71 |
Towards a science of human stories: using sentiment analysis and emotional arcs to understand the building blocks of complex social systemsReagan, Andrew James 01 January 2017 (has links)
We can leverage data and complex systems science to better understand society and human nature on a population scale through language --- utilizing tools that include sentiment analysis, machine learning, and data visualization.
Data-driven science and the sociotechnical systems that we use every day are enabling a transformation from hypothesis-driven, reductionist methodology to complex systems sciences.
Namely, the emergence and global adoption of social media has rendered possible the real-time estimation of population-scale sentiment, with profound implications for our understanding of human behavior.
Advances in computing power, natural language processing, and digitization of text now make it possible to study a culture's evolution through its texts using a "big data" lens.
Given the growing assortment of sentiment measuring instruments, it is imperative to understand which aspects of sentiment dictionaries contribute to both their classification accuracy and their ability to provide richer understanding of texts.
Here, we perform detailed, quantitative tests and qualitative assessments of 6 dictionary-based methods applied to 4 different corpora, and briefly examine a further 20 methods.
We show that while inappropriate for sentences, dictionary-based methods are generally robust in their classification accuracy for longer texts.
Most importantly they can aid understanding of texts with reliable and meaningful word shift graphs if (1) the dictionary covers a sufficiently large enough portion of a given text's lexicon when weighted by word usage frequency; and (2) words are scored on a continuous scale.
Our ability to communicate relies in part upon a shared emotional experience, with stories often following distinct emotional trajectories, forming patterns that are meaningful to us.
By classifying the emotional arcs for a filtered subset of 4,803 stories from Project Gutenberg's fiction collection, we find a set of six core trajectories which form the building blocks of complex narratives.
We strengthen our findings by separately applying optimization, linear decomposition, supervised learning, and unsupervised learning.
For each of these six core emotional arcs, we examine the closest characteristic stories in publication today and find that particular emotional arcs enjoy greater success, as measured by downloads.
Within stories lie the core values of social behavior, rich with both strategies and proper protocol, which we can begin to study more broadly and systematically as a true reflection of culture.
Of profound scientific interest will be the degree to which we can eventually understand the full landscape of human stories, and data driven approaches will play a crucial role.
Finally, we utilize web-scale data from Twitter to study the limits of what social data can tell us about public health, mental illness, discourse around the protest movement of #BlackLivesMatter, discourse around climate change, and hidden networks.
We conclude with a review of published works in complex systems that separately analyze charitable donations, the happiness of words in 10 languages, 100 years of daily temperature data across the United States, and Australian Rules Football games.
|
72 |
LARGE-SCALE NETWORK ANALYSIS FOR ONLINE SOCIAL BRAND ADVERTISINGZhang, Kunpeng, Bhattacharyya, Siddhartha, Ram, Sudha 12 1900 (has links)
This paper proposes an audience selection framework for online brand advertising based on user activities on social media platforms. It is one of the first studies to our knowledge that develops and analyzes implicit brand-brand networks for online brand advertising. This paper makes several contributions. We first extract and analyze implicit weighted brand-brand networks, representing interactions among users and brands, from a large dataset. We examine network properties and community structures and propose a framework combining text and network analyses to find target audiences. As a part of this framework, we develop a hierarchical community detection algorithm to identify a set of brands that are closely related to a specific brand. This latter brand is referred to as the "focal brand." We also develop a global ranking algorithm to calculate brand influence and select influential brands from this set of closely related brands. This is then combined with sentiment analysis to identify target users from these selected brands. To process large-scale datasets and networks, we implement several MapReduce-based algorithms. Finally, we design a novel evaluation technique to test the effectiveness of our targeting framework. Experiments conducted with Facebook data show that our framework provides significant performance improvements in identifying target audiences for focal brands.
|
73 |
A SENTIMENT BASED AUTOMATIC QUESTION-ANSWERING FRAMEWORKQiaofei Ye (6636317) 14 May 2019 (has links)
With the rapid growth and maturity of Question-Answering (QA) domain, non-factoid Question-Answering tasks are in high demand. However, existing Question-Answering systems are either fact-based, or highly keyword related and hard-coded. Moreover, if QA is to become more personable, sentiment of the question and answer should be taken into account. However, there is not much research done in the field of non-factoid Question-Answering systems based on sentiment analysis, that would enable a system to retrieve answers in a more emotionally intelligent way. This study investigates to what extent could prediction of the best answer be improved by adding an extended representation of sentiment information into non-factoid Question-Answering.
|
74 |
Automatic, adaptive, and applicative sentiment analysis / Analyse de sentiments automatique, adaptative et applicativePak, Alexander 13 June 2012 (has links)
L'analyse de sentiments est un des nouveaux défis apparus en traitement automatique des langues avec l'avènement des réseaux sociaux sur le WEB. Profitant de la quantité d'information maintenant disponible, la recherche et l'industrie se sont mises en quête de moyens pour analyser automatiquement les opinions exprimées dans les textes. Pour nos travaux, nous nous plaçons dans un contexte multilingue et multi-domaine afin d'explorer la classification automatique et adaptative de polarité.Nous proposons dans un premier temps de répondre au manque de ressources lexicales par une méthode de construction automatique de lexiques affectifs multilingues à partir de microblogs. Pour valider notre approche, nous avons collecté plus de 2 millions de messages de Twitter, la plus grande plate-forme de microblogging et avons construit à partir de ces données des lexiques affectifs pour l'anglais, le français, l'espagnol et le chinois.Pour une meilleure analyse des textes, nous proposons aussi de remplacer le traditionnel modèle n-gramme par une représentation à base d'arbres de dépendances syntaxiques. Dans notre modèles, les n-grammes ne sont plus construits à partir des mots mais des triplets constitutifs des dépendances syntaxiques. Cette manière de procéder permet d'éviter la perte d'information que l'on obtient avec les approches classiques à base de sacs de mots qui supposent que les mots sont indépendants.Finalement, nous étudions l'impact que les traits spécifiques aux entités nommées ont sur la classification des opinions minoritaires et proposons une méthode de normalisation des décomptes d'observables, qui améliore la classification de ce type d'opinion en renforçant le poids des termes affectifs.Nos propositions ont fait l'objet d'évaluations quantitatives pour différents domaines d'applications (les films, les revues de produits commerciaux, les nouvelles et les blogs) et pour plusieurs langues (anglais, français, russe, espagnol et chinois), avec en particulier une participation officielle à plusieurs campagnes d'évaluation internationales (SemEval 2010, ROMIP 2011, I2B2 2011). / Sentiment analysis is a challenging task today for computational linguistics. Because of the rise of the social Web, both the research and the industry are interested in automatic processing of opinions in text. In this work, we assume a multilingual and multidomain environment and aim at automatic and adaptive polarity classification.We propose a method for automatic construction of multilingual affective lexicons from microblogging to cover the lack of lexical resources. To test our method, we have collected over 2 million messages from Twitter, the largest microblogging platform, and have constructed affective resources in English, French, Spanish, and Chinese.We propose a text representation model based on dependency parse trees to replace a traditional n-grams model. In our model, we use dependency triples to form n-gram like features. We believe this representation covers the loss of information when assuming independence of words in the bag-of-words approach.Finally, we investigate the impact of entity-specific features on classification of minor opinions and propose normalization schemes for improving polarity classification. The proposed normalization schemes gives more weight to terms expressing sentiments and lower the importance of noisy features.The effectiveness of our approach has been proved in experimental evaluations that we have performed across multiple domains (movies, product reviews, news, blog posts) and multiple languages (English, French, Russian, Spanish, Chinese) including official participation in several international evaluation campaigns (SemEval'10, ROMIP'11, I2B2'11).
|
75 |
Sentiment Analysis of Nordic LanguagesMårtensson, Fredrik, Holmblad, Jesper January 2019 (has links)
This thesis explores the possibility of applying sentiment analysis to extract tonality of user reviews on the Nordic languages. Data processing is performed in the form of preprocessing through tokenization and padding. A model is built in a framework called Keras. Models for classification and regression were built using LSTM and GRU architectures. The results showed how the dataset influences the end result and the correlation between observed and predicted values for classification and regression. The project shows that it is possible to implement NLP in the Nordic languages and how limitations in input and performance in hardware affected the result. Some questions that arose during the project consist of methods for improving the dataset and alternative solutions for managing information related to big data and GDPR. / Denna avhandling undersöker möjligheten att tillämpa sentiment analys för att extrahera tonalitet av användarrecensioner på nordiska språk. Databehandling utförs i form av förprocessering genom tokenisering och padding. En modell är uppbyggd i en ramverkad Keras. Modeller för klassificering och regression byggdes med LSTM och GRU-arkitekturer. Resultaten visade hur datasetet påverkar slutresultatet och korrelationen mellan observerade och förutspådda värden för klassificering och regression. Projektet visar att det är möjligt att implementera NLP på de nordiska språken och hur begränsningar i input och prestanda i hårdvara påverkat resultatet. Några frågor som uppstod under projektet består av metoder för att förbättra datasetet och alternativa lösningar för hantering av information relaterad till stora data och GDPR.
|
76 |
Expansão de recursos para análise de sentimentos usando aprendizado semi-supervisionado / Extending sentiment analysis resources using semi-supervised learningBrum, Henrico Bertini 23 March 2018 (has links)
O grande volume de dados que temos disponíveis em ambientes virtuais pode ser excelente fonte de novos recursos para estudos em diversas tarefas de Processamento de Linguagem Natural, como a Análise de Sentimentos. Infelizmente é elevado o custo de anotação de novos córpus, que envolve desde investimentos financeiros até demorados processos de revisão. Nossa pesquisa propõe uma abordagem de anotação semissupervisionada, ou seja, anotação automática de um grande córpus não anotado partindo de um conjunto de dados anotados manualmente. Para tal, introduzimos o TweetSentBR, um córpus de tweets no domínio de programas televisivos que possui anotação em três classes e revisões parciais feitas por até sete anotadores. O córpus representa um importante recurso linguístico de português brasileiro, e fica entre os maiores córpus anotados na literatura para classificação de polaridades. Além da anotação manual do córpus, realizamos a implementação de um framework de aprendizado semissupervisionado que faz uso de dados anotados e, de maneira iterativa, expande o mesmo usando dados não anotados. O TweetSentBR, que possui 15:000 tweets anotados é assim expandido cerca de oito vezes. Para a expansão, foram treinados modelos de classificação usando seis classificadores de polaridades, assim como foram avaliados diferentes parâmetros e representações a fim de obter um córpus confiável. Realizamos experimentos gerando córpus expandidos por cada classificador, tanto para a classificação em três polaridades (positiva, neutra e negativa) quanto para classificação binária. Avaliamos os córpus gerados usando um conjunto de held-out e comparamos a FMeasure da classificação usando como treinamento os córpus anotados manualmente e semiautomaticamente. O córpus semissupervisionado que obteve os melhores resultados para a classificação em três polaridades atingiu 62;14% de F-Measure média, superando a média obtida com as avaliações no córpus anotado manualmente (61;02%). Na classificação binária, o melhor córpus expandido obteve 83;11% de F1-Measure média, superando a média obtida na avaliação do córpus anotado manualmente (79;80%). Além disso, simulamos nossa expansão em córpus anotados da literatura, medindo o quão corretas são as etiquetas anotadas semi-automaticamente. Nosso melhor resultado foi na expansão de um córpus de reviews de produtos que obteve FMeasure de 93;15% com dados binários. Por fim, comparamos um córpus da literatura obtido por meio de supervisão distante e nosso framework semissupervisionado superou o primeiro na classificação de polaridades binária em cross-domain. / The high volume of data available in the Internet can be a good resource for studies of several tasks in Natural Language Processing as in Sentiment Analysis. Unfortunately there is a high cost for the annotation of new corpora, involving financial support and long revision processes. Our work proposes an approach for semi-supervised labeling, an automatic annotation of a large unlabeled set of documents starting from a manually annotated corpus. In order to achieve that, we introduced TweetSentBR, a tweet corpora on TV show programs domain with annotation for 3-point (positive, neutral and negative) sentiment classification partially reviewed by up to seven annotators. The corpus is an important linguistic resource for Brazilian Portuguese language and it stands between the biggest annotated corpora for polarity classification. Beyond the manual annotation, we implemented a semi-supervised learning based framework that uses this labeled data and extends it using unlabeled data. TweetSentBR corpus, containing 15:000 documents, had its size augmented in eight times. For the extending process, we trained classification models using six polarity classifiers, evaluated different parameters and representation schemes in order to obtain the most reliable corpora. We ran experiments generating extended corpora for each classifier, both for 3-point and binary classification. We evaluated the generated corpora using a held-out subset and compared the obtained F-Measure values with the manually and the semi-supervised annotated corpora. The semi-supervised corpus that obtained the best values for 3-point classification achieved 62;14% on average F-Measure, overcoming the results obtained by the same classification with the manually annotated corpus (61;02%). On binary classification, the best extended corpus achieved 83;11% on average F-Measure, overcoming the results on the manually corpora (79;80%). Furthermore, we simulated the extension of labeled corpora in literature, measuring how well the semi-supervised annotation works. Our best results were in the extension of a product review corpora, achieving 93;15% on F1-Measure. Finally, we compared a literature corpus which was labeled by using distant supervision with our semi-supervised corpus, and this overcame the first in binary polarity classification on cross-domain data.
|
77 |
Wed 2.0: improving customer experience with wedding service providers through investigation of the ranking mechanism and sentiment analysis of user feedback on InstagramJäderlund, Maria January 2019 (has links)
Instagram is one of the main social platforms for business promotion. Millions of potential customers and endless visual marketing opportunities makes Instagram a perfect place to increase online sales. There are many tools and mechanisms to promote brands on Instagram such as paid advertising or using a pre-generated set of popular hashtags. In this regard, the presence and content of users’ comments becomes an important socio-psychological factor in the motivation to buy or use a product or service. The goal of this degree project is to investigate natural language processing techniques applied to users’ comments on Instagram in order to determine a new algorithm that will include content analysis to the list of feed ranking factors. As it is now, the user has to read through posts on Instagram to get an idea of the quality of a product or service. Therefore, a way to classify and rank products and services is needed. We propose a new algorithm called "Wed 2.0" that can assist consumers in their search of wedding services and products on Instagram. Data mining techniques and sentiment analysis are used to define the mood of the comments and structure user opinions as well as to rank accounts based on this knowledge.
|
78 |
Holy day effects on language: How religious geography, individual affiliation and day of the week relate to sentiment and topics on TwitterKramer, Stephanie 10 April 2018 (has links)
Religious belief and attendance predict improved well-being at the individual level. Paradoxically, geographic locations with high rates of religious belief and attendance are often those with the differentially high rates of societal instability and suffering. Many of the consequences of religiosity are context-based and vary across time, and holy days are naturally-occurring religious cues that have been shown to influence religiously-relevant attitudes and behaviors. I investigated the degree to which personal religiosity and religious geography (i.e. religious demographics with other location variables) individually and interactively predict well-being across days of the week.
In the first study, American Christians demonstrated greater well-being by expressing more positive sentiment in Twitter posts, while American Muslims displayed less well-being. Sundays were generally the most positive day, but American Muslims communicated more happiness on Fridays (the Muslim holy day). In the second study, Christianity did not predict increased well-being in the posts of college students. In the third study, global survey data with measures of religiosity and well-being indicated that the well-being consequences of religious affiliation depend on the religious group and location, and that people tend to be especially positive on their group’s holy day. Study four explored the latent topical content of Twitter posts. Across studies, religious minority status appeared to have a deleterious effect on well-being.
|
79 |
Análise de sentimentos baseada em aspectos e atribuições de polaridade / Aspect-based sentiment analysis and polarity assignmentKauer, Anderson Uilian January 2016 (has links)
Com a crescente expansão da Web, cada vez mais usuários compartilham suas opiniões sobre experiências vividas. Essas opiniões estão, na maioria das vezes, representadas sob a forma de texto não estruturado. A Análise de Sentimentos (ou Mineração de Opinião) é a área dedicada ao estudo computacional das opiniões e sentimentos expressos em textos, tipicamente classificando-os de acordo com a sua polaridade (i.e., como positivos ou negativos). Ao mesmo tempo em que sites de vendas e redes sociais tornam-se grandes fontes de opiniões, cresce a busca por ferramentas que, de forma automática, classifiquem as opiniões e identifiquem a qual aspecto da entidade avaliada elas se referem. Neste trabalho, propomos métodos direcionados a dois pontos fundamentais para o tratamento dessas opiniões: (i) análise de sentimentos baseada em aspectos e (ii) atribuição de polaridade. Para a análise de sentimentos baseada em aspectos, desenvolvemos um método que identifica expressões que mencionem aspectos e entidades em um texto, utilizando ferramentas de processamento de linguagem natural combinadas com algoritmos de aprendizagem de máquina. Para a atribuição de polaridade, desenvolvemos um método que utiliza 24 atributos extraídos a partir do ranking gerado por um motor de busca e para gerar modelos de aprendizagem de máquina. Além disso, o método não depende de recursos linguísticos e pode ser aplicado sobre dados com ruídos. Experimentos realizados sobre datasets reais demonstram que, em ambas as contribuições, conseguimos resultados próximos aos dos baselines mesmo com um número pequeno de atributos. Ainda, para a atribuição de polaridade, os resultados são comparáveis aos de métodos do estado da arte que utilizam técnicas mais complexas. / With the growing expansion of the Web, more and more users share their views on experiences they have had. These views are, in most cases, represented in the form of unstructured text. The Sentiment Analysis (or Opinion Mining) is a research area dedicated to the computational study of the opinions and feelings expressed in texts, typically categorizing them according to their polarity (i.e., as positive or negative). As on-line sales and social networking sites become great sources of opinions, there is a growing need for tools that classify opinions and identify to which aspect of the evaluated entity they refer to. In this work, we propose methods aimed at two key points for the treatment of such opinions: (i) aspect-based sentiment analysis and (ii) polarity assignment. For aspect-based sentiment analysis, we developed a method that identifies expressions mentioning aspects and entities in text, using natural language processing tools combined with machine learning algorithms. For the identification of polarity, we developed a method that uses 24 attributes extracted from the ranking generated by a search engine to generate machine learning models. Furthermore, the method does not rely on linguistic resources and can be applied to noisy data. Experiments on real datasets show that, in both contributions, our results using a small number of attributes were similar to the baselines. Still, for assigning polarity, the results are comparable to prior art methods that use more complex techniques.
|
80 |
Detecting contrastive sentences for sentiment analysis / Detecção de sentenças contrastantes através de análise de sentimentosVargas, Danny Suarez January 2016 (has links)
A análise de contradições é uma área relativamente nova, multidisciplinar e complexa que tem por objetivo principal identificar pedaços contraditórios de texto. Ela pode ser abordada a partir das perspectivas de diferentes áreas de pesquisa, tais como processamento de linguagem natural, mineração de opinioes, recuperação de informações e extração de Informações. Este trabalho foca no problema de detectar contradições em textos – mais especificamente, nas contradições que são o resultado da diversidade de sentimentos entre as sentenças de um determinado texto. Ao contrário de outros tipos de contradições, a detecção de contradições baseada em sentimentos pode ser abordada como uma etapa de pós-processamento na tarefa tradicional de análise de sentimentos. Neste contexto, este trabalho apresenta duas contribuições principais. A primeira é um estudo exploratório da tarefa de classificação, na qual identificamos e usamos diferentes ferramentas e recursos. A segunda contribuição é a adaptação e a extensão de um framework de análise contradição existente, filtrando seus resultados para remover os comentários erroneamente rotulados como contraditórios. O método de filtragem baseia-se em dois algoritmos simples de similaridade entre palavras. Uma avaliação experimental em comentários sobre produtos reais mostrou melhorias proporcionais de até 30 % na acurácia da classificação e 26 % na precisão da detecção de contradições. / Contradiction Analysis is a relatively new multidisciplinary and complex area with the main goal of identifying contradictory pieces of text. It can be addressed from the perspectives of different research areas such as Natural Language Processing, Opinion Mining, Information Retrieval, and Information Extraction. This work focuses on the problem of detecting sentiment-based contradictions which occur in the sentences of a given review text. Unlike other types of contradictions, the detection of sentiment-based contradictions can be tackled as a post-processing step in the traditional sentiment analysis task. In this context, we make two main contributions. The first is an exploratory study of the classification task, in which we identify and use different tools and resources. Our second contribution is adapting and extending an existing contradiction analysis framework by filtering its results to remove the reviews that are erroneously labeled as contradictory. The filtering method is based on two simple term similarity algorithms. An experimental evaluation on real product reviews has shown proportional improvements of up to 30% in classification accuracy and 26% in the precision of contradiction detection.
|
Page generated in 0.0419 seconds