421 |
Low-energy electron induced processes in hydrocarbon films adsorbed on silicon surfacesShepperd, Kristin 06 July 2009 (has links)
The deposition of hydrocarbons on silicon substrates is a topic of wide interest. This is generally related to the technological importance of silicon carbide (SiC) and a growing interest in graphene and graphitic materials. Methods for producing these materials predominantly involve high processing temperatures. In the case of SiC, these high processing temperatures often result in the formation of surface defects, which compromise the electronic properties of the material. In an effort to grow SiC films at low temperatures, a technique known as electron-beam chemical vapor deposition (EBCVD) has been developed. Most electron beam deposition techniques employ a focused beam of high-energy (20-30 keV) electrons to form nanometer-sized solid deposits on a surface. However, in an effort to deposit macroscale films, a broad beam of low-energy electrons was used.
In addition to investigating the applications of low-energy electrons in semiconductor film growth, the fundamental chemical and physical processes induced by the bombardment of adsorbate-covered surfaces with low-energy electrons were examined. Specifically, the electron-stimulated desorption of various adsorbate-substrate systems such as acetylene adsorbed on silicon, graphene oxide on silicon, and ultrathin graphite films on silicon carbide have been investigated. The yields of cation and neutral desorbates as a function incident electron energy were measured, appearance thresholds were determined and mechanisms of desorption were proposed.
|
422 |
Compact modeling of silicon carbide (SiC) vertical junction field effect transistor (VJFET) in PSpice using Angelov model and PSpice simulation of analog circuit building blocks using SiC VJFET modelPurohit, Siddharth, January 2006 (has links)
Thesis (M.S.) -- Mississippi State University. Department of Electrical and Computer Engineering. / Title from title screen. Includes bibliographical references.
|
423 |
Development of simulation framework for the analysis of non-ideal effects in doping profile measurement using Capacitance-Voltage techniqueKrishnan, Bharat, January 2005 (has links)
Thesis (M.S.) -- Mississippi State University. Department of Electrical and Computer Engineering. / Title from title screen. Includes bibliographical references.
|
424 |
The manufacture and characterisation of composite nuclear fuel for improved in-reactor performanceBuckley, James January 2017 (has links)
Fuel for nuclear reactors with an increased thermal conductivity offers the potential for lower fuel operating temperatures and reduced fission gas release rates. Uranium dioxide (UO2) based composites offer a method of achieving a higher thermal conductivity. Silicon carbide (SiC) and molybdenum (Mo) have been identified as potential candidates for use in a composite fuel material. Uranium dioxide composites were manufactured with the inclusion of whiskers and granules of SiC up to a 30 vol% loading. The manufacturing route used was based on the current process employed to commercially manufacture UO2 fuel, by reductive sintering. Composites containing Mo were manufactured via spark plasma sintering and included loadings of up to 10 vol% Mo. The composites were characterised on their microstructural properties and where appropriate the thermal conductivity was determined by laser flash analysis. The composites containing SiC achieved low densities, 95%TD. The microstructure contained channel like structures of Mo, due to the use of an agglomerated UO2 precursor powder. An increased thermal conductivity was determined for the molybdenum composites. At the maximum measurement temperature of 800°C the increase was found to be 68% in the 10 vol% composites compared to UO2.
|
425 |
Cubic Silicon Carbide For Direct Photoelectrochemical Water Splitting / Carbure de silicium pour la dissociation photoélectrochimique directe de l'eauTengeler, Sven 09 November 2017 (has links)
Le but de ce travail était l’analyse de la capacité de carbure de silicium cubique à servir de matériau d’anode pour le fractionnement de l’eau photo-électrochimique direct. Les données récoltées (principalement la spectroscopie photo-électronique, électrochimie, Raman et spectroscopie UV-Vis) permettaient de ramener la faible efficacité de carbure de silicium cubique dopé n pour le dégagement d’oxygéne à des problèmes fondamentaux.Principalement le courant photoélectrique réalisable est limité par le flux des trous générés par photo à la surface de semi-conducteur. Comme carbure de silicium cubique est un semi-conducteur indirect, le faible coefficient d’absorption en combinaison avec une dotation élevée et une petite longueur de diffusion de trou ont été déterminés comme les facteurs limitant. Un film épitaxial additionnel de carbure de silicium n-cubique a entraîné une augmentation signifiante du courant photoélectrique maximal.La tension photoélectrique réalisable et les pertes dues aux recombinaisons dépendent principalement des propriétés de surface. L’utilisation des minces couches de catalyseur s’est révélé prometteur pour améliorer les deux propriétés même si cette technique a besoin d'optimisation parce que des états défectueux à l’interface limitent la tension photoélectrique. / The goal of this work was to investigate cubic silicon carbide as anode material for direct photoelectrochemical water splitting. From the performed measurements (mostly photoelectron spectroscopy, electrochemical measurements, Raman and UV-Vis spectroscopy) n-type cubic silicon carbide’s low oxygen evolution efficiency could be related to some fundamental problems.Primarily, the attainable photocurrent is limited by the flux of photo generated holes to the semiconductor surface. As cubic silicon carbide is a indirect semiconductor, the low absorption coefficient in combination with a high doping concentration and low hole diffusion length were determined as limiting factors. An additional epitaxial n- cubic silicon carbide film resulted in a significant improvement of the photocurrent.The obtainable photovoltage and recombination losses are mostly dependent on the surface properties. While a buried junction between the silicon carbide and a thin catalyst layer has proven to be promising for improving both properties, it still needs optimization, as Fermi level pinning from interface defect states drastically reduces the photovoltage.
|
426 |
Growth of epitaxial graphene on SiC (0001) by sublimation at low argon pressure / Croissance épitaxiale de graphène sur SiC (0001) par sublimation sous faible pression d'argonWang, Tianlin 12 October 2018 (has links)
Cette thèse porte sur l’optimisation d’un procédé de croissance, reproductible et contrôlé, d’une monocouche de graphène sur la face –Si du carbure de silicium (SiC (0001)) par sublimation sous faible pression d’argon (10 mbars). Au vue de la littérature, cette croissance à faible pression reste un challenge. Différentes techniques complémentaires telles que la spectroscopie Raman, la microscopie à force atomique, la microscopie à effet tunnel et des mesures d’effet Hall ont été menées afin de valider la croissance de la monocouche et d’en étudier sa morphologie de surface ainsi que ses propriétés structurales et électroniques. L’ensemble des résultats obtenus démontre le contrôle de la croissance d’une monocouche de graphène homogène, continue et de grande taille (6x6mm²). Plus de 50 échantillons monocouches ont été synthétisés pendant la thèse démontrant ainsi un procédé reproductible dans un bâti de croissance prototype de la société montpelliéraine Annealsys. Un mécanisme de croissance en bord de marche et la présence de marches et de terrasses a pu être mis en évidence alors que la littérature rapporte des difficultés à optimiser des procédés de croissance à basse pression d’argon. L’effet de la vitesse de montée en température a également été étudié dans le but de contrôler la morphologie du SiC de façon à pouvoir évaluer l’impact de la largeur des marches sur les propriétés électroniques du graphène. La largeur des marches obtenue (10 µm) permettront des mesures originales de transport, localisées sur une marche.Le procédé robuste et reproductible développé a permis différentes études approfondies sur ce graphène épitaxié. Sur la face-Si du SiC croît d’abord une couche tampon liée de manière covalente au SiC. Une deuxième couche tampon croît sous la première qui devient alors du graphène. Le peu de résultats présents dans la littérature nous a conduit à étudier cette couche d’interface entre le graphène et le SiC. A partir d’un nombre important de mesures par spectroscopie Raman, la signature de cette couche tampon a pu être obtenue. Un spectre Raman inhomogène de celle-ci a été mis en évidence. Pour aller plus loin, nous avons mis en œuvre deux techniques d’exfoliation du graphène pour avoir accès à la couche tampon sur SiC. Les signatures Raman des couches tampon couvertes ou non de graphène ont été analysées et comparées. Deux résultats majeurs sont à souligner : (i) l’aire du signal Raman de la couche tampon augmente après le retrait du graphène et (ii) deux pics fins sont observés seulement sur le spectre du graphène épitaxié. Ces résultats démontrent l’existence d’un couplage entre le graphène et la couche tampon.La dernière partie de ce travail de thèse concerne les propriétés électriques de ces monocouches de graphène sur SiC. Contrairement au classique dopage n du graphène épitaxié sur SiC (0001), un dopage résiduel de type p a été mesuré et attribué à un effet de l’environnement. Les impuretés chargées présentes à la surface des échantillons pourraient être à l’origine de flaques d’électrons et de trous (puddles) réparties à la surface des échantillons et responsables de leur dopage inhomogène. Ces fluctuations de potentiel ont été estimées en ajustant les données expérimentales à partir d‘un modèle mettant en jeu deux types de porteurs. De plus, nous avons pu mettre en évidence un changement de dopage d’un type p à n sous vide et sous illumination UV. La désorption d’absorbants chargés pourrait expliquer ce changement. Ces résultats démontrent une possible modulation des propriétés électriques de nos échantillons par un facteur externe tel que l’exposition aux UV. / This manuscript presents a work aiming to optimize a reproducible and controlled growth process of a monolayer graphene on Si-face of SiC (SiC (0001)) by sublimation under low argon pressure, i.e. 10 mbar. This low pressure process is challenging regarding the results in the literature. Various complementary techniques as optical microscopy, Raman spectroscopy, atomic force microscope, scanning tunneling microscope, and Hall Effect measurements have been performed on the samples in order to validate the monolayer graphene growth and investigate their surface morphology, their structural and electronic properties. All the results obtained from these measurements confirm the control of homogeneous, continuous and large-size (6×6 mm²) monolayer graphene from our optimized growth process. More than 50 monolayers graphene were produced during this thesis, validating a reproducible process in a prototype furnace developed by Annealsys, local company in Montpellier. The step-flow growth mode which encourages the formation of step-terrace surface structures is obtained under this unclassical growth condition contrary as established in the literature. Moreover, we have investigated the effect of the temperature ramp on the SiC morphology to evaluate the impact of the width of the terraces on electronic properties of graphene. Samples with terraces larger than 10 µm have been obtained allowing original transport measurements localized on only one terrace.Thanks to the reproducibility of our optimized growth process, further characterization studies on epitaxial graphene were investigated. The first carbon layer grown on SiC (0001) is a buffer layer covalently linked to SiC. Then a second buffer layer grows under the first one that becomes graphene. This well-known buffer layer at graphene / SiC (0001) interface has been investigated in this thesis to complete the poor literature on this topic. Statistically buffer Raman signatures have been obtained and compared to the literature demonstrating an inhomogeneous buffer layer. Furthermore, we have developed two graphene transfer techniques aiming to exfoliate graphene layer and leave behind only the buffer layer on the sample surface. The Raman signatures of buffer layer in these two cases (with or without graphene coverage) have been compared. We believe the evidenced evolution could be related to the coupling between graphene and buffer layer. Two major results illustrate this coupling: (i) the Raman signature of buffer layer increases in integrated intensity after the graphene transfer and (ii) two fines peaks are observed only in epitaxial graphene spectra and not in uncovered buffer layer spectra.The last part of this work concerns the electrical properties of monolayer graphene on SiC (0001). Contrary to the typical n-type doping of epitaxial graphene, the low p-type residual Hall concentration observed in our samples has been related to the atmospheric effect. More precisely, the charged impurities deposited on the sample surface could lead to the formation of electron-hole puddles, resulting in an inhomogeneous doping. The potential fluctuation has been estimated by fitting the experimental data using a model of two types of charges. Moreover, we have shown that the doping type change from p-type to n-type under vacuum condition or under UV illumination. This could be explained by desorption of the charged absorbents during the pumping or UV illumination. These results demonstrate the possibility of tuning the electrical properties of our samples by external factor such as UV light.
|
427 |
Développement de moules intrinsèquement antiadhésifs pour l'étude du collage en nano-impression / Development of intrinsically antiadhesive materials for the study of adhesion in nanoimprint proceduresBossard, Maxime 23 February 2016 (has links)
La nano-impression est une technique de lithographie qui consiste à reproduire les motifs contenus dans un moule, par pressage de celui-ci sur un film de résine. Cette technologie – rapide et peu coûteuse à mettre en oeuvre – est prometteuse mais son utilisation à l’échelle industrielle nécessite encore des améliorations notamment en termes de limitation de la défectivité des motifs reproduits. Des solutions existent pour pallier cette limitation, à travers notamment l’utilisation de traitements antiadhésifs qui se greffent en surface des moules et permettent de favoriser les étapes de démoulage. Cependant, ces traitements de moules ont une durée de vie limitée, ce qui limite la rentabilité globale du procédé de nano-impression.Ce projet de thèse s’intéresse à la question de la durabilité des moules et propose des matériaux alternatifs pour la fabrication de moules de nano-impression.Pour répondre aux exigences des acteurs de la nano-impressions, quatre matériaux (le Diamond-like carbon, le carbure de silicium et leurs versions dopées en fluor) ont été développés pour une utilisation en tant que matériaux de moules alternatifs au silicium et au quartz. La caractérisation des propriétés physiques et physico-chimiques a été réalisée de sorte à sélectionner les matériaux les plus prometteurs qui ont ensuite été structurés pour une utilisation en tant que moules fonctionnels.Les propriétés d’adhérence de ces matériaux ont ensuite été caractérisées tant en nano-impression assistée par ultraviolets qu’en nano-impression thermique. Ces essais ont permis de montrer que les matériaux développés, malgré une grande énergie de surface, présentent intrinsèquement un caractère antiadhésif lié à leur inertie chimique. / Nanoimprint is a lithography technology which consists in structuring a polymer film by pressing a structured mold into it. This promising method is low-cost and has a high throughput, but its implementation in industry still requires improvements, particularly regarding the defectivity of imprinted structures. To circumvent this defectivity, the use of antiadhesive treatments, grafted to the mold surface has been developed to facilitate the demolding step. However, these treatments have a limited lifespan, thereby empeding the global nanoimprint cost-effectiveness.This thesis focuses on mold durability and suggests alternative materials for the fabrication of nanoimprint molds.To match nanoimprint requirements, four materials (Diamond-like carbon, Silicon carbide and their fluorine-doped versions) were developed to be used as alternatives to silicon and quartz. Physical and physico-chemical characterization were carried out, so as to determine the best candidates that were then patterned, leading to usable molds.Adhesion properties of these materials were then characterized both in UV-nanoimprint and thermal-nanoimprint procedures. These investigations showed that despite their high surface energies, the developed materials exhibit intrinsically antiadhesive properties, thanks to their chemical inertness.
|
428 |
Robust Control of Wide Bandgap Power Electronics Device Enabled Smart GridJanuary 2017 (has links)
abstract: In recent years, wide bandgap (WBG) devices enable power converters with higher power density and higher efficiency. On the other hand, smart grid technologies are getting mature due to new battery technology and computer technology. In the near future, the two technologies will form the next generation of smart grid enabled by WBG devices. This dissertation deals with two applications: silicon carbide (SiC) device used for medium voltage level interface (7.2 kV to 240 V) and gallium nitride (GaN) device used for low voltage level interface (240 V/120 V). A 20 kW solid state transformer (SST) is designed with 6 kHz switching frequency SiC rectifier. Then three robust control design methods are proposed for each of its smart grid operation modes. In grid connected mode, a new LCL filter design method is proposed considering grid voltage THD, grid current THD and current regulation loop robust stability with respect to the grid impedance change. In grid islanded mode, µ synthesis method combined with variable structure control is used to design a robust controller for grid voltage regulation. For grid emergency mode, multivariable controller designed using H infinity synthesis method is proposed for accurate power sharing. Controller-hardware-in-the-loop (CHIL) testbed considering 7-SST system is setup with Real Time Digital Simulator (RTDS). The real TMS320F28335 DSP and Spartan 6 FPGA control board is used to interface a switching model SST in RTDS. And the proposed control methods are tested. For low voltage level application, a 3.3 kW smart grid hardware is built with 3 GaN inverters. The inverters are designed with the GaN device characterized using the proposed multi-function double pulse tester. The inverter is controlled by onboard TMS320F28379D dual core DSP with 200 kHz sampling frequency. Each inverter is tested to process 2.2 kW power with overall efficiency of 96.5 % at room temperature. The smart grid monitor system and fault interrupt devices (FID) based on Arduino Mega2560 are built and tested. The smart grid cooperates with GaN inverters through CAN bus communication. At last, the three GaN inverters smart grid achieved the function of grid connected to islanded mode smooth transition / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
|
429 |
Réalisation de nanodispositifs à base de nanofils Si et SiC pour des applications biocapteurs / Fabrication of Si and SiC nanowire-based nanodevices for biosensor applicationsFradetal, Louis 17 November 2014 (has links)
Les biocapteurs ont pour objectif de détecter de faible quantité de biomolécules afin d'améliorer laqualité et la précocité des diagnostics médicaux. Parmi eux, les transistors à nanofils sont desdispositifs prometteurs, car ils permettent la détection électrique de biomolécules sans marquage avecune grande sensibilité et un temps de réponse court. Actuellement, la plupart de ces dispositifs utilisedes nanofils de silicium, qui peuvent être limités par une faible résistance chimique, ce qui entrainedes variations du signal en présence de solutions biologiques. Pour palier ces inconvénients, le carburede silicium (SiC) est un matériau prometteur déjà utilisé dans le domaine biomédical pour lafabrication ou le recouvrement de prothèses ou de vis médicales. Outre ses propriétés semiconductrices,ce matériau est biocompatible et montre une forte inertie chimique. Par conséquent, ilouvre une voie à l'intégration in-vivo des capteurs.L'objectif de cette thèse est d'élaborer des biocapteurs SiC à l'échelle nanométrique pour détecter desmolécules d'ADN. La première étape est la fabrication des transistors à base de nanofils SiC à grillearrière. Un procédé original de fonctionnalisation combiné avec la lithographie et aboutissant augreffage covalent de molécules sondes d'ADN a été mis au point. Finalement, la réponse des capteursa été mesurée entre chaque étape du protocole de fonctionnalisation. Les variations du signal lors desétapes de greffage et d'hybridation des molécules d'ADN démontrent la capacité de ces dispositifs àdétecter des molécules d'ADN. Des mesures complémentaires ont aussi montré la stabilité, lasélectivité et la réversibilité du dispositif. / Biosensors are designed to detect small quantities of biomolecules in order to improve the accuracyand earliness of medical diagnosis. Among them, nanowire transistors are promising devices, as theyallow the electrical detection of biomolecules without labeling with high sensitivity and a shortresponse time. Currently, most of these devices use silicon nanowires, which can be limited by a lowchemical resistance, which leads to signal variations in the presence of biological solutions. Toovercome these limitations, silicon carbide (SiC) is a promising material already used in thebiomedical field for the coating of prosthesis or bone screws. In addition to its semiconductingproperties, this material is biocompatible and shows a high chemical inertness. Therefore, it opens theway for in vivo integration of sensors.The goal of this thesis is to develop SiC biosensors at the nanoscale to detect DNA molecules. Thefirst step is the fabrication of SiC nanowire-based back gate transistors. A novel process combiningfunctionalization and lithography leading to the covalent grafting of DNA probe molecules has beendeveloped. Finally, the sensor response was measured between each step of the functionalizationprocess. The variations of the signal during the steps of grafting and hybridization of DNA moleculesdemonstrate the ability of these devices to detect DNA molecules. Additional steps have also shownthe stability, selectivity and reversibility of the device.
|
430 |
Camadas antirrefletoras de carbono amorfo e carbeto de silício para células solares de silício cristalino / Antireflective coatings of amorphous carbon and silicon for crystalline silicon solar cellsSilva, Douglas Soares da, 1984- 12 August 2018 (has links)
Orientador: Francisco das Chagas Marques / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-12T20:56:17Z (GMT). No. of bitstreams: 1
Silva_DouglasSoaresda_M.pdf: 1607458 bytes, checksum: 64efea4eea6490352c0cec9182778a67 (MD5)
Previous issue date: 2009 / Resumo: Nesta tese estamos propondo o uso de carbono amorfo como um possível candidato para uso como camada antirrefletora em células solares de silício cristalino. O carbono amorfo pode ser preparado com alta banda proibida e tem propriedades importantes como alta dureza, baixo coeficiente de atrito, preparado à temperatura ambiente, etc. Além disso, o carbono amorfo é um material abundante na natureza e seu uso em eletrônica poderia reduzir o consumo de materiais tóxicos, contribuindo para reduzir danos ao meio ambiente.
Foram exploradas as propriedades óticas dos filmes de carbono e carbono de silício produzidos por diferentes métodos de deposição (RF Glow Discharge, RF Sputtering e FCVA_Filtered Cathodic Vacuum Arc) visando a aplicação como camadas antirrefletoras em células solares. O estudo de propriedades óticas dos filmes, como a banda proibida, índice de refração, coeficiente de absorção e reflexão integrada foram determinantes para as conclusões deste trabalho. Para isto foram importantes a fabricação de células solares e o estudo dos principais parâmetros fotovoltaicos: eficiência, corrente de curto circuito, tensão de circuito aberto e fator de preenchimento. As células solares de silício monocristalino foram desenvolvidas a partir da técnica amplamente difundida e conhecida através da difusão térmica de dopantes de fósforo, as chamadas homojunções pn.
Diferentes estruturas antirrefletoras à base de carbono foram estudadas e comparadas. Assim, investigamos o uso de carbono tipo diamante (diamond-like carbon DLC), carbono tipo polimérico (polimeric-like carbon ¿ PLC), carbono tetraédrico (ta-C), carbeto de silício (a-CxS ix-1:H). Para efeito de comparação com camadas antirrefletoras convencionais, adotamos o dióxido de estanho (SnO2) depositado pela técnica de spray químico.
Os resultados mostraram que filmes de carbono amorfo funcionam como camada antirefletora em células solares, embora não tenha sido possível encontrar em um único material todas as condições ideais para uma camada antirrefletora em silício cristalino. O carbeto de silício se mostrou bastante promissor como um composto à base de carbono e o próprio silício, sendo utilizado na fabricação do dispositivo e abundante na natureza. / Abstract: In this thesis we propose the use of amorphous carbon as a possible candidate for use as antireflective layer in crystalline silicon solar cells. The amorphous carbon can be prepared with high band gap and important properties such as high hardness, low coefficient of friction, prepared at room temperature, etc. Moreover, the amorphous carbon material is abundant in nature and its use in electronics could reduce the consumption of toxic materials, helping to reduce damage to the environment.
We explored the optical properties of carbon films and carbon silicon produced by different methods of deposition (RF Glow Discharge, RF Sputtering and FCVA_Filtered Cathodic Vacuum Arc) to the application as antireflective coatings in solar cells. The study of optical properties of films, such as forbidden band, index of refraction, absorption coefficient and integrated reflection were crucial to the conclusions of this work. For that, it was important the manufacture of solar cells and the study of key photovoltaic parameters: efficiency, short-circuit current, open circuit voltage and fill factor. The single crystal silicon solar cells were developed from the widely known technique of thermal diffusion of phosphorus doping, the pn homojunctions.
Different antireflective structures based on carbon were studied and compared. Thus, we investigated the use of carbon type diamond (diamond-like carbon DLC), carbon type polymer (polimeric-like carbon - PLC), tetrahedral carbon (ta-C), silicon carbide (a-CxSix-1: H). For purposes of comparison with conventional antireflective layers, we adopted the tin dioxide (SnO2) deposited by chemical spray technique.
The results showed that films of amorphous carbon layer acts as antireflective coatings in solar cells, although it was not possible to find a single material in all ideal conditions for an antireflective layer in crystalline silicon. The silicon carbide wasvery promising as a compound based on carbon and the silicon, been used in the manufacture of the device and abundant in nature. / Mestrado / Mestre em Física
|
Page generated in 0.032 seconds