELLS IN SALT ZONES / [pt] MECÂNICA DAS ROCHAS E MECÂNICA COMPUTACIONAL PARA PROJETO DE POÇOS DE PETRÓLEO EM ZONAS DE SAL

EDGARD POIATE JUNIOR 24 August 2018 (has links)
[pt] O objetivo deste estudo foi ampliar o conhecimento em mecânica de rochas evaporíticas e aplicar a mecânica computacional na modelagem numérica do comportamento estrutural de poços de petróleo em zonas de sal. Amostras de rochas evaporíticas de anidrita, halita, carnalita e taquidrita pertencentes à sequência evaporítica Ibura da Formação Muribeca, testemunhadas em poços de petróleo, foram submetidas a ensaios laboratoriais de mecânicas de rochas, em especial a ensaios triaxiais de fluência sob diferentes condições de estado de tensões e temperaturas. Nas mesmas condições de ensaio triaxial de fluência a taquidrita desenvolveu deformação axial específica de cerca de 107 vezes maior que a halita e 2,7 vezes maior que a carnalita, sendo que a anidrita permanece essencialmente indeformável. Para os ensaios triaxiais de fluência com a halita na temperatura de 86 graus Celsius foi possível definir o mecanismo duplo de deformação por fluência, enquanto que para a carnalita e a taquidrita isto ocorreu nas temperaturas de 130 e 86 graus Celsius, respectivamente. A taxa de deformação por fluência em regime permanente obtida por simulação numérica reproduziu fielmente os resultados experimentais dos ensaios triaxias de fluência, com erro relativo inferior a 1 por cento. Através dos ensaios laboratoriais foram obtidos os parâmetros geomecânicos de fluência das rochas ensaiadas e a seguir aplicados nos modelos numéricos de simulação, construídos para avaliar a influência de diversos parâmetros nos estudos de estabilidade de poços e integridade de revestimentos. A desconsideração da interação geomecânica entre estruturas salíferas e o maciço hospedeiro pode conduzir a falhas na perfuração de poços próximos a tais estruturas devido ao processo de halocinése do sal que altera o estado de tensões gravitacional. / [en] The aim of this study was to increase knowledge of evaporitic rock mechanics and apply computational mechanics in numerical modeling of structural behavior of oil wells in areas of salt. Evaporitic rock samples of anhydrite, halite, carnallite e tachyhydrite and belonging to the evaporitic sequence Ibura from the Muribeca formation, coring in oil wells, were subjected to laboratory tests of rock mechanics, especially the triaxial creep under different states of stress and temperature. Under the same conditions of triaxial creep tachyhydrite developed specific axial strain rate about 107 times that of halite and 2.7 times that of carnallite, and anhydrite remains essentially undeformed. For the triaxial creep of halite in the temperature of 86 degrees Celsius it was possible to define the double mechanism creep law, while for carnallite and tachyhydrite this occurred at temperatures of 130 and 86 degrees Celsius, respectively. The creep rate in steady state condition obtained by numerical simulation accurately reproduced the experimental results of the triaxial creep tests, with a relative error less than 1 percent. Through laboratory tests geomechanical creep parameters of the tested rocks were obtained and then applied in numerical simulation models, designed to evaluate the influence of various parameters in the well stability and casing design. The lack of consideration of the geomechanical interaction between the salt structures and the host rock can lead to drilling failures in wells near such structures due to the salt halokinesis process that changes the gravitational stress state.
318

Numerical analysis of the interaction between rockbolts and rock mass for coal mine drifts in Vietnam

Le Van, Cong 05 August 2009 (has links) (PDF)
The thesis describes the application of anchors in mining and tunneling and gives an up-to-date overview about anchor types, design principles and the interaction mechanisms between anchors and rockmass. A constitutive model was developed, implemented and tested for the 2- and 3-dimensional numerical codes FLAC and FLAC3D to simulate non-linear anchor behaviour including unloading and reloading. The interaction between rockbolts and rockmass was studied in detail via numerical simulations for 5 Vietnamese coal mines. An extended version of the so-called c-Φ reduction method and a new introduced reinforcement factor were applied to quantify the effect of bolting. Mine specific and generalised relations were deduced to quantify the influence of anchor length and distance between anchors on the effect of bolting.
319

[en] APPLICATION OF THE DISCRETE ELEMENT METHOD FOR MODELLING THE BLOCK-FLEXURAL TOPPLING MECHANISMS IN ROCK SLOPES / [pt] APLICAÇÃO DO MÉTODO DOS ELEMENTOS DISCRETOS NA MODELAGEM DO MECANISMO DE TOMBAMENTO BLOCO-FLEXURAL EM TALUDES ROCHOSOS

FREDY ALVARO ELORRIETA AGRAMONTE 01 August 2016 (has links)
[pt] Em um maciço rochoso, as fraturas apresentam-se de forma irregular e descontínua. A complexidade na distribuição espacial destas descontinuidades faz com que o mecanismo de ruptura por tombamento ocorra mais frequentemente por uma combinação de dois tipos de fenômenos: Tombamento de blocos e flexural. Assim, a ruptura por tombamento do tipo bloco-flexural pode ser considerada a forma mais comum presente neste tipo de mecanismo. Trabalhos utilizando o método de equilíbrio limite ou modelos físicos estudam a influência desta combinação, mas a literatura relata poucos trabalhos numéricos que possam ajudar na compreensão dos fenômenos envolvidos neste processo de ruptura. O presente trabalho procura modelar o mecanismo de ruptura por tombamento bloco-flexural através do método dos elementos discretos (DEM), utilizando o software PFC (Particle Flow Code). Em particular, procura-se avaliar as potencialidades do método para estudos deste tipo, utilizando um novo modelo de contato entre partículas e a calibração das propriedades elásticas do material sintético. Apresentam-se também detalhes da metodologia utilizada e exemplos de validação, incluindo comparações com soluções analíticas e semi-analíticas disponíveis na literatura. / [en] Joints exhibit an irregular and discontinuous behavior inside the rock mass. The spatial distribution complexity of these discontinuities causes the toppling failure occurs more often by a combination of two types of toppling phenomena: toppling of rock blocks and flexural toppling. Thus, the block-flexural toppling can be considered the most common when a toppling process is being developed in rock slopes. Analytical and physical models approach, were presented in order to study each process individually, but the literature reports few works that may help to understand the influence of the two processes together. The present work aims to represents the mechanism of block-flexural toppling through the discrete elements method (DEM) using the PFC (Particle Flow Code) software. In particular, the objective is to assess the potential of the method for studies of this type, using a new model of contact between particles and the elastic properties calibration of the synthetic material. In order to do that, the work shows the methodology details and validation examples, including comparisons with analytical and semi-analytical solutions that are available in the literature.
320

Finite Element Limit Analysis for Solving Different Axisymmetric Stability Problems in Geomechanics : Formulations and Solutions

Chakraborty, Manash January 2015 (has links) (PDF)
Limit analysis is a very powerful tool to find accurate solutions of several geotechnical stability problems. This analysis is based on the theory of the plasticity and it provides two limiting solutions within lower and upper bounds. With the advancement of the finite elements and different robust optimization techniques, the numerical limit analysis approach in association with finite elements is becoming quite popular to assess the stability of various complicated structures. The present thesis deals with the formulations and the implementation of the finite element limit analysis to obtain the solutions of different geotechnical axisymmetric stability problems. The objectives of the present thesis are twofold: (a) developing limit analysis formulations in conjunction with linear and nonlinear optimizations for solving axisymmetric stability problems related with soil and rock mechanics, and then (b) implementing these axisymmetric formulations for solving various important axisymmetric stability problems in geomechanics. Three noded linear triangular elements have been used throughout the thesis. In order to solve the different problems, the associated computer programs have been written in MATLAB. With reference to the first objective of the thesis, the existing finite element lower bound axisymmetric formulation with linear programming has been presented. A new technique has also been proposed for solving an axisymmetric geomechanics stability problem by employing an upper bound limit analysis in combination with finite elements and linear programming. The method is based on the application of the von-Karman hypothesis to fix the constraints associated with the magnitude of the circumferential stress (), and finally the method involves only the nodal velocities as the basic unknown variables. The required computational effort becomes only marginally greater than that needed for an equivalent plane strain problem. The proposed methodology has been found to be computationally quite efficient. A new lower bound axisymmetric limit analysis formulation, by using two dimensional finite elements, the three dimensional Mohr-Coulomb (MC) yield criterion, and nonlinear optimization has also been presented for solving different axisymmetric stability problems in geomechanics. The nonlinear optimization was carried out by employing an interior point method based on the logarithmic barrier function. The yield surface was smoothened (i) by removing the tip singularity at the apex of the pyramid in the meridian plane, and (ii) by eliminating the stress discontinuities at the corners of the yield hexagon in the plane. No inherent assumption concerning with the hoop stress needs to be made in this formulation. The Drucker-Prager (DP) yield criterion was also used for computing the lower bound axisymmetric collapse load. The advantage of using the DP yield criterion is that it does not exhibit any singularity in the plane. A new proposal has also been given to simulate the DP yield cone with the MC hexagonal yield pyramid. The generalized Hoek-Brown (HB) yield criterion has also been used. This criterion has been smoothened both in the meridian and  planes and a new formulation is prescribed for obtaining the lower bound axisymmetric problems in rock media in combination with finite elements and nonlinear optimization. With reference to the second objective, a few important axisymmetric stability problems in soil mechanics associated with footings and excavations have been solved in the present thesis. In all these problems, except that of a flat circular footing lying over either homogeneous soil or rock media, it is assumed that the medium is governed by the MC failure criterion and it follows an associated flow rule. For determining the collapse loads for a circular footing over homogenous soil and rock media, the problem has been solved with the usage of Drucker-Prager, Mohr-Coulomb and Hoek-Brown criteria. The bearing capacity of a circular footing lying over fully cohesive strata, with an inclusion of a sand layer is evaluated. The effects of the thickness and internal friction angle of the sand layer () on the bearing capacity have been examined for different combinations of cu/(b) and q; where (i) cu defines the undrained shear strength, (ii)  is the unit weight of sand, (iii) b corresponds to the footing radius, and (iv) q is the surcharge pressure. The results have been presented in the form of a ratio () of the bearing capacities with an insertion of the sand layer to that for a footing lying directly over clayey strata. It is noted that an introduction of a layer of medium dense to dense sand over soft clay improves considerably the bearing capacity of the foundation. The improvement in the bearing capacity increases continuously (i) with decreases in cu/(b), and (ii) increases in  and q/(b). The bearing capacity factors, Nc, Nq and N, for a conical footing are obtained in a bound form for a wide range of the values of cone apex angle () and with  = 0, 0.5 and . The bearing capacity factors for a perfectly rough ( = conical footing generally increase with a decrease in . On contrary for  = 0, the factors Nc and Nq reduce gradually with a decrease in . For  = 0, the factor N for  ≥ 35o becomes minimum for  approximately equal to 90o. For  = 0, the factor N for  ≤ 30o, like in the case of  = , generally reduces with an increase in . It has also been intended to compute the bearing capacity factors Nc, Nq and N, for smooth and rough ring footing for different combinations of ri/ro and ; where ri and ro refer to inner and outer radii of the ring, respectively. It is observed that for a smooth footing, with a given value of ro, the magnitude of the collapse load decreases continuously with an increase in ri. On the other hand, for a rough base, for a given value of ro, hardly any reduction occurs in the magnitude of collapse load up to ri/ro ≈ 0.2, whereas beyond this ri/ro, the magnitude of the collapse load, similar to that of a smooth footing, decreases continuously with an increase in ri/ro. An attempt has also been made to determine the ultimate bearing capacity of a circular footing, placed over a soil mass which is reinforced with horizontal layers of circular reinforcement sheets. For performing the analysis, three different soil media have been separately considered, namely, (i) fully granular, (ii) cohesive frictional, and (iii) fully cohesive with an additional provision to account for an increase of cohesion with depth. The reinforcement sheets are assumed to be structurally strong to resist axial tension but without having any resistance to bending; such an approximation usually holds good for geogrid sheets. The shear failure between the reinforcement sheet and adjoining soil mass has been considered. The increase in the magnitudes of the bearing capacity factors (Nc and N) with an inclusion of the reinforcement has been computed in terms of the efficiency factors c and . The critical positions and corresponding optimum diameter of the reinforcement sheets, for achieving the maximum bearing capacity, have also been established. The increase in the bearing capacity with an employment of the reinforcement increases continuously with an increase in . The improvement in the bearing capacity becomes quite extensive for two layers of the reinforcements as compared to the single layer of the reinforcement. The stability of an unsupported vertical cylindrical excavation has been assessed. For the purpose of design, stability numbers (Sn) have been generated for both (i) cohesive frictional soils, and (ii) pure cohesive soils with an additional provision to account for linearly increasing cohesion with depth by using a non-dimensional factor m. The variation of Sn with H/b has been established for different values of m and ; where H and b refer to height and radius of the cylindrical excavation. A number of useful observations have been drawn about the variation of the stability number and nodal velocity patterns with changes in H/b,  and m. In the last, by using the smoothened generalized HB yield criterion, the ultimate bearing capacity of a circular footing placed over a rock mass is evaluated in a non-dimensional form for different values of GSI, mi, ci/(b) and q/ci. For validating the results, computations were exclusively performed for a strip footing as well. For the various problems selected in the present thesis, the failure and nodal velocity patterns have been examined. The results obtained from the analysis have been thoroughly compared with that reported from literature. It is expected that the various design charts presented here will be useful for the practicing engineers. The formulations given in the thesis can also be further used for solving various axisymmetric stability problems in geomechanics.

Page generated in 0.058 seconds