• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 15
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Comparative Study of Dolomite Dissolution in Simple Organic Acids and Chelating Agents

Adenuga, Olusegun O 03 October 2013 (has links)
Acid treatments have predominantly been conducted using HCl for its availability, high rock dissolving power and soluble reaction products. At high temperatures, rapid spending of the acid with carbonates prevents deeper penetration distance into the formations. Alternative fluids such as acetic and formic acid have lent themselves to retarded reaction rates, low corrosivity and reduced tendency to form acid/oil sludge in asphaltene-rich crudes but for high reaction rate problems. Chelating agents, with the added advantage of complexing with alkali-earth metals in carbonates to form water-soluble products that are thermally stable at high temperature, have been introduced as stimulation fluids. Glutamic acid diacetic acid (GLDA) ethylenediaminetetraacetic acid (EDTA) and hydroxyethylenediaminetriacetic acid (HEDTA) are aminopolycarboxylic acids that were studied. To predict the spending of chelating agents relative to simple organic acids at temperatures between 150 and 250˚F, the chemical kinetics of dolomite dissolution in these acid solutions were investigated over different reaction conditions in a rotating disk apparatus. Samples of the reacted acids from the reactor were collected and then analyzed with inductively coupled plasma (ICP). Analyses of the experimental data were carried out to determine kinetic parameters of the heterogeneous reactions needed for matrix stimulation of dolomitic reservoirs. Experimental results indicated that dolomite dissolution rates increased in all the acid solutions as the disk rotational speeds increased at 150, 200, and 250˚F. The dissolution of dolomite in 0.886 M GLDA was found to be surface-reaction limited at lower temperatures and mass-transfer limited at highest temperature. GLDA with the lowest reaction rates and relative diffusion coefficient demonstrated retardation before spending with deeper penetration capability for productivity and injectivity improvement.
12

Estudo Mecanístico da Eletrodeposição de Cádmio em Meio de Sulfato Ácido / Mechanistical study of cadmium electrodeposition in acidic sulphate medium

Campos, Othon Souto January 2011 (has links)
CAMPOS, Othon Souto. Estudo Mecanístico da Eletrodeposição de Cádmio em Meio de Sulfato Ácido. 2011. 46 f. Dissertação (Mestrado em química)- Universidade Federal do Ceará, Fortaleza-CE, 2011. / Submitted by Elineudson Ribeiro (elineudsonr@gmail.com) on 2016-06-02T19:41:14Z No. of bitstreams: 1 2011_dis_oscampos.pdf: 938891 bytes, checksum: 170c80aaa846defc16b0b360c53792fb (MD5) / Approved for entry into archive by José Jairo Viana de Sousa (jairo@ufc.br) on 2016-07-20T20:01:55Z (GMT) No. of bitstreams: 1 2011_dis_oscampos.pdf: 938891 bytes, checksum: 170c80aaa846defc16b0b360c53792fb (MD5) / Made available in DSpace on 2016-07-20T20:01:55Z (GMT). No. of bitstreams: 1 2011_dis_oscampos.pdf: 938891 bytes, checksum: 170c80aaa846defc16b0b360c53792fb (MD5) Previous issue date: 2011 / This work describes a mechanistical proposition for cadmium electrodeposition in acid sulfate medium on platinum substrate using electrochemical techniques. The cadmium electrodeposition studies were carried in sodium sulfate 1 mol L–1 medium containing cadmium sulfate 10–2 mol L–1, which the pH of the solutions were adjusted with analytical grade sulfuric acid. The pH interval of the work solutions were ranged between 1 and 3. In all studied medium, the potentiostatic polarization curves showed a diffusional plateau which obeys the Levich equation. The interfacial pH studies showed the influence of acid–base equilibrium of bisulfate ion with the formation of a coordination compound Cd(HSO4)+ in platinum electrode. It is proposed that the cadmium ion associated in acid–base equilibrium of bisulfate ion, deposits as cadmium bisulfate at an irreversible step, and followed by a reversible metallic deposition of cadmium with the leaving of bisulfate ion, and this step is slower than the first one. Then, a mathematical model was calculated for the mechanism proposed, and qualitative studies were carried regarding to the polarization curve and electrochemical impedance spectroscopy behavior. / Este trabalho descreve uma proposição mecanística para a deposição de cádmio em meio de sulfato ácido sobre substrato de platina utilizando técnicas eletroquímicas. Os estudos de eletrodeposição de cádmio foram feitas em meio de sulfato de sódio 1 mol L–1 contendo 10–2 mol L–1 de sulfato de cádmio, em que o pH das soluções foi ajustado com ácido sulfúrico PA. O intervalo de pH das soluções de trabalho foi variado entre 1 e 3. Em todos os meios estudados, as curvas de polarização potenciostática mostraram a formação de um patamar difusional que obedece a equação de Levich. Os estudos de pH local revelaram a influência do equilíbrio ácido–base do íon bissulfato com formação de compostos de coordenação Cd(HSO4)+ no eletrodo de platina. Propõe-se que o íon cádmio, associado ao equilíbrio ácido–base do íon bissulfato, deposita como bissulfato de cádmio numa etapa irreversível, e seguida pela deposição de cádmio metálico reversível com a saída do íon bissulfato, sendo esta última etapa mais lenta que a primeira. Desse modo, foi calculado um modelo matemático para o mecanismo proposto, sendo realizados estudos qualitativos em relação ao comportamento da curva de polarização e do espectro de impedância eletroquímica.
13

Boundary layer response to arbitrary accelerating flow

Combrinck, Madeleine Lelon January 2016 (has links)
This thesis was aimed developing a fundamental understanding of the boundary layer response to arbitrary motion. In this context arbitrary motion was defined as the unsteady translation and rotation of an object. Research objectives were developed from the gaps in knowledge as defined during the literature survey. The objectives were divided into three main activities; mathematical formulations for non-inertial bulk flow and boundary layer equations, implementation of said formulations in a numerical solver and simulations for various applications in arbitrary motion. Mathematical formulations were developed for the bulk flow and boundary layer equations in arbitrary motion. It was shown that the conservation of momentum and energy equations remains invariant in the non-inertial forms. The conservations of momentum equation can at most have six fictitious terms for unsteady arbitrary motion. The origin of the terms were found to be from transformation of the material derivative to the non-inertial frame. All fictitious terms were found to be present in the boundary layer equations, none could be eliminated during an order of magnitude analysis. The vector form of the non-inertial equations were implemented in a novel OpenFOAM solver. The non-inertial solver requires prescribed motion input and operate on a stationary mesh. Validation of the solver was done using analytical solutions of a steady, laminar flat plate and rotating disk respectively. Numerical simulation were done for laminar flow on a translating plate, rotating disk and rotating cone in axial flow. A test matrix was executed to investigated various cases of acceleration and deceleration over a range of 70 g to 700 000g. The boundary layer profiles, boundary layer parameters and skin friction coefficients were reported. Three types of boundary layer responses to arbitrary motion were defined. Response Type I is viscous dominant and mimics the steady state velocity profile. In Response Type II certain regions of the boundary layer are dominated by viscosity and others by momentum. Response Type III is dominated by momentum. In acceleration the near-wall velocity gradient increases with increasing acceleration. In deceleration separation occurs at a result of momentum changes in the flow. The mechanism that causes these responses have been identified using the developed boundary layer equations. In acceleration the relative frame fictitious terms become a momentum source which results in an increase in velocity gradient at the wall. In deceleration the relative frame fictitious terms become a momentum sink that induced an adverse pressure gradient and subsequently laminar separation. / Hierdie tesis is gerig op die ontwikkeling van 'n fundamentele begrip aangaande die grenslaag reaksie op arbitrêre beweging. In hierdie konteks word arbitrêre beweging gedefinieer as die ongestadigde translasie en rotasie van 'n voorwerp. Navorsingsdoelwitte is ontwikkel uit die gapings soos omskryf in die literatuuroorsig. Die doelwitte is verdeel in drie hoof aktiwiteite; wiskundige formulerings vir ongestadigde vloei en grenslaag vergelykings, implementering van hierdie formulerings in 'n numeriese kode en simulasies vir verskeie gevalle van arbitrêre beweging. Wiskundige formulerings is ontwikkel vir die vloei en grenslaag vergelykings in arbitrêre beweging. Daar is bewys dat die behoud van massa en energie vergelykings onveranderd in die nie-inertiële vorms bly. Die behoud van momentum vergelyking kan hoogstens ses fiktiewe terme vir ongestadigde, arbitrêre beweging hê. Die oorsprong van die terme is vanuit die transformasie van die ongestadigde en adveksie terme (aan die linker kant van die momentum vergelyking) na die nie-inertiële raam. Alle fiktiewe terme is teenwoordig in die grenslaag vergelykings. Die vektor vorm van die nie-inertiële vergelykings is in 'n nuwe OpenFOAM oplosser geïmplementeer. Die nie-inertiële oplosser vereis voorgeskrewe beweging insette en werk op 'n stilstaande rooster. Die oplosser is getoets teen analitiese oplossings van 'n gestadigde, laminêre plaat plaat en 'n roterende skyf, onderskeidelik. Numeriese simulasies is gedoen vir laminêre vloei op 'n translerende plaat, roterende skyf en roterende konus in aksiale vloei. 'n Toets matriks is gebruik om ondersoek in te stel na gevalle van versnelling en vertraging oor 'n verskeidenheid van 70 g tot 700 000 g. Die grenslaag profiele, grenslaag parameters en oppervlak wrywingskoëffisiënte is aangemeld nie. Drie tipes grenslaag reaksies op arbitrêre beweging is gedefinieer. Reaksie Tipe I is viskeus dominant en boots die bestendige snelheidsprofiel na. In reaksie Tipe II sekere dele van die grenslaag is oorheers deur viskositeit en ander deur momentum. Reaksie Tipe III word in totaliteit oorheers deur momentum. In versnelling die snelheid helling teen die objek neem toe met toenemende versnelling. In vertraging is 'n negatiewe snelheidsprofiel waargeneem as gevolg van momentum veranderinge in die vloei. Die meganisme wat hierdie reaksies veroorsaak is geïdentifiseer deur die grenslaag vergelykings. In versnelling word die fiktiewe terme 'n bron van momentum. Dit lei tot 'n toename in snelheid helling op die objek. In vertraging word die fiktiewe terme 'n momentum gebruiker wat 'n negatiewe drukgradiënt veroorsaak en gevolglik laminêre vloei wegbreking veroorsaak. / Thesis (PhD)--University of Pretoria, 2016. / Mechanical and Aeronautical Engineering / PhD / Unrestricted
14

Nonlinear transverse vibrations of centrally clamped rotating circular disks

Manzione, Piergiuseppe 23 March 1999 (has links)
A study is presented of the instability mechanisms of a damped axisymmetric circular disk of uniform thickness rotating about its axis with constant angular velocity and subjected to various transverse space-fixed loading systems. The natural frequencies of spinning floppy disks are obtained for various nodal diameters and nodal circles with a numerical and an approximate method. Exploiting the fact that in most physical applications the thickness of the disk is small compared with its outer radius, we use their ratio to define a small parameter. Because the nonlinearities appearing in the governing partial-differential equations are cubic, we use the Galerkin procedure to reduce the problem into a finite number of coupled weakly nonlinear second-order equations. The coefficients of the nonlinear terms in the reduced equations are calculated for a wide range of the lowest modes and for different rotational speeds. We have studied the primary resonance of a pair of orthogonal modes under a space-fixed constant loading, the principal parametric resonance of a pair of orthogonal modes when the disk is subject to a massive loading system, and the combination parametric resonance of two pairs of orthogonal modes when the excitation is a linear spring. Considering the case of a spring moving periodically along the radius of the disk, we show how its frequency can be coupled to the rotational speed of the disk and lead to a principal parametric resonance. In each of these cases, we have used the method of multiple scales to determine the equations governing the modulation of the amplitudes and phases of the interacting modes. The equilibrium solutions of the modulation equations are determined and their stability is studied. / Master of Science
15

Rotating Disk Electrode Design for Concentration Measurements in Flowing Molten Chloride Salts

Sullivan, Kelly Marie 25 July 2022 (has links)
Over the past several years as interest in cleaner energy sources has grown nuclear power has come to the forefront. However, as interest in nuclear power grows so does the concern over the amount of high-level radioactive waste produced. Currently, the most popular way to deal with spent nuclear fuel is interim storage until a viable treatment option becomes available. Simply waiting for spent fuel to become safe to handle will take thousands of years and is not a reasonable long-term solution. We will soon run out of space in our spent fuel pools and while more dry storage space can be found it is not an ideal solution. One answer to this problem is the reprocessing of spent nuclear fuel. This could be done with either the plutonium uranium reduction extraction (PUREX) method or the pyroprocessing method. Since PUREX does not have the same level of built-in proliferation resistance as pyroprocessing, pyroprocessing is starting to be seen as a good alternative method. Pyroprocessing would take the spent nuclear fuel from a light water reactor and make it into a metal-based fuel that could be used in certain advanced reactors. Molten salt reactors are of particular interest when it comes to reprocessing spent nuclear fuel because of their unique property of using a liquid fuel. Molten salt reactors and spent fuel reprocessors could be directly connected which would save both time and money as little storage and transportation would need to be considered. Regardless of how and where the used nuclear fuel is being recycled it is important to be able to keep track of the major actinides and fission products in the fuel as it moves through the process. Electrochemical concentration measurements are straightforward and well understood in static cases when there is only a single element to consider. When additional elements are added, or the system is flowing rather than static, things get slightly more complicated but are still decently well understood. However, in the case of spent fuel reprocessing the system is both be flowing and contains much more than a single element. This case is not well understood and is what this study attempts to understand. Two different rotating electrodes were designed to simulate flowing conditions in an electrochemical cell. The first was a tungsten rotating disk electrode (RDE) and the second was a graphite RDE. We were not able to fully insulate the tungsten RDE and were therefore unable to achieve reliable results. Because of this the tungsten design was put aside in favor of the graphite design, which did prove to be sufficiently insulated. The graphite RDE was tested in two different salt systems: LiCl-KCl-NiCl2-CrCl2 and LiCl-KCl-EuCl3-SmCl3. In the nickel-chromium system the graphite RDE produced the expected results. The calculated nickel concentration was found to be within 10% of the measured concentration. Calculations of the chromium concentration, however, were not possible due to the deposition of nickel on the graphite surface, which increased the surface area of the working electrode. When the graphite RDE was tested in the second system it was first tested in the ternary salt LiCl-KCl-EuCl3 and was able to produce decent results. The concentration of europium calculated from the scan was within 10% of the measured value. When the RDE was tested in the LiCl-KCl-EuCl3-SmCl3 salt the results did not come out as expected. Several rather noisy CV curves were obtained and no alterations to the cell seemed to affect them. At this point it was determined that the reason for the confused scans was a connection problem that could not be remedied within the time frame of this study. While this study does not accomplish the task it set out to do, it is a good step in the direction toward understanding flowing systems containing more than a single element of interest and has successfully designed a reliable graphite RDE. / Master of Science / As interest in nuclear power continues to grow, so does the concern over the amount of high-level nuclear waste produced. More nuclear power means more nuclear reactors and thus more spent nuclear fuel to be dealt with. Currently most used nuclear fuel ends up in interim storage facilities where it is meant to wait until it is safe to handle, which could take several thousand years, or until a reliable disposal method is determined. On this path the amount of spent fuel that requires storage will quickly overrun the amount of storage space safely available. One way to reduce the amount of nuclear waste is to reprocess it to be used as fuel for different types of reactors. The pyroprocessing method takes the spent nuclear fuel from a typical light water reactor and recycles it into fuel that can be used in certain types of advanced reactors, such as molten salt reactors (MSR) and sodium-cooled fast reactors (SFR). The reprocessing system works to separate the usable actinide elements, such as uranium and plutonium, from any fission products or other contaminants. During these processes it is important to be able to keep track of the concentrations of each of these different elements to ensure proper separation. This study examines the use of two rotating disk electrode (RDE) designs that are meant to simulate the flowing conditions found in many reprocessing systems. These RDEs were to be used to measure the concentrations of different elements in molten salt systems. The first design, a tungsten RDE, could not be properly insulated and thus was unable to produce reliable results when tested in the electrochemical cell. The second design was a graphite RDE. This design did prove to be properly insulated and was able to produce good results when tested in the cell. The graphite RDE was tested in both LiCl-KCl-NiCl2-CrCl2 and LiCl-KCl-EuCl3-SmCl3. In the first system the concentration of nickel was correctly calculated using the data collected with the graphite RDE, while the chromium concentration could not be due to the nickel deposition on the graphite. In the second system, good results were obtained before the SmCl3 was added to the salt. At this point a connection error became apparent and reliable results were no longer possible. Further study is needed to understand the LiCl-KCl-EuCl3-SmCl3 system using the graphite RDE.
16

Study of the oxygen reduction reaction on platinum with scanning electrochemical microscopy and rotating disk voltammetry

Sun, Xiaojing 15 December 2007 (has links)
The tip generation/substrate collection mode (TG/SC) of scanning electrochemical microscopy (SECM) was used to study the ORR reactivity on Pt catalysts in sulfuric acid solution. The SECM reactivity image and the photographic image of different single crystalline regions of the etched Pt electrode correlated well. The electron backscatter diffraction (EBSD) image of Pt confirmed the surface single crystalline orientation. The image resolution is improved by employing smaller tip-substrate distance. The kinetics of the ORR on Pt surface was also studied at -15 - 30 C by means of the rotating disk voltammetry techniques. The calculated Tafel slopes for 0.1 m and 0.9 m HClO4 changed with decreasing temperature, indicating lower kinetics at low temperature. Peroxide is produced at potentials below 0 V vs SCE.
17

Effects of Transport and Additives on Electroless Copper Plating

Zeszut, Ronald Anthony, Jr. 07 September 2017 (has links)
No description available.
18

ENGINEERED PROCESS FOR THE PHOTOCATALYTIC TREATMENT OF ORGANIC CONTAMINANTS IN WATER

DIONYSIOU, DIONYSIOS D. 11 October 2001 (has links)
No description available.
19

Reaction of Calcite and Dolomite with In-Situ Gelled Acids, Organic Acids, and Environmentally Friendly Chelating Agent (GLDA)

Rabie, Ahmed 1978- 14 March 2013 (has links)
Well stimulation is the treatment remedy when oil/gas productivity decreases to unacceptable economical limits. Well stimulation can be carried out through either "Matrix Acidizing" or fracturing with both "Hydraulic Fracturing" and "Acid Fracturing" techniques. "Matrix Acidizing" and "Acid Fracturing" applications involve injecting an acid to react with the formation and dissolve some of the minerals present and recover or increase the permeability. The permeability enhancement is achieved by creating conductive channels "wormholes" in case of "Matrix Acidizing" or creating uneven etching pattern in case of "Acid Fracturing" treatments. In both cases, and to design a treatment successfully, it is necessary to determine the distance that the live acid will be able to penetrate inside the formation, which in turn, determines the volume of the acid needed to carry out the treatment. This distance can be obtained through lab experiments, if formation cores are available, or estimated by modeling the treatment. The successful model will depend on several chemical and physical processes that take place including: the acid transport to the surface of the rock, the speed of the reaction of the acid with the rock, which is often referred to as "Reaction Rate", and the acid leak-off. The parameters describing these processes such as acid diffusion coefficient and reaction kinetics have to be determined experimentally to ensure accurate and reliable modeling. Hydrochloric acid and simple organic acids such as acetic and citric acids have been used extensively for stimulation treatments. The diffusion and reaction kinetics of these acids, in a straight form, were investigated thoroughly in literature. However, solely these acids are used in a simple form in the field. Acid systems such as gelled, crosslinked gelled, surfactant-based, foam-based, or emulsified acids are used to either retard the reaction rate or to enhance acid diversion. Literature review shows that additional work is needed to understand the reaction and report the diffusion and kinetics of these systems with carbonate. In addition, a new chelating agent (GLDA) was recently introduced as a stand-alone stimulating fluid. The kinetics and the mass transfer properties of this acid were not studied before. Therefore, the objective of this work is to study the reaction of different acid systems with calcite and dolomite and report the mass transport and kinetic data experimentally. Lactic acid, a chelating agent (GLDA), and in-situ gelled HCl-formic acids were investigated in this study. In some cases, rheology measurements and core flood experiments were conducted. The data were combined with the reaction study to understand the behavior of these acids and examine their efficiency if injected in the formation.
20

Analytical And Numerical Solutions To Rotating Orthotropic Disk Problems

Kaya, Yasemin 01 July 2007 (has links) (PDF)
Analytical and numerical models are developed to investigate the effect of orthotropy on the stress distribution in variable thickness solid and annular rotating disks. The plastic treatment is based on Hill&rsquo / s quadratic yield criterion, total deformation theory, and Swift&rsquo / s hardening law. The elastic-plastic stress distributions, residual stresses and radial displacement distributions are obtained after having analysed the cases of rotating solid disk, annular disk with rigid inclusion, annular disk subjected to either internal or external pressure. Thermal loading is also considered for the annular disk with rigid inclusion. Effects of different values of elastic and plastic orthotropy parameters are investigated. It is observed that the elastic orthotropy significantly affects the residual stresses in disks. The most remarkable effect of the plastic orthotropy is observed on the disk with rigid inclusion.

Page generated in 0.0978 seconds