• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 2
  • 1
  • Tagged with
  • 14
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impacts cliniques et physiopathologiques de l'équilibre redox et de la protéine S100A8 extracellulaire dans les leucémies aiguës myéloïdes de novo de l'adulte (hors LAM3) / Clinical and physiopathological roles of redox balance and of extracellular S100A8 protein in de novo adult acute myeloid leukemia (APL excluded)

Mondet, Julie 13 March 2018 (has links)
Les leucémies aigues myéloïdes (LAM) sont caractérisées par une expansion clonale de cellule(s) souche(s) leucémique(s) bloquée à un stade précoce de maturation. Malgré les avancées thérapeutiques, leur pronostic reste sombre et des progrès thérapeutiques doivent encore être réalisés. Dans les LAM, les espèces réactives de l’oxygène (ROS) sont considérées comme, d’une part, participant à la leucémogenèse et, d’autre part, comme hautement impliquées dans la sensibilité aux chimiothérapies conventionnelles. Par ailleurs, l’équilibre redox qui participe aux dérégulations métaboliques associées au processus leucémique, dépend de nombreux régulateurs, dont la protéine S100A8, protéine connue pour son action stimulatrice sur la NADPH oxydase et sa valeur pronostique dans les LAM.Ce travail s’est donc intéressé à la caractérisation des désordres oxydatifs dans les LAM afin d’évaluer leur impact clinico-biologique, et d’autre part au rôle de la sécrétion de la S100A8 dans le microenvironnement médullaire. De plus, à partir de lignées leucémiques, nous avons étudié l’impact de la S100A8 exogène sur la production de ROS, la respiration mitochondriale et le métabolome des cellules blastiques.A partir d’une cohorte de 84 patients atteints de LAM de novo au diagnostic, nous avons mis en évidence des désordres de l’équilibre redox à la fois dans les cellules leucémiques, dans les cellules normales de l’environnement médullaire ainsi que sur les systèmes régulateurs antioxydants (SOD, GPX, glutathion…). De plus, nous avons montré que la production des ROS observée en réponse à des modulateurs de la mitochondrie, qui reflète indirectement la fonctionnalité mitochondriale, joue un rôle pronostique indépendant des facteurs pronostiques habituels. L’analyse de la S100A8 dans les plasmas médullaires montre une expression augmentée dans les LAM, d’origine monocytaire majoritairement et est associée à des anomalies moléculaires de bon pronostic (inv(16), NPM1) ou un sous-groupe de patients FLT3-ITD mutés présentant une meilleure survie. Enfin, l’étude de la S100A8 sur les lignées leucémiques a permis de mettre en évidence la diversité de ses effets sur la croissance cellulaire, l’apoptose, la production de ROS ainsi qu’une variation métabolique de la phosphocholine dont les mécanismes restent à explorer.En conclusion, mon travail apporte des éléments originaux sur les particularités de l’équilibre bio-énergétique dans les LAM. Il souligne, que l’impact de ses dérégulations sur le pronostic des patients résulte de la combinaison d’un ensemble de facteurs métaboliques, qui doivent être appréhender dans leur globalité pour une meilleure efficacité thérapeutique. / Acute myeloid leukemia (AML) is characterized by clonal expansion of leukemic(s) cell(s) blocked at an early stage of maturation. Despite therapeutic advances, their prognosis remains poor and therapeutic improvements are needed. In AML, reactive oxygen species (ROS) are considered to contribute to leukemogenesis and, on the opposite, standard chemotherapies exert cytotoxicity via ROS. In addition, the redox balance acts on metabolic dysregulation in AML and depends on many regulators, such as S100A8 protein, associated with worst prognostic in AML and known to stimulate NADPH oxidase.In this context, this work focuses on oxidative disorders, and S100A8 expression in bone marrow microenvironment according to clinical-biological characteristics and evaluate their prognostic impact in AML. In addition, we investigated the impact of exogenous S100A8 on ROS production, mitochondrial respiration, and metabolism in leukemia cell lines.In a cohort of 84 de novo AML at diagnosis, we demonstrate the existence of redox balance disorders on leukemic cells, on normal cells from bone marrow microenvironment, and on antioxidant systems (SOD, GPX, glutathione ...). In addition, ROS production observed in response to mitochondrial modulators indirectly reflects mitochondrial functionality plays a prognostic role independent of the current prognostic factors. The analysis of S100A8 in bone marrow plasmas shows a higher expression in AML than in healthy controls or other hematological neoplasms. This hyperexpression is predominantly of monocytic origin and is associated with molecular abnormalities of good prognosis such as (inv (16), NPM1) or with a subgroup of mutated FLT3-ITD patients with better survival. Finally, the study of S100A8 on leukemia cell lines highlights its heterogeneous effect on cell growth, apoptosis, ROS production and on NOX regulation. Furthermore, we observe a S100A8-phosphocholine change which remains to be explored.In conclusion, this work provides original information on bio-energetic balance in AML and their prognostic impacts, emphasizing that these metabolic alterations impact AML prognosis through complex interactions.
2

Clinical and in vitro analysis of Osteopontin as a prognostic indicator and unveil its potential downstream targets in bladder cancer

Wong, J.P.C., Wei, R., Lyu, P., Tong, O.L.H., Zhang, S.D., Wen, Q., Yuen, H.F., El-Tanani, Mohamed, Kwok, H.F. 01 November 2017 (has links)
Yes / Osteopontin (OPN) plays an important role in cancer progression, however its prognostic significance and its downstream factors are largely elusive. In this study, we have shown that expression of OPN was significantly higher in bladder cancer specimens with higher T-stage or tumor grades. In addition, a high level of OPN was significantly associated with poorer survival in two independent bladder cancer patient cohorts totaling 389 bladder cancer patients with available survival data. We further identified Matrix metallopeptidase 9 (MMP9) and S100 calcium-binding protein A8 (S100A8) were both downstream factors for OPN in bladder cancer specimens and bladder cancer cell lines. Expression of OPN was significantly positively associated with that of MMP9 and S100A8, while overexpression of OPN resulted in upregulation of MMP9 and S100A8, and knockdown of OPN showed consistent downregulation of MMP9 and S100A8 expression levels. Importantly, expression levels of both MMP9 and S100A8 were significantly associated with higher T-stage, higher tumor grade and a shorter survival time in the bladder cancer patients. Interestingly, OPN expression only predicted survival in MMP9-high, but not MMP9-low subgroups, and in S100A8-low but not S100A8-high subgroups. Our results suggest that OPN, MMP9 and S100A8 all play a significant role in bladder cancer progression and are potential prognostic markers and therapeutic targets in bladder cancer. The mechanistic link between these three genes and bladder cancer progression warrants further investigation. / University of Macau Multi-Year Research Grant (MYRG2015-00065-FHS)
3

New mechanisms of regulation of mast cell activation

Endoh, Ikuko, Medical Sciences, Faculty of Medicine, UNSW January 2008 (has links)
Mast cells (MCs) play a central role in inflammation by releasing mediators following activation. S100A8 and S100A9 are abundantly expressed in inflammatory sites such as asthmatic lung, sunburnt skin and atherosclerosis where MCs are involved in pathogenesis; roles of S100A8 in MC function are undetermined. The aims of this thesis were to determine effects of S100A8 on MC activation, particularly provoked by IgE and UVB. Initially, effects of UVB on MC activation were investigated as detailed functions were unclear. Cord blood-derived human mast cells (CBMCs) were treated in vitro with varying doses of UVB and production of multiple cytokines and viability investigated. UVB exposure selectively increased levels of IL-8 (CXCL8), and to a less extent IL-1β, but not eight other cytokines tested. New protein synthesis partially contributed and IL-8 production was p38 MAPK-dependent. UVB dose-dependently induced MC apoptosis indicating a potential regulatory mechanism of MC function. The ability of recombinant S100A8, S100A9 or S100A8/9 heterodimer to modulate IgE/antigen (DNP/anti-DNP)-mediated activation of a murine MC line, and of bone marrow-derived (mBM) MC activation was determined. The S100s did not directly induce degranulation or induce IL-6. S100A8 significantly inhibited DNP/anti-DNP-provoked degranulation, and IL-6 and TNF mRNA and protein induction. S100A8 did not alter FcεRIα expression. S100A9 was less effective; and the S100A8/9 complex was also suppressive. S100A8 only weakly suppressed non-specific MC degranulation. Mutation of Cys41 in S100A8 negated its suppressive activity. Because S100A8 scavenges oxidants via this reactive Cys residue, we propose that this may mediate its ability to downmodulate IgE-dependent MC responses. Similar to the thiol scavenger N-acetyl-L-cysteine, S100A8 but not the Ala41 mutant, attenuated DNP/anti-DNP-provoked LAT phosphorylation. However, the disulfide-bonded S100A8 dimer and S100A8 containing a sulfinamide bond between Cys41 and Lys34/35 also reduced MC activation, indicating an additional pathway(s). S100A8 did not suppress antigen/IgE-induced responses of CBMC possibly because these may not truly reflect fullymature human tissue MCs. S100A8 did not alter UVB-induced IL-8 release by CBMCs, or affect apoptosis. Murine S100A8 may have anti-inflammatory properties by regulating MC activation in an activator-specific manner, at least partially by scavenging ROS to suppress intracellular signalling.
4

New mechanisms of regulation of mast cell activation

Endoh, Ikuko, Medical Sciences, Faculty of Medicine, UNSW January 2008 (has links)
Mast cells (MCs) play a central role in inflammation by releasing mediators following activation. S100A8 and S100A9 are abundantly expressed in inflammatory sites such as asthmatic lung, sunburnt skin and atherosclerosis where MCs are involved in pathogenesis; roles of S100A8 in MC function are undetermined. The aims of this thesis were to determine effects of S100A8 on MC activation, particularly provoked by IgE and UVB. Initially, effects of UVB on MC activation were investigated as detailed functions were unclear. Cord blood-derived human mast cells (CBMCs) were treated in vitro with varying doses of UVB and production of multiple cytokines and viability investigated. UVB exposure selectively increased levels of IL-8 (CXCL8), and to a less extent IL-1β, but not eight other cytokines tested. New protein synthesis partially contributed and IL-8 production was p38 MAPK-dependent. UVB dose-dependently induced MC apoptosis indicating a potential regulatory mechanism of MC function. The ability of recombinant S100A8, S100A9 or S100A8/9 heterodimer to modulate IgE/antigen (DNP/anti-DNP)-mediated activation of a murine MC line, and of bone marrow-derived (mBM) MC activation was determined. The S100s did not directly induce degranulation or induce IL-6. S100A8 significantly inhibited DNP/anti-DNP-provoked degranulation, and IL-6 and TNF mRNA and protein induction. S100A8 did not alter FcεRIα expression. S100A9 was less effective; and the S100A8/9 complex was also suppressive. S100A8 only weakly suppressed non-specific MC degranulation. Mutation of Cys41 in S100A8 negated its suppressive activity. Because S100A8 scavenges oxidants via this reactive Cys residue, we propose that this may mediate its ability to downmodulate IgE-dependent MC responses. Similar to the thiol scavenger N-acetyl-L-cysteine, S100A8 but not the Ala41 mutant, attenuated DNP/anti-DNP-provoked LAT phosphorylation. However, the disulfide-bonded S100A8 dimer and S100A8 containing a sulfinamide bond between Cys41 and Lys34/35 also reduced MC activation, indicating an additional pathway(s). S100A8 did not suppress antigen/IgE-induced responses of CBMC possibly because these may not truly reflect fullymature human tissue MCs. S100A8 did not alter UVB-induced IL-8 release by CBMCs, or affect apoptosis. Murine S100A8 may have anti-inflammatory properties by regulating MC activation in an activator-specific manner, at least partially by scavenging ROS to suppress intracellular signalling.
5

Régulation de l'activité de la NADPH oxydase des neutrophiles par des enzymes du métabolisme du glucose et l'hétérocomplexe S100A8/S100A9 : application à la polyarthrite rhumatoïde / Regulation of phagocyte NADPH oxydase activity by enzymes regulating glucose metabolism and S100A8/S100A9 heterocomplex : application to rheumatoid arthritis

Baillet, Athan 09 December 2011 (has links)
La Polyarthrite Rhumatoïde est caractérisée par une synovite à l’origine de lésions progressives ostéo-articulaires induites par les formes réactives de l’oxygène (ROS) produites par la NADPH oxydase des polynucléaires neutrophiles (PMN). La NADPH oxydase des phagocytes, est formée d’un centre catalytique membranaire, le cytochrome b558, sur lequel vient s’associer des protéines cytosoliques régulatrices (p67phox, p47phox, p40phox et Rac1/2). Nous avons étudié la spécificité de l’interaction entre la (6-phosphofructokinase 2) et de la 6PGDH (6-phosphogluconate déshydrogénase) et la NADPH oxydase des PMN. D’autre part, nous avons caractérisé les domaines de l’hétérocomplexe S100A8/A9 impliqués dans l’activation de la NADPH oxydase phagocytaire. Par ailleurs, une étude de la signature protéique dans le liquide synovial a été menée afin de rechercher l’empreinte de l’activation du PMN dans la PR.Après stimulation par le PMA, la 6PGDH et la PFK2 co-imunoprécipitent avec les facteurs cytosoliques p67phox, p47phox and p40phox. Les expériences de microscopie confocale suggèrent une co-localisation de ces deux enzymes du métabolisme du glucose avec la NADPH oxydase, dans des micro-domaines membranaires : les radeaux lipidiques. La 6PGDH est impliquée dans l’activation de la NADPH oxydase phagocytaire en élevant la concentration du NADPH cytosolique mais également en augmentant l’affinité de cette enzyme pour son substrat, le NADPH. PFK2 est l’enzyme majeure de la régulation de la glycolyse, voie est essentielle pour la production d’ATP du PMN. L’utilisation du complexe S100A8/A9 et de protéines chimères de fusion nous a permis de révéler que la partie C-terminale de S100A8 est impliquée dans la liaison avec le cytochrome b558 et l’activation de la NADPH oxydase phagocytaire. In vivo, le profil protéique du liquide articulaire de PR a révélé l’empreinte de l’activation du PMN dans cette pathologie avec une surexpression des protéines S100A8 et S100A9. Une production ectopique de S100A8/A9 par les synoviocytes de type fibroblastique a été mise en évidence.En conclusion, la 6PGDH, la PFK2 et l’hétérodimère S100A8/A9 sont de nouveaux partenaires d’activation de la NADPH oxydase des phagocytes. Dans la PR, l’activation des PMNs conduit à la sécrétion de S100A8/A9 qui semblent constituer à la fois des biomarqueurs pertinents, mais également des cibles thérapeutiques potentielles. / Rheumatoid Arthritis (RA) is caused by an inflammation of the synovial membrane leading to progressive joint destruction and deformation, related to the production NADPH oxidase related-reactive oxygen species (ROS) production. The phagocyte NADPH oxidase is a multi-protein complex formed by a catalytic core, i.e. the transmembrane cytochrome b558 and cytosolic regulators (p67phox, p47phox, p40phox and Rac1/2). We aimed at better analyzing the NADPH oxidase activation through the evaluation of the specificity of the interaction with 6PGDH or PFK2 and through the further analysis of the association with the S100A8/A9 heterocomplex. The RA-specific protein profiling was conducted in order to determine whether a PMN activation fingerprint could be revealed among RA specific proteins.Upon PMA stimulation, both 6PGDH and PFK2 co-imunoprecipitated with cytosolic factors p67phox, p47phox and p40phox. At the plasma membrane level, confocal microscopy experiments suggested a co-localization of either 6PGDH or PFK2 with the phagocyte NADPH oxidase in lipid rafts. 6PGDH enhanced the phagocyte NADPH oxidase activity by both improving the availability of cytosolic NADPH content and by increasing the affinity of the NADPH oxidase for its substrate. PFK2 also augmented the NADPH oxidase activity. PFK2 modulated the ATP concentration available for the phosphorylation of the phagocyte NADPH oxidase components and for the NDP Kinase related-Rac activation. The generation of truncated S100A8/S100A9 heterodimer chimera could reveal that the C-terminal region of S100A8 is involved in both the interaction and the activation of the phagocyte NADPH oxidase.In vivo, synovial fluid of RA patients was remarkably labelled with the PMN activation fingerprint. S100A8 and S100A9 proteins clearly distinguished RA synovial fluid from osteoarthritis and non RA-synovial fluids. An ectopic production of S100A8/S100A9 was shown in RA fibroblast like synoviocyte.In conclusion, 6PGDH, PFK2 and S100A8/A9 proteins are surrogate activating partners of the phagocyte NADPH oxidase. In RA, the activation of PMNs leads to the release of S100A8/A9 proteins which may constitute interesting biomarkers and promising therapeutic targets.
6

New mechanisms modulating S100A8 gene expression

Endoh, Yasumi, Medical Sciences, Faculty of Medicine, UNSW January 2008 (has links)
S100A8 is a highly-expressed calcium-binding protein in neutrophils and activated macrophages, and has proposed roles in myeloid cell differentiation and host defense. Functions of S100A8 are not fully understood, partly because of difficulties in generating S100A8 knockout mice. Attempts to silence S100A8 gene expression in activated macrophages and fibroblasts using RNA interference (RNAi) technology were unsuccessful. Despite establishing validated small interfering RNA (siRNA) systems, enzymaticallysynthesized siRNA targeted to S100A8 suppressed mRNA levels by only 40% in fibroblasts activated with FGF-2+heparin, whereas chemically-synthesized siRNAs suppressed S100A8 driven by an S100A8-expression vector by ~75% in fibroblasts. Suppression of the gene in activated macrophages/fibroblasts was low, and some enzymatically-synthesized siRNAs to S100A8, and unrelated siRNA to GAPDH, induced/enhanced S100A8 expression in macrophages. This indicated that S100A8 may be upregulated by type-1 interferon (IFN). IFN-β enhanced expression, but did not directly induce S100A8. Poly (I:C), a synthetic dsRNA, directly induced S100A8 through IL-10 and IFN-dependent pathways. Induction by dsRNA was dependent on RNA-dependent protein kinase (PKR), but not cyclooxygenase-2, suggesting divergent pathways in LPS- and dsRNA-induced responses. New mechanisms of S100A8 gene regulation are presented, that suggest functions in anti-viral defense. S100A8 expression was confirmed in lungs from influenza virus-infected mice and from a patient with severe acute respiratory syndrome (SARS). Multiple pathways via mitochondria mediated S100A8 induction in LPS-activated macrophages; Generation of reactive oxygen species via the mitochondrial electron transport chain and de novo synthesis of ATP may be involved. This pathway also regulated IL-10 production, possibly via PKR. Extracellular ATP and its metabolites enhanced S100A8 induction. Results support involvement of cell stress, such as transfection, in S100A8 expression. A breast tumor cell line (MCF-7) in which the S100A8 gene was silenced, was established using micro RNA technology; S100A8 induction by oncostatin M was reduced by >90% in stably-transfected cells. This did not alter MCF-7 growth. The new approach to investigate the role of S100A8 in a human tumor cell line may assist in exploring its functions and lead to new studies concerning its role in cancer.
7

Studies of in vivo prostate amyloidosis and autoimmune responses towards amyloid structures in neurodegeneration / Studier av in vivo prostata amyloidos och autoimmunitet mot amyloida strukturer vid neurodegenerativa sjukdomar

Yanamandra, Kiran January 2010 (has links)
By using multidisciplinary analysis of CA inclusions in prostate glands of patients diagnosed with prostate cancer, we have revealed that their major components are the amyloid forms of S100A8 and S100A9 proteins associated with numerous inflammatory conditions and types of cancer. We have demonstrated that material closely resembling CA can be produced from S100A8/A9 in vitro and shows the characters of amyloids. This process is facilitated by calcium or zinc, both of which are abundant in ex vivo inclusions. These observations were supported by computational analysis of the S100A8/A9 calcium-dependent aggregation propensity profiles. We have found DNA and proteins from Escherichia coli in CA bodies, suggesting that their formation is likely to be associated with bacterial infection. CA inclusions were also accompanied by the activation of macrophages and by an increase in the concentration of S100A8/A9 in the surrounding tissues, indicating inflammatory reactions. These findings, taken together, suggest a link between bacterial infection, inflammation and amyloid deposition of pro-inflammatory proteins S100A8/A9 in the prostate gland, such that a self-perpetuating cycle can be triggered and may increase the risk of malignancy in the ageing prostate. We evaluated the autoimmune reactions to endocrine (insulin) and astrocytical (S100B) biomarkers in the blood sera of PD patients compared with healthy controls. Peripheral immune responses can be sensitive indicators of disease pathology. We found a statistically significant increase of the autoimmune responses to both antigens in patients compared with controls. Heterogeneity of the immune responses observed in patients may reflect the modulating effect of multiple variables associated with neurodegeneration and also changes in the basic mechanisms of individual autoimmune reactivity. We did not detect any pronounced immune reactions towards insulin amyloid fibrils and oligomers in patients, indicating that an amyloid-specific conformational epitope is not involved in immune recognition of this amyloid type. Immune reactions towards S100B and insulin may reflect the neurodegenerative brain damaging processes and impaired insulin homeostasis occurring in PD. Generated auto-antibodies towards the major amyloidogenic protein involved in PD Lewy bodies - a-synuclein and its amyloid oligomers and fibrils were measured in the blood sera of early and late PD patients and controls by using ELISA, Western blot and Biacore surface plasmon resonance analyses. We found significantly higher antibody levels towards monomeric a-synuclein in the blood sera of PD patients compared to controls, though the responses decreased with PD progression. There were no noticeable immune responses towards amyloid oligomers, but substantially increased levels of IgGs towards a-synuclein amyloid fibrils both in PD patients and controls, which subsided with the disease progression. Pooled IgGs from PD patients and controls interacted also with amyloid fibrils of Ab (1-40) and hen lysozyme, however the latter were recognized with lower affinity. This suggests that IgGs bind to amyloid conformational epitope, though displaying higher specificity towards human amyloid species associated with neurodegeneration. The findings suggest the protective role of autoimmunity in PD and therefore immune reactions towards PD major amyloid protein - a-synuclein can be used in treatment strategies and in diagnostics, especially in identifying early disease.
8

New mechanisms modulating S100A8 gene expression

Endoh, Yasumi, Medical Sciences, Faculty of Medicine, UNSW January 2008 (has links)
S100A8 is a highly-expressed calcium-binding protein in neutrophils and activated macrophages, and has proposed roles in myeloid cell differentiation and host defense. Functions of S100A8 are not fully understood, partly because of difficulties in generating S100A8 knockout mice. Attempts to silence S100A8 gene expression in activated macrophages and fibroblasts using RNA interference (RNAi) technology were unsuccessful. Despite establishing validated small interfering RNA (siRNA) systems, enzymaticallysynthesized siRNA targeted to S100A8 suppressed mRNA levels by only 40% in fibroblasts activated with FGF-2+heparin, whereas chemically-synthesized siRNAs suppressed S100A8 driven by an S100A8-expression vector by ~75% in fibroblasts. Suppression of the gene in activated macrophages/fibroblasts was low, and some enzymatically-synthesized siRNAs to S100A8, and unrelated siRNA to GAPDH, induced/enhanced S100A8 expression in macrophages. This indicated that S100A8 may be upregulated by type-1 interferon (IFN). IFN-β enhanced expression, but did not directly induce S100A8. Poly (I:C), a synthetic dsRNA, directly induced S100A8 through IL-10 and IFN-dependent pathways. Induction by dsRNA was dependent on RNA-dependent protein kinase (PKR), but not cyclooxygenase-2, suggesting divergent pathways in LPS- and dsRNA-induced responses. New mechanisms of S100A8 gene regulation are presented, that suggest functions in anti-viral defense. S100A8 expression was confirmed in lungs from influenza virus-infected mice and from a patient with severe acute respiratory syndrome (SARS). Multiple pathways via mitochondria mediated S100A8 induction in LPS-activated macrophages; Generation of reactive oxygen species via the mitochondrial electron transport chain and de novo synthesis of ATP may be involved. This pathway also regulated IL-10 production, possibly via PKR. Extracellular ATP and its metabolites enhanced S100A8 induction. Results support involvement of cell stress, such as transfection, in S100A8 expression. A breast tumor cell line (MCF-7) in which the S100A8 gene was silenced, was established using micro RNA technology; S100A8 induction by oncostatin M was reduced by >90% in stably-transfected cells. This did not alter MCF-7 growth. The new approach to investigate the role of S100A8 in a human tumor cell line may assist in exploring its functions and lead to new studies concerning its role in cancer.
9

sRAGE, S100 proteins and PTPN22 C1858T genetic polymorphism in rheumatoid arthritis

Yueh-Sheng Chen Unknown Date (has links)
Rheumatoid arthritis is a chronic inflammatory autoimmune disease. Measurement of the level of serum markers (sRAGE, S100A9, S100A8 and S100A12) and genetic testing for the presence of the PTPN22 genetic polymorphism could help elucidate the underlying cause of inflammation and complications in RA, such as atherosclerosis. Therefore, serum levels of sRAGE, S100A9, S100A8 and S100A12 were measured by ELISA in patients with established RA (n=138). The associations between the serum levels of these molecules; and inflammatory markers and RA complications were analysed by multiple linear regression modelling. Established RA patients (n=192) were investigated for the PTPN22 C1858T genetic polymorphism by PCR-RFLP. Multiple logistic regression modelling was used to examine the association between PTPN22 C1858T genetic polymorphism and inflammatory markers and RA complications. In RA patients, we found that serum levels of S100A9 were associated with the body mass index (BMI); and the presence of S100A8 and S100A12. The serum levels of S100A8 in RA patients were associated with the presence of anti-citrullinated peptide antibodies, rheumatoid factor and S100A9. The serum levels of S100A12 in RA patients were associated with the presence of anti-citrullinated peptide antibodies and S100A9; and a history of diabetes. Inflammatory markers and RA complications were not associated with the PTPN22 genetic polymorphism in established RA patients; serum level of triglyceride was the only variable associated with PTPN22 C1858T in multiple logistic regression analysis. Taken together, these data suggest that serum levels of sRAGE, S100A9 and S100A12 protein may be useful correlates of inflammation and autoantibody production in RA patients. Further studies are recommended to determine whether these markers predict clinical outcomes when measured at the onset of RA.
10

MARKÖRER OCH ANTI-FOSFOLIPIDANTIKROPPAR HOS PATIENTER MED SYSTEMISK LUPUS ERYTHEMATOSUS / markers and anti-phospholipid antibodies in systemic lupus erythematosus patients

Al Kurdi, Abdulrahman January 2023 (has links)
Systemisk lupus erythematosus (SLE) är en kronisk autoimmun sjukdom där immunförsvaret angriper kroppens egen vävnad och förorsakar inflammation. Den drabbar främst kvinnor i fertil ålder och antalet nya fall av SLE är 2–8 per 100 000 invånare årligen i Sverige. Sjukdomens orsak är okänd men tros bero på ett samspel mellan genetiska faktorer, miljöfaktorer och hormonpåverkan. Ökad risk för hjärtinfarkt och stroke syns hos SLE patienter. Markörer som är förknippade med SLE och kardiovaskulär sjukdom och presenterades i detta arbete är IFN-α2a, vaskulär celladhesionsmolekylen (VCAM-1) och S100A8/A9. Sjukdomen kännetecknas av bildandet av stora mängder autoantikroppar mot proteiner med nukleärt ursprung och dubbelsträngat DNA. Anti-fosfolipidantikroppar (aPL) är autoantikroppar som binder till strukturer på fosfolipider eller till komplex av proteiner och fosfolipider. Antikroppar mot kardiolipin (aCL) och mot β2-glykoprotein (aβ2GP1) är exempel på aPL och förekommer hos 20–30 % av SLE patienterna. En ytterligare aPL är anti-fosfatidylserin/protrombin (aPS/PT). aPL förknippas med högre risk för kardiovaskulär sjukdom. Syftet med arbetet var att mäta koncentrationen av IFN-α2a, VCAM-1, S100A8/A9 och aPL, och därefter analysera hur de förhåller sig till varandra samt förekomst av kardiovaskulär sjukdom. Koncentrationer av nämnda markörer och aPL mättes med olika immunoassays i 199 prover som tagits vid olika tidpunkter från 66 patienter, och korrelation analyserades med icke-parametriska metoder. Resultatet visar förväntade signifikanta korrelationer mellan sjukdomsaktivitet och IFN-α2a, VCAM-1 samt S100A8/A9. Alla undersökta aPL korrelerade med varandra. IgG antikroppar korrelerade bättre än IgM med IFN-α2a, VCAM-1, S100A8/A9 och sjukdomsaktiviteten. IFN-α2a hade en signifikant korrelation med VCAM-1, aCL-IgG och aPS/PT-IgG. VCAM-1 korrelerade däremot med IFN-α2a, aCL-IgG, aβ2GP1-IgG och aPS/PT-IgG. Ingen association mellan kardiovaskulär sjukdom och de undersökta markörerna samt aPL i patienternas första prov kunde påvisas. / Systemic lupus erythematosus (SLE) is a chronical autoimmune disease in which the body’s immune system attacks healthy tissue and causes inflammation. The disease affects mainly women of childbearing age with 2 to 8 new cases per 100 000 inhabitants yearly in Sweden. One main feature of SLE is the expression of autoantibodies specific to autoantigens with nuclear origin. The cause of SLE is unknown but it is thought to involve a combination of genetic factors, environmental factors, and hormonal influence. Risk of myocardial infarction and stroke is increased in SLE. Markers that are associated with SLE and cardiovascular disease and got presented in this paper are IFN-α2a, Vascular cell adhesion molecule-1 (VCAM-1) and the complex S100A8/A9. Antiphospholipid antibodies (aPLs) are a type of antibodies which binds to structures on phospholipids or to complex of proteins and phospholipids. Antibodies against cardiolipin (aCL) and β2-glycoprotein (aβ2GP1) are two aPLs which can be found in 20-30 % of SLE patients. Another example of aPLs is antiphosphatidylserine/prothrombin (aPS/PT). aPLs are associated with higher risk for CVD. The aim of this study was to study mentioned markers and aPLs to acquire better understanding of how they relate to each other and to CVD. The concentrations of these markers and aPLs were measured in 199 different samples which were taken from 66 patients and correlations were analyzed with non-parametric statistical methods. Results have shown as expected significant correlations for the biomarkers IFN-α2a, VCAM-1 and S100A8/A9 with disease activity. All aPLs have shown strong correlation to each other. IgG correlated better than IgM with the different biomarkers and disease activity. IFN-α2a had strong correlation to VCAM-1, aCL-IgG, and aPS/PT-IgG. VCAM-1 on the other hand had significant correlation to IFN-α2a, aCL-IgG, aβ2GP1-IgG and aPS/PT-IgG. No association could be found in this study between CVD and the studied markers, and aPLs in the first sample of each patient.

Page generated in 0.0331 seconds