• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 36
  • 32
  • 19
  • 18
  • 8
  • 7
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 279
  • 89
  • 78
  • 43
  • 34
  • 28
  • 25
  • 25
  • 22
  • 21
  • 19
  • 19
  • 18
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Fysikundervisning med och utan stöttning : En designstudie om det fysikaliska fenomenet flyta och sjunka / Physics learning with and without scaffolding : A design study about floating and sinking

Olsson, Amanda, Söderberg, Sofia January 2023 (has links)
Syftet med studien är att bidra med kunskap om hur ett stöttande arbetssätt utvecklar barns ämneskunskaper i undervisning om flyta och sjunka som fenomen. I studien deltog förskolebarn i åldrarna två till fem år, som gick på en åldersblandad avdelning i en förskola i Mellansverige. Studien omfattade en undervisningsdesign av lärandeobjektet flyta/sjunka där barnen delades in i två olika grupper. Barnen undersökte fenomenet i ett praktiskt experiment genom att använda sig utav genomskinliga petflaskor fyllda med fyra olika innehåll. Tre av barnen fick ett stöttande arbetssätt i ett systematiskt undersökande, medan de andra tre barnen fick utforska fenomenet på egen hand. Det empiriska datamaterialet bestod av videoupptagningar som sammanställdes och analyserades kvalitativt. Det teoretiska ramverket som användes var den sociokulturella teorin, för att tolka hur barnen uttryckte sin förståelse för det fysikaliska fenomenet. Vi utförde en tematisk analys av vår empiri. Resultatet visade att förskollärarnas förhållningssätt under undervisningen hade påverkan på barnens naturvetenskapliga ämneskunskap. Barnen som fick ett stöttande arbetssätt visade sin förståelse för fenomenet genom att uttrycka de naturvetenskapliga begreppen. Barnen som utforskade på egen hand visade att de hade tidigare erfarenheter av fenomenet, men utvecklade ingen ny ämneskunskap. I tillägg visade sig förskollärarnas förhållningssätt även påverka barnens möjligheter att kunna arbeta med systematiska undersökningar, i form av att barnen ställde hypoteser och diskuterade resultatet. / The purpose of the study is to contribute to our knowledge about how a supportive teaching approach helps develop children's scientific understanding and scientific competence during a hands-on activity about floating and sinking. The study involved two-to five-year-old preschool children in an age-mixed preschool in central Sweden. The children were divided into two separate groups. For this study we designed a lesson on the physical phenomenon of floating and sinking that included a hands-on activity. In this activity, children investigated the phenomenon in a practical experiment using transparent pet bottles filled with four different contents. Three of the children had a supportive teaching approach in a systematic investigation, while the other three children were allowed to explore the phenomenon on their own. The empirical data material consisted of video recordings which were analysed qualitatively. The theoretical framework, the sociocultural theory was used to interpret how the children expressed their understanding of the physical phenomenon. We performed a thematic analysis of our empirical data. The results show that the preschool teachers' approach during teaching had an impact on the children's scientific subject knowledge. The children who had a supportive teaching approach showed that they had knowledge about the phenomena by expressing the scientific concepts. The children who investigated on their own showed that they had experience of the phenomena, but they didn’t develop any new knowledge. In addition, the preschool teachers' attitudes also proved to affect the children's opportunities to work with systematic investigations, by using hypotheses and discuss the results.
162

Characterization of Yield Production and Grain Quality of Erect Panicle Rice (Oryza sativa L.) under Varied Nitrogen FertilizerApplication / 異なる窒素施肥下における直立穂イネ品種の収量生産ならびに子実品質特性

Olusegun, Idowu 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第24239号 / 農博第2518号 / 新制||農||1094(附属図書館) / 学位論文||R4||N5410(農学部図書室) / 京都大学大学院農学研究科農学専攻 / (主査)教授 白岩 立彦, 教授 中﨑 鉄也, 教授 那須田 周平 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
163

Implementation and Evaluation of a TDMA Based Protocol for Wireless Sensor Networks

Fiske, Robert M. January 2010 (has links)
No description available.
164

On Conformal Mappings and Vector Fields

Potter, Harrison D. P. 16 May 2008 (has links)
No description available.
165

Population ecology of the harvested understory palm Chamaedorea radicalis: pollination biology, female fecundity, and source-sink population dynamics

Berry, Eric J. 27 June 2006 (has links)
No description available.
166

Design and Analysis of Cooling Methods for Solar Panels

Palumbo, Adam M. January 2013 (has links)
No description available.
167

Characterization of the Effects of Internal Channel Roughness on Fluid Flow and Heat Transfer in Additively Manufactured Microchannel Heat Sinks

Sara K Lyons (13114335) 22 July 2022 (has links)
<p>  </p> <p>As the power density of computing devices increases, advanced liquid cooling thermal solutions offer an attractive thermal management approach. In particular, the low thermal resistance offered by microchannel heat sinks used in liquid cooling systems may enable increased total heat dissipation within fixed component temperature limits. There has been extensive work on the design of microchannel heat sinks, with many recent efforts to explore novel geometries and emerging manufacturing techniques. Of particular interest is additive manufacturing to allow for designs having complex, non-traditional internal geometries and package structures that cannot be made through conventional means. Despite the potential benefits for design and construction, additive manufacturing introduces new geometric uncertainties that could affect device performance. Direct metal laser sintering methods suitable for printing metal heat sinks typically produce a high internal roughness and other shape deviations in the flow paths of the final part. This extreme relative roughness and potential tortuosity in fluid flow through additively manufactured microchannels could lead to significant deviations in pressure drop and heat transfer predicted with traditional correlations and models. This work seeks to characterize the effects of high relative roughness on the friction factor and Nusselt number in additively manufactured microchannels having a rectangular cross section. Straight microchannel samples of 500 µm, 750 µm, and 1000 µm channel heights, and aspect ratios from 1 to 10 were manufactured to identify the design dimensions that resulted in visibly open channels, albeit with deviations in cross-sectional shape for submillimeter channel sizes and high internal roughness. Heat sink test samples were then printed with an array of these microchannels connected in parallel by inlet and outlet headers. Using water as the working fluid, the pressure drop and heat transfer performance of these sample heat sinks were characterized to explore how their behavior deviated from conventional predictions assuming smooth-walled channels. Flow through these additively manufactured microchannels displayed higher pressure drops than predicted, as well as a flow rate dependence of the hydrodynamic and thermal performance. These observed deviations are explored as effects of the physical conditions inside the channel as a result of additive manufacturing. Severe constriction of the channel would account for the difference in magnitude between the experimental and predicted results, while the introduction of flow redevelopment could lead to a flow rate dependence.  By further understanding the impact of these artifacts and deviations, these factors can be accounted for in the design and modelling of more complex additively manufactured heat sinks. </p>
168

Trait Variation and Long-term Population Dynamics of the Invasive Alliaria Petiolata (Garlic Mustard) Across Three Microhabitats in its Invaded Range

Hancock, Laura 01 February 2021 (has links) (PDF)
Long-term population dynamics across heterogeneous environments can be a major factor in determining species’ ability to expand their ranges and persist in novel environments. Whether and how the relative performance of populations in different microsites over time impacts invasion into new microsites is poorly understood. Though largely restricted to disturbed semi-shaded microhabitats in its home range, the invasive herb Alliaria petiolata (garlic mustard) successfully invades intact forest understories – a novel microhabitat – in its introduced range, where it is known to impact above and below ground community composition. To test the hypothesis that source-sink metapopulation dynamics may be promoting A. petiolata’s incursion into the forest understory, I utilized two multi-season field surveys – approximately a decade apart – to evaluate trait variation, biomass allocation, and long-term population demographics of A. petiolata growing at the forest edge, within the intact forest understory, and in the intermediate transition zone between the two. My results show that adult plants in the edge were taller and branchier, produced more fruits, and had higher total and reproductive biomass than plants in the intermediate and forest microhabitats. Over time, seedling density remained highest in the edge microhabitat compared to the forest and intermediate microhabitats, which had similar densities. Reproductive adult densities were similar among all microhabitats at the beginning of the study, but a decade later, all microhabitats exhibited a decline in the number of adult plants they supported. Populations in the intermediate microhabitat displayed the steepest decline in reproductive adults between sampling periods but still supported more adult plants than the forest microhabitat. Populations in all microhabitats were predicted to grow (λ>1) at the onset of the study. A decade later, declines in population size were only predicted in the forest understory (λ1). Since edge and intermediate patches had higher densities of adult plants which produced the most fruit and had larger reproductive biomass, it appears that the edge populations, and possibly the intermediate populations, have sustained the low-density forest populations through source-sink dynamics at my study sites.
169

Deep-marine depositional systems of the western North Atlantic: Insights into climate and passive-margin evolution

Parent, Andrew Michael 02 February 2022 (has links)
Stratigraphic successions of sedimentary rocks represent an important repository for signals pertaining to the history and evolution of Earth. Whereas the specific processes reflected by the stratigraphic record differ with respect to a given depositional environment, deposits in deep-marine settings, particularly passive margins, provide a unique, long-term record of paleoclimate, paleoceanography, and tectonics affecting the basin in question. Whereas deep-marine strata may be used to answer myriad of questions regarding the evolution and development of Earth systems, this dissertation narrowly targets two distinct aspects of sedimentation in deep-sea settings. The first two chapters focus on the utility of sortable silt in reconstructing bottom-current intensity linked to major shifts in climate. First, the relationship of sortable silt to flow velocity was tested under controlled conditions in a flow-through flume. This chapter investigates the correlation of sortable silt metrics across several experimental parameters, which is found here to dispute longstanding assumptions that multiple metrics must correlate to infer sediment sorting by deep currents. Additionally, the results are compared to calibrations from natural settings, where the correlation between the two datasets is remarkably similar, validating the relationship of sortable silt with current velocity in the deep ocean. Chapter two leverages sortable silt to investigate the long-term evolution of the Deep Western Boundary Current in the North Atlantic, targeting contourite drifts offshore Newfoundland to investigate the Eocene-Oligocene Transition (EOT), the most recent global greenhouse-to-icehouse transition. Results suggest that the Deep Western Boundary Current intensified gradually from 35-26 Ma, not abruptly at the EOT, and change consistent with deepening of the Greenland-Scotland Ridge and enhanced overflow of deep water into the North Atlantic. Chapter three utilizes detrital zircon U-Pb dating to characterize source-to-sink pathways and linkages during the rift-to-drift transition, in the Early Cretaceous, along the U.S. mid-Atlantic passive margin. This work shows that onshore and offshore system segments were initially disconnected, and progressively integrated over the course of ~45 Myr. Taken together, this work demonstrates a focused yet powerful example of how deep-marine sedimentary systems can be leveraged to robustly model major changes throughout Earth history. / Doctor of Philosophy / Sediments and sedimentary rocks deposited in the deep ocean house long-term signals pertaining to important Earth processes and properties. The nature of a given deposit, for example, can be the direct result of climatic conditions or tectonic development in adjacent mountainous and coastal environments. While the range of questions that can be answered using the sedimentary record is vast, this dissertation narrowly focuses on 1) how deep-ocean currents change over long periods of time, and 2) how onshore and offshore depositional environments correlate during the early phases of supercontinent break-up. To address the reconstruction of deep-ocean currents, laboratory experiments were performed to test how the sortable silt proxy – the 10-63 um fraction of a deposit – correlates with current velocity, the first controlled test of the proxy since its inception by paleoceanographers nearly three decades ago. Sortable silt is then applied to sediments of Eocene-Oligocene age, recovered from contourites offshore Newfoundland, Canada, to assess the long-term behavior of the Deep Western Boundary Current in the North Atlantic across the Eocene-Oligocene Transition (EOT). While the EOT, a major global cooling that occurred ~33.7 Ma, is well-studied with respect to Antarctica and its surrounding ocean basins, little is known about the paleoceanographic response of the North Atlantic. Grain-size records show a gradual increase in sortable silt before, during, and after the EOT, through entirety of the 9 Myr record. This trend is interpreted to reflect a long-term invigoration of the Deep Western Boundary Current in North Atlantic, likely due to progressive deepening of the Greenland-Scotland Ridge. The final chapter leverages detrital zircon U-Pb geochronology to compare sediment provenance of Early Cretaceous fluvial sandstones with coeval, distal turbidite sands. Results suggest that coastal rivers were fed by a single source terrane during the earliest Cretaceous, disconnected from the regional catchment feeding the submarine fan. By the Aptian-Albian, coastal rivers share a detrital zircon signature with turbidite strata, suggesting that rivers were progressively integrated into the sediment-routing system feeding the offshore margin.
170

Chaos in Pulsed Laminar Flow

Kumar, Pankaj 01 September 2010 (has links)
Fluid mixing is a challenging problem in laminar flow systems. Chaotic advection can play an important role in enhancing mixing in such flow. In this thesis, different approaches are used to enhance fluid mixing in two laminar flow systems. In the first system, chaos is generated in a flow between two closely spaced parallel circular plates by pulsed operation of fluid extraction and reinjection through singularities in the domain. A singularity through which fluid is injected (or extracted) is called a source (or a sink). In a bounded domain, one source and one sink with equal strength operate together as a source-sink pair to conserve the fluid volume. Fluid flow between two closely spaced parallel plates is modeled as Hele-Shaw flow with the depth averaged velocity proportional to the gradient of the pressure. So, with the depth-averaged velocity, the flow between the parallel plates can effectively be modeled as two-dimensional potential flow. This thesis discusses pulsed source-sink systems with two source-sink pairs operating alternately to generate zig-zag trajectories of fluid particles in the domain. For reinjection purpose, fluid extracted through a sink-type singularity can either be relocated to a source-type one, or the same sink-type singularity can be activated as a source to reinject it without relocation. Relocation of fluid can be accomplished using either "first out first in" or "last out first in" scheme. Both relocation methods add delay to the pulse time of the system. This thesis analyzes mixing in pulsed source-sink systems both with and without fluid relocation. It is shown that a pulsed source-sink system with "first out first in" scheme generates comparatively complex fluid flow than pulsed source-sink systems with "last out first in" scheme. It is also shown that a pulsed source-sink system without fluid relocation can generate complex fluid flow. In the second system, mixing and transport is analyzed in a two-dimensional Stokes flow system. Appropriate periodic motions of three rods or periodic points in a two-dimensional flow are determined using the Thurston-Nielsen Classification Theorem (TNCT), which also predicts a lower bound on the complexity generated in the fluid flow. This thesis extends the TNCT -based framework by demonstrating that, in a perturbed system with no lower order fixed points, almost invariant sets are natural objects on which to apply the TNCT. In addition, a method is presented to compute line stretching by tracking appropriate motion of finite size rods. This method accounts for the effect of the rod size in computing the complexity generated in the fluid flow. The last section verifies the existence of almost invariant sets in a two-dimensional flow at finite Reynolds number. The almost invariant set structures move with appropriate periodic motion validating the application of the TNCT to predict a lower bound on the complexity generated in the fluid flow. / Ph. D.

Page generated in 0.0314 seconds