Spelling suggestions: "subject:"docket"" "subject:"hocket""
251 |
A Morphological Technique For Direct Drop Size Measurement Of Cryogenic SpraysGanu, Hrishikesh Vidyadhar 10 1900 (has links) (PDF)
No description available.
|
252 |
Návrh navedení, navigace a řízení pro vertikální přistání opakovaně použitelného raketového urychlovače / Design of Guidance, Navigation and Control for Vertical Landing of a Reusable Rocket BoosterKirály, Adrián January 2021 (has links)
Táto diplomová práca sa zaoberá vývojom systému pre navádzanie, navigáciu, a riadenie pre znovupoužiteľný raketový urýchľovač. Pre dosiahnutie tohto cieľu bol vytvorený simulačný model rakety v prostredí Simulink. Na základe dát získaných pomocou CFD softvéru bol pre túto simuláciu vytvorený tiež vlastný aerodynamický model. Pre účely demonštrácie dosiahnutých výsledkov bol ako súčasť práce tiež naprogramovaný interaktívny 3D vizualizačný nástroj.
|
253 |
Flow Processes in Rocket Engine Nozzles with Focus on Flow Separation and Side-LoadsÖstlund, Jan January 2002 (has links)
NR 20140805
|
254 |
Development of a three-dimensionalthermal analysis tool for sounding rockets / Utveckling av ett tredimensionellt termiskberäkningsverktyg för sondraketerRyman, André, Wahlberg, Andreas January 2014 (has links)
This thesis has been performed in collaboration with the Swedish Space Corporation at the department Science Services. SSC provides services in the areas of spacecraft subsystems, ground stations and sounding rockets to enable governments, companies and research institutes to benefit from space. Science Services are responsible for sounding rocket flight missions allowing customers to perform research in a microgravity environment. Currently, they have good knowledge how to design the sounding rockets experiment modules to minimize thermal effects within the system. However, no computational models are available to evaluate and verify the thermal heat transfer inside of the modules and as such the systems are designed primarily based on previous experience. The main purpose of this thesis was to develop a thermal computational model, which would work as a basis for designing experiment modules. The model would be used in an early stage of the design process before CAD parts have been designed. This required a flexible model allowing the user to evaluate different types of components and configurations. A finite element method (FEM) was used to perform heat transfer calculations in MATLAB. The development process was divided into three stages, which reduced the complexity of the problem formulation. The first version was made to approximate heat transfer solution in three dimensions using the Galerkin’s weighed residuals method. The second version was made to implement the dynamic environment occurring during flight missions. Based on the external environment, the dynamic process was divided into phases with different boundary conditions. In the final version internal convection, conductivity between air elements and a GUI was developed. The versions were verified with COMSOL (2013) and previous measured flight data. The results from the simulations showed that the internal convection coefficient and the element’s conductivity have a great impact on how the heat is distributed inside th e modules. A low convection will lead to internal temperature peaks, which can cause damage to sensitive experiment equipment. Also, the results indicated that the external environment does not have a significant impact on the internal temperatures. The assumptions made and recommendations are also covered in this thesis. Keywords: Three-dimensional heat transfer, Finite element method, Sounding rocket, Computational simulation / Detta examensarbete har utförts i samarbete med Swedish Space Corporation på avdelningen Science Services. SSC är ett svenskt företag verksam inom rymdtekniksektorn som erbjuder myndigheter, företag och forskarlag runt om i världen möjlighet att dra nytta av rymden. Avdelningen Science Service är ansvariga för utvecklig samt uppskjutning av sondraketer. I dagsläget finns en god kunskap hur sondraketens experimentmoduler ska konstrueras för att minimera den termiska påverkan i systemen. Dock existerar ingen beräkningsmodell för att undersöka värmeutvecklingen och temperaturer i dessa experimentmoduler, all kunskap inom detta område är baserad på tidigare erfarenheter. Syftet med detta examensarbete var att utveckla en termisk beräkningsmodell som kan användas som underlag när nya experimentmoduler konstrueras på SSC. Användningsområdet för modellen var avsett i ett tidigt skede i produktutvecklingsprocessen, innan CAD-modeller eller dylikt har framställts. Därav efterfrågades en flexibel modell där användaren kan undersöka olika typer av kompententer och konfigurationer. Den Finita elementmetoden (FEM) har används för att skapa en termisk beräkningsmodell i MATLAB. Utvecklingen delades upp i tre steg, eller tre programversioner, vilket bidrog till att frågeställningens komplexitet reducerades. Första programversion genomfördes för att approximera värmeflöden och temperaturer i tre dimensioner med hjälp av Galerkins viktade residualmetod. I den andra programversionen implementerades den dynamiska omgivningen som uppstår under flygning. Baserat på den yttre påverkan från det dynamiska förloppet delades flygningen in i olika faser, alla med skilda randvillkor. I den slutliga programversionen implementerades intern konvektion, strålning och ett grafiskt användargränssnitt. Samtliga versioner verifierades numerisk med hjälp av COMSOL (2013) . Resultatet från beräkningsmodellen påvisade att den interna konvektionskoefficient samt konduktiviteten hos element har stor inverkan på hur temperaturen fördelas inuti modulen. Resultaten indikerade även att den yttre miljön inte har en signifikant betydelse för dessa temperaturer. De antaganden som utförts samt förbättringsförslag avhandlades även i detta arbete. Nyckelord: Värmeledning, tredimensionellt, Finita elementmetoden, Sondraket, Simulering
|
255 |
Relative Infrasound Calibration of Microphones with Application to Outdoor Vector Intensity MeasurementsIrarrazabal Oliva, Francisco Javier 28 July 2021 (has links)
This thesis describes the phase and amplitude correction of 12.7 mm diameter, Type-1 microphones for three frequency bands, including within the infrasound regime, and its application to acoustic measurements. Previous data stem from acoustic intensity measurements using two-dimensional, four-microphone probes, which emphasized the requirement of having the acoustic phase and amplitude difference be much greater than the interchannel mismatch. Although correcting the amplitude/phase is well-known, obtaining the necessary transfer functions in the infrasound regime is challenging because (1) signal-to-noise ratios are often poor, (2) long measurement times are required for averaging, and (3) microphone responses vary significantly across these low frequencies. In this paper, a convenient infrasound source previously studied for infrasound adverse effects on humans is intended for performing a relative calibration. This work also seeks to elaborate recommendations for probe spacing, averages or length recordings, and instrument mismatch. The last two chapters show the PAGE method application in infrasonic sources. Those chapters have the intensity measurements using free-field microphones with larger separation distances than commercial intensity probes but compact compared to state of the art in infrasonic arrays.
|
256 |
EXPERIMENTAL STUDIES ON FREE JET OF MATCH ROCKETS AND UNSTEADY FLOW OF HOUSEFLIESAngel David Lozano Galarza (10757814) 01 June 2021 (has links)
<p>The
aerodynamics of insect flight is not well understood despite it has been
extensively investigated with various techniques and methods. Its complexities
mainly have two folds: complex flow behavior and intricate wing morphology. The
complex flow behavior in insect flight are resulted from flow unsteadiness and
three-dimensional effects. However, most of the experimental studies on insect
flight were performed with 2D flow measurement techniques whereas the 3D flow
measurement techniques are still under developing. Even with the most advanced
3D flow measurement techniques, it is still impossible to measure the flow
field closed to the wings and body. On the other hand, the intricate wing
morphology complicates the experimental studies with mechanical flapping wings
and make mechanical models difficult to mimic the flapping wing motion of
insects. Therefore, to understand the authentic flow phenomena and associated
aerodynamics of insect flight, it is inevitable to study the actual flying
insects. </p>
<p>In
this thesis, a recently introduced technique of schlieren photography is first
tested on free jet of match rockets with a physics based optical flow method to
explore its potential of flow quantification of unsteady flow. Then the
schlieren photography and optical flow method are adapted to tethered and feely
flying houseflies to investigate the complex wake flow and structures. In the
end, a particle tracking velocimetry system: Shake the Box system, is utilized
to resolve the complex wake flow on a tethered house fly and to acquire some
preliminary 3D flow field data</p>
|
257 |
A Systems Engineering approach for developing a Mars In Situ Propellant Production SystemMartinez Paruta, Rafael E. 01 January 2022 (has links)
Systems Engineering methodology applied to the development of an In Situ Propellant Production system in Mars.
|
258 |
Development and Testing of a Hydrogen Peroxide Injected Thrust Augmenting Nozzle for a Hybrid RocketHeiner, Mark C. 01 December 2019 (has links)
During a rocket launch, the point at which the most thrust is needed is at lift-off where the rocket is the heaviest since it is full of propellant. Unfortunately, this is also the point at which rocket engines perform the most poorly due to the relatively high atmospheric pressure at sea level. The Thrust Augmenting Nozzle (TAN) investigated in this paper provides a solution to this dilemma. By injecting extra propellant into the nozzle but downstream of the throat, the internal nozzle pressure is raised and the thrust is increased, and the nozzle efficiency, or specific impulse is potentially improved as well. Using this concept, the payload capacity of a launch vehicle can be increased and provides an excellent option for single stage to orbit vehicles.
|
259 |
The Effect of Nonlinear Propagation on Near-field Acoustical HolographyShepherd, Micah Raymond 14 August 2007 (has links) (PDF)
Near-field acoustical holography (NAH) has been used extensively for acoustical imaging of infinitesimal-amplitude (or small-amplitude) sources. However, recent interests are in the application of NAH to image finite-amplitude (or high-amplitude) sources such as jets and rockets. Since NAH is based on linear equations and finite-amplitude sources imply nonlinear effects, which cause shock formation and consequently an altered spectral shape, a feasibility study is carried out to determine the effect of nonlinear propagation on NAH. Jet and rocket sources typically have a distinct spectral shape resembling a ‘haystack’ and center frequencies varying from 30 to 300 Hz. To test the effect of nonlinear propagation on jet or rocket noise, several waveforms with varying spectral shapes and center frequencies were created and numerically propagated in one dimension using a nonlinear propagation algorithm. Bispectral methods were used to determine the amount and effect of nonlinearity, showing that higher center frequencies lead to more nonlinearities for a given amplitude. Also, higher-order statistical analysis of the time derivative of the waveforms was used to determine information about the relative amount of waveform steepening and shock coalescence occurring. NAH was then used to reconstruct the original waveform magnitude and the errors were determined. It was found that the ‘haystack’ spectral shape can be preserved by the nonlinear effects leading to low amplitude-reconstruction errors, whereas a narrow-band spectral shape will become altered and reconstruct very poorly. However, if nonlinear effects become strong due to higher center frequencies, longer propagation distances or higher amplitudes, even the ‘haystack’ shape will become altered enough to cause poor reconstruction. Two-dimensional propagation studies were also performed from two point sources, showing differences between linear and nonlinear propagation.
|
260 |
High-level, Product Type-specific Programmatic Operations for Streamlining Associative Computer-aided DesignScott, Nathan W. 12 August 2008 (has links) (PDF)
Research in the field of Computer Aided Design (CAD) has long focused on reducing the time and effort required of engineers to define three dimensional digital product models. Parametric, feature-based modeling with inter-part associativity allows complex assembly designs to be defined and re-defined while maintaining the vital part-to-part interface relationships. The top-down modeling method which uses assembly level control structures to drive child level geometry has proved valuable in maintaining these interfaces. Creating robust parametric models like these, however, is very time consuming especially since there can be hundreds of features and thousands of mathematical expressions to create. Even if combinations of low-level features, known as User-Defined Features (UDFs), are used, this process still involves inserting individual features into individual components and creating all of the inter-part associativities by hand. This thesis shows that programmatic operations designed for a specific product type can streamline the assembly and component-level design process much further because a single programmatic operation can create an unlimited number of low-level features, modify geometry in multiple components, create new components, establish inter-part expressions, and define inter-part geometry links. Results from user testing show that a set of high-level programmatic operations can offer savings in time and effort of over 90% and can be general enough to support user-specified interface layouts and component cross sections while leaving the majority of the primary design decisions open to the engineer.
|
Page generated in 0.0347 seconds