• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Research on electrical performance of differential pair design in package substrate

Huang, Chih-yi 18 July 2007 (has links)
Differential signaling is suitable for high speed signal transmission due to lower noise induction and higher common-mode noise rejection compared to its single-ended signaling counterpart. However, for a high performance differential transmission-line pair, excellent symmetry and appropriate design for substrate layer stack-up is necessary. Especially for a practical IC package substrate, differential transmission-line pair is inevitable for asymmetry because of considering the locations of IC pads and solderballs. Furthermore, different differential transmission-line pair architectures are also demanded in consideration of limited substrate floorplan space and substrate layer stack-up structures. In this thesis, several differential pairs have been implemented on the conventional 4-layer laminate package substrate. The consequent high frequency performances are measured using vector network analyzer and then compared by converting into mixed-mode S-parameters.
2

Computerized evaluation of parameters for HEMT DC and microwave S parameter models

Chen, Lu January 1995 (has links)
No description available.
3

SELF-ADJOINT S-PARAMETER SENSITIVITY ANALYSIS WITH FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD

Li, Yan 06 1900 (has links)
<p> This thesis contributes to the development of a novel electromagnetic (EM) time-domain computational approach, the self-adjoint variable method, for the scattering parameter (S-parameter) sensitivity analysis of high frequency problems. </p> <p> The design sensitivity analysis provides sensitivity information in the form of the response gradient (response Jacobian). For that, various techniques are used, ranging from finite-difference approximations to quadratic and spline interpolations. However, when the number of design parameters becomes large, the simulation time would become unaffordable, which is especially the case with EM simulations. The proposed self-adjoint sensitivity analysis (SASA) approach aims at providing sensitivity information efficiently without sacrificing the accuracy. Its efficiency lies in the fact that regardless of the number of design parameters, only one simulation of the original structure is required- the one used to compute the S-parameters. Thus, the sensitivity computation has negligible overhead. At the same time, it has second-order accuracy. </p> <p> Currently, commercial EM simulators provide only specific engineering responses, such as Z- or S-parameters. No sensitivity information is actually made available. With the SASA approach, the only requirement for the EM solver is the ability to access the field solution at the perturbation grid points. This feature is generally available with all time-domain EM simulators. The manipulation of the field solutions in this approach is simple and it adds practically negligible overhead to the -simulation time. </p> <p> We confirm the validity of this approach for both the shape and constitutive parameters of the design structures. 2-D examples including metallic and dielectric details are presented, using the field solutions from an in-house time-domain solver. We also explore the feasibility of implementing this approach with one of the commercial solvers, XFDTD v. 6.3. </p> <p> Suggestions for future research are provided. </P> / Thesis / Master of Applied Science (MASc)
4

Software Automation For Measurement-Based Behavioral Models Of Microwave

Sosa Martin, Daniel 18 June 2009 (has links)
This thesis presents a study and implementation of several measurement procedures used to efficiently generate non-linear measurement-based behavioral models primary for microwave amplifiers. Behavioral models are a solution for representing devices that can present linear and/or non-linear behavior when little or no information about the internal structure is known. Measurement-based behavioral models are an advantage since they can be extracted from a direct measurement of the device. This work addresses some of the challenges of these types of measurements. A set of software modules has been produced that combine several modern techniques to efficiently generate practical models using equipment commonly available in a typical microwave lab. Advanced models using new and more complex equipment are also discussed. Modeling of the non-linear operation of power amplifiers is a common subject of study since it provides a path to improved system simulations. However, the measurement process used for non-linear behavioral modeling of PAs requires either non-linear measurement instrumentation, not yet widely available, or numerous measurements that makes the process tedious and susceptible to errors. Power dependent S-Parameters obtained with a conventional Vector Network Analyzers (VNA) can be used to extract AM-to-AM and AM-to-PM behavior of a device and to generate, simple but useful, behavioral models. A careful analysis of the characteristics of common RF measurement instrumentation combined with knowledge of common non-linear phenomena provides with the conditions under which useful models can be generated. The results of this work are presented as several programs implemented in National Instruments LabVIEW that will sequence through the different measurements required for the generation of measurement-based behavioral models. The implemented models are known as P2D and S2D models available with Agilent Advanced Design System (ADS.) The code will communicate with the measurement instrumentation and decide on the most efficient way to extract the data. Once the data is extracted, the code will put into the appropriate syntaxes required by the model for direct and convenient setup of the generated models in ADS.
5

Software Defined VNA : Measure Coupling Between Elements in an Antenna Array

Söderlund, Alexander January 2023 (has links)
With improvements in hardware of antenna receivers, fully digital arrays have been made possible to use in real time systems. These systems have a greater complexity, with the advantage of more dynamic system design since the use of the communication system can be changed with only a software change. Construction of a system capable of bidirectional communication on the same frequency and at the same time, is possible with a fully digital array if the coupling between the antenna elements are known. The good thing about the system is that all components for measuring this coupling already are included in the fully digital array. A signal generator and a coherent multichannel receiver can be used to create a VNA, completely by software. This can be used to measures the coupling coefficients of the antenna elements. In this thesis the working principle of the the software defined VNA is proven, a testing environment for a antenna array is described andadjustments for real hardware are used to create a result which can be strongly correlated to measurements of a lab grade VNA used as reference.
6

Creating a MATLAB Tool that allows for S-Parameter Perturbation in a Cascaded System

Fields, Ann 26 January 2023 (has links)
No description available.
7

Frequency-Domain Self-Adjoint S-Parameter Sensitivity Analysis for Microwave Design

Zhu, Xiaying 08 1900 (has links)
<p> This thesis proposes a sensitivity solver for frequency-domain electromagnetic (EM) simulators based on volume methods such as the finite-element method (FEM). The proposed sensitivity solver computes S-parameter Jacobians directly from the field solutions available from the EM simulation. It exploits the computational efficiency of the self-adjoint sensitivity analysis (SASA) approach where only one EM simulation suffices to obtain both the responses and their gradients in the designable parameter space. The proposed sensitivity solver adopts the system equations of the finite-difference frequency-domain (FDFD) method.</p> <p> There are three major advantages to this development: (1) the Jacobian computation is completely independent of the simulation engine, its grid and its system equations; (2) the implementation is straightforward and in the form of a post-processing algorithm operating on the exported field solutions; and (3) it is computationally very efficient-time requirements are negligible in comparison with conventional field-based optimization procedures utilizing Jacobians computed via response-level finite differences or parameter sweeps.</p> <p> The accuracy and the efficiency of the proposed sensitivity solver are verified in the sensitivity analysis and the gradient-based optimization of filters and antennas. Compared to the finite-difference approximation, drastic reduction of the time required by the overall optimization process is achieved. All examples use a commercial finite-element simulator.</p> <p> Suggestions for future research are provided.</p> / Thesis / Master of Applied Science (MASc)
8

Méthodes de mesure pour l’analyse vectorielle aux fréquences millimétriques en technologie intégrée / Vectorial measurement methods for millimeter wave integrated circuits

Velayudhan, Vipin 10 June 2016 (has links)
Cette thèse porte sur l’étude des méthodes de mesure pour l’analyse vectorielle des circuits microélectroniques en technologie intégrée aux fréquences millimétriques. Pour réussir à extraire les paramètres intrinsèques de circuits réalisés aux longueurs d'ondes millimétriques, les méthodes actuelles de calibrage et de de-embedding sont d'autant moins précises que les fréquences de fonctionnement visées augmentent au-delà de 100 GHz notamment. Cela est d’autant plus vrai pour la caractérisation des dispositifs passifs tels que des lignes de propagation. La motivation initiale de ces travaux de thèse venait du fait qu'il était difficile d'expliquer l’origine exacte des pertes mesurées pour des lignes coplanaires à ondes lentes (lignes S-CPW) aux fréquences millimétriques. Etait-ce un problème de mesure brute, un problème de méthode de-embedding qui sous-estime les pertes, une modélisation insuffisante des effets des cellules adjacentes, ou encore la création d'un mode de propagation perturbatif ?Le travail a principalement consisté à évaluer une dizaine de méthodes de de-embedding au-delà de 65 GHz et à classifier ces méthodes en 3 groupes pour pouvoir les comparer de manière pertinente. Cette étude s’est déroulée en 3 phases.Dans la première phase, il s’agissait de comparer les méthodes de de-embedding tout en maitrisant les modèles électriques des plots et des lignes d’accès. Cette phase a permis de dégager les conditions optimales d’utilisation pour pouvoir appliquer ces différentes méthodes de de-embedding.Dans la deuxième phase, la modélisation des structures de test a été réalisée à l’aide d’un simulateur électromagnétique 3D basé sur la méthode des éléments finis. Cette phase a permis de tester la robustesse des méthodes et d’envisager une méthode de-embedding originale nommée Half-Thru Method. Cette méthode donne des résultats comparables à la méthode TRL, méthode qui reste la plus performante actuellement. Cependant il reste difficile d'expliquer l'origine des pertes supplémentaires obtenues notamment dans la mesure des lignes à ondes lentes S-CPW.Une troisième phase de modélisation a alors consisté à prendre en compte les pointes de mesure et les cellules adjacentes à notre dispositif sous test. Plus de 80 structures de test ont été conçues en technologie AMS 0,35μm afin de comparer les différentes méthodes de de-embedding et d’en analyser les couplages avec les structures adjacentes, les pointes de mesure et les modes de propagation perturbatifs.Finalement, ce travail a permis de dégager un certain nombre de précautions à considérer à l’attention des concepteurs de circuits microélectroniques désirant caractériser leur circuit avec précision au-delà de 110 GHz. Il a également permis de mettre en place la méthode de de-embedding Half-Thru Method qui n'est basée sur aucun modèle électrique, au contraire des autres méthodes. / This thesis focuses on the study of vectorial measurement methods for analysing microelectronic circuits in integrated technology at millimeter wave frequencies. Current calibration and de-embedding methods are less precise for successfully extracting the intrinsic parameters of devices and circuits at millimeter wave frequencies, while the targeted operating frequencies are above 100 GHz. This is especially true for the characterization of passive devices such as propagation lines. The initial motivation of this thesis work was to explain the exact origin of the additional loss measured in Slow-Wave Coplanar Waveguides (S-CPW) lines at millimeter wave frequencies. Was it a problem of raw measurement or a problem of de-embedding method, which underestimates the losses? Or was it a problem of insufficient modeling of the effects of adjacent cells, or even the creation of a perturbation mode of propagation?This work consists of estimating many de-embedding methods beyond 65 GHz and classifies these methods into three groups to be able to compare them in a meaningful way. This study was conducted in three phases.In the first phase, we compared all the de-embedding methods with known electrical model parasitics of pad/accessline. This phase identifies the optimal conditions to use and apply these de-embedding methods.In the second phase, the modeling of test structures is performed using a 3D electromagnetic simulator based on finite element method. This phase tested the robustness of the methods and considered an original de-embedding method called Half-Thru de-embedding method. This method gives comparable results to the TRL method, which remains the most effective method. However, it remains difficult to explain the origin of additional losses obtained in measured S-CPW line.A third modeling phase was analysed to take into account the measurement of probes and the adjacent cells near our device under test. More than 80 test structures were designed in AMS 0.35 μm CMOS technology to compare the different de-embedding methods and analyse the link with adjacent cells, measuring probes and perturbation mode of propagation.Finally, this work has identified a number of precautions to consider for the attention of microelectronic circuit designers wishing to characterize their circuit with precision beyond 110 GHz. It also helped to establish Half-Thru Method de-embedding method, which is not based on electrical model, unlike other methods.
9

Impact of BTI Stress on RF Small Signal Parameters of FDSOI MOSFETs

Chohan, Talha, Slesazeck, Stefan, Trommer, Jens, Krause, Gernot, Bossu, Germain, Lehmann, Steffen, Mikolajick, Thomas 22 June 2022 (has links)
The growing interest in high speed and RF technologies assert for the importance of reliability characterization beyond the conventional DC methodology. In this work, the influence of bias temperature instability (BTI) stress on RF small signal parameters is shown. The correlation between degradation of DC and RF parameters is established which enables the empirical modelling of stress induced changes. Furthermore, S-Parameters characterization is demonstrated as the tool to qualitatively distinguish between HCI and BTI degradation mechanisms with the help of extracted small signal gate capacitances.
10

Physics-based TCAD device simulations and measurements of GaN HEMT technology for RF power amplifier applications / Simulations physiques et mesures du composant de technologie GaN HEMT pour les applications d'amplificateur de puissance RF

Subramani, Nandha kumar 16 November 2017 (has links)
Depuis plusieurs années, la technologie de transistors à effet de champ à haute mobilité (HEMT) sur Nitrure de Gallium (GaN) a démontré un potentiel très important pour la montée en puissance et en fréquence des dispositifs. Malheureusement, la présence des effets parasites dégrade les performances dynamiques des composants ainsi que leur fiabilité à long-terme. En outre, l'origine de ces pièges et leur emplacement physique restent incertains jusqu'à aujourd'hui. Une partie du travail de recherche menée dans cette thèse est axée sur la caractérisation des pièges existant dans les dispositifs HEMTs GaN à partir de mesures de paramètre S basse fréquence (BF), les mesures du bruit BF et les mesures I(V) impulsionnelles. Parallèlement, nous avons effectué des simulations physiques basées sur TCAD afin d'identifier la localisation des pièges dans le transistor. De plus, notre étude expérimentale de caractérisation et de simulation montre que les mesures BF pourraient constituer un outil efficace pour caractériser les pièges existant dans le buffer GaN, alors que la caractérisation de Gate-lag pourrait être plus utile pour identifier les pièges de barrière des dispositifs GaN HEMT. La deuxième partie de ce travail de recherche est axée sur la caractérisation des dispositifs AlN/GaN HEMT sur substrat Si et SiC. Une méthode d’extraction simple et efficace de la résistance canal et de la résistance de contact a été mise au point en utilisant conjointement la simulation physique et les techniques de caractérisation. Le principe de l’extraction de la résistance canal est basée sur la mesure de la résistance RON. Celle-ci est calculée à partir des mesures de courant de drain IDS et de la tension VDS pour différentes valeurs de températures En outre, nous avons procédé à une évaluation complète du comportement thermique de ces composants en utilisant conjointement les mesures et les simulations thermiques tridimensionnelles (3D) sur TCAD. La résistance thermique (RTH) a été extraite pour les transistors de différentes géométries à l'aide des mesures et ensuite validée par les simulations thermiques sur TCAD. / GaN High Electron Mobility Transistors (HEMTs) have demonstrated their capabilities to be an excellent candidate for high power microwave and mm-wave applications. However, the presence of traps in the device structure significantly degrades the device performance and also detriments the device reliability. Moreover, the origin of these traps and their physical location remains unclear till today. A part of the research work carried out in this thesis is focused on characterizing the traps existing in the GaN/AlGaN/GaN HEMT devices using LF S-parameter measurements, LF noise measurements and drain-lag characterization. Furthermore, we have used TCAD-based physical device simulations in order to identify the physically confirm the location of traps in the device. Moreover, our experimental characterization and simulation study suggest that LF measurements could be an effective tool for characterizing the traps existing in the GaN buffer whereas gate-lag characterization could be more useful to characterize the AlGaN barrier traps of GaN HEMT devices. The second aspect of this research work is focused on characterizing the AlN/GaN/AlGaN HEMT devices grown on Si and SiC substrate. We attempt to characterize the temperature-dependent on-resistance (RON) extraction of these devices using on-wafer measurements and TCAD-based physical simulations. Furthermore, we have proposed a simplified methodology to extract the temperature and bias-dependent channel sheet resistance (Rsh) and parasitic series contact resistance (Rse) of AlN/GaN HEMT devices. Further, we have made a comprehensive evaluation of thermal behavior of these devices using on-wafer measurements and TCAD-based three-dimensional (3D) thermal simulations. The thermal resistance (RTH) has been extracted for various geometries of the device using measurements and validated using TCAD-thermal simulations.

Page generated in 0.0478 seconds