• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 31
  • 23
  • 7
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 137
  • 48
  • 45
  • 42
  • 36
  • 30
  • 20
  • 19
  • 17
  • 14
  • 14
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Simulation numérique en dynamique rapide à l’aide de la méthode SPH (Smoothed Particle Hydrodynamics). : Application à la biomécanique de l’impact / Numerical simulation of high speed dynamic problems using Smoothed Particle Hydrodynamics (SPH) method. : Application to the biomechanics of impact

Taddei, Lorenzo 23 November 2017 (has links)
Dans le cadre de la simulation numérique portant sur la prédiction de phénomènes complexes, la modélisation de la pénétration d’un corps à travers un solide reste un challenge. Ceci est d’autant plus vrai si le corps impacté comporte une épaisseur importante devant les dimensions du projectile. Notamment, dans le contexte de la biomécanique des chocs, l’investigation des traumatismes suite à une blessure par balle, par un moyen numérique, nécessite la modélisation d’une zone pouvant être de plusieurs dizaines de fois supérieure aux dimensions du projectile sur un temps extrêmement court (de l’ordre de quelques dixièmes de milli-seconde). Les méthodes numériques dites classiques comme les éléments finis sont limitées dans ce domaine, dû en particulier à des problèmes de distorsions de maillage. Ce travail de thèse tente donc d’apporter une contribution dans le cadre de la modélisation des impacts pénétrants en proposant l'utilisation d’une méthode alternative sans maillage, la méthode "Smoothed Particle Hydrodynamics" (SPH).Méthode "Smoothed Particle Hydrodynamics, Impact Pénétrant, Biomécanique, Dynamique Rapide, Axisymétrie / Numerical simulation offers the possibility to investigate complexe phenomenons by giving access to useful informations about the evolution of a material system under constraints. Nevertheless, there are some situations where classical procedures, such as the Finite Elements Method (FEM), suffers from issues (e.g. mesh distorsions). One of these situations comes from a biomechanical context, where the investigation tends to observe the penetration of a projectile through human soft tissus. In this context, the objective of this Ph.D Thesis is to evaluate the capability of one alternative method, named Smoothed Particle Hydrodynamics method (SPH), to handle such modelling configurations.Smoothed Particle Hydrodynamics method, Penetrating Impact, Biomechanics, Fast Dynamics, Axis-symmetry
112

Analysis and Applications of Smoothed Particle Magnetohydrodynamics

Meglicki, Zdzislaw, Zdzislaw Meglicki [gustav@perth.ovpit.indiana.edu] January 1995 (has links)
Smoothed Particle Hydrodynamics (SPH) is analysed as the weighted residual method. In particular the analysis focuses on the collocation aspect of the method. Using Monte Carlo experiments we demonstrate that SPH is highly sensitive to node disorder, especially in its symmetrised energy and momentum conserving form. This aspect of the method is related to low [Beta] MHD instabilities observed by other authors. A remedy in the form of the Weighted Differences Method is suggested, which addresses this problem to some extent, but at a cost of losing automatic conservation of energy and momentum. ¶ The Weighted Differences Method is used to simulate propagation of Alfven and magnetosonic wave fronts in [Beta] = 0 plasma, and the results are compared with data obtained with the NCSA Zeus3D code with the Method of Characteristics (MOC) module. ¶ SPH is then applied to two interesting astrophysical situations: accretion on to a white dwarf in a compact binary system, which results in a formation of an accretion disk, and gravitational collapse of a magnetised vortex. Both models are 3 dimensional. ¶ The accretion disk which forms in the binary star model is characterised by turbulent flow: the Karman vortex street is observed behind the stream-disk interaction region. The shock that forms at the point of stream-disk interaction is controlled by the means of particle merges, whereas Monaghan-Lattanzio artificial viscosity is used to simulate Smagorinsky closure. ¶ The evolution of the collapsing magnetised vortex ends up in the formation of an expanding ring in the symmetry plane of the system. We observe the presence of spiralling inward motion towards the centre of attraction. That final state compares favourably with the observed qualitative and quantitative characteristics of the circumnuclear disk in the Galactic Centre. That simulation has also been verified with the NCSA Zeus3D run. ¶ In conclusions we contrast the result of our Monte Carlo experiments with the results delivered by our production runs. We also compare SPH and Weighted Differences against the new generation of conservative finite differences methods, such as the Godunov method and the Piecewise Parabolic Method. We conclude that although SPH cannot match the accuracy and performance of those methods, it appears to have some advantage in simulation of rotating flows, which are of special interest to astrophysics.
113

Contribution d'un modèle 3D de tracé de rayons dans un milieu complexe pour la localisation de sources infrasonores

Mialle, Pierrick 20 December 2007 (has links) (PDF)
La localisation des sources infrasonores est un exercice difficile, de par les grandes distances de propagation en jeu et en raison de la complexité du milieu atmosphérique. La compréhension de la propagation des ondes, le rôle et l'influence de l'atmosphère et de ses variations spatiales et temporelles, la connaissance des sources et des différents paramètres de détection, mais aussi la configuration et la répartition des stations du réseau de surveillance sont autant d'informations essentielles pour appréhender cet exercice. Dans l'optique de de l'obtention de localisations précises des évènements infrasonores, deux méthodes de construction de tables de propagations dépendant des stations, de la date et de l'heure sont introduites. Ces tables se basent sur des simulations par tracé de rayons par WASP-3D Sph (Windy Atmospheric Sonic Propagation), outil intégrant l'estimation de l'amplitude à l'aide de rais paraxiaux et la prise en compte des champs de vents horizontaux, en espace et en temps, le longs des trajectoires des rais. Les deux méthodes sont ensuite discutées et leurs performances comparées. Les tables sont centrées sur le récepteur, elles décrivent les variations spatiales des principaux observables infrasonores. Celles-ci offrent alors un instantané de la propagation atmosphérique dépendant de la distance entre la source et le récepteur, pour tout type de phases simulées. Pour chaque trajectoire de rai, les paramètres de propagation tels que la célérité, la déviation d'azimut, l'atténuation et l'altitude de retour sont prédits et permettent la construction des tables. Ces dernières aident à identifier les phases détectées et sont intégrées dans une démarche précise de localisation de source. La procédure de localisation est ensuite testées sur plusieurs cas d'études, tels que l'explosion d'une conduite de gaz à Ghislenghien, Belgique, le 30 juillet 2004, l'explosion d'une usine militaire à Novaky, Slovaquie, le 2 mars 2007 ou encore l'explosion du dépôt de carburant de Buncefield, Angleterre, le 11 décembre 2005. Les spécificités de chacun des évènements, les paramètres de propagations et les configurations utilisées pour les trois cas sont également introduites. L'accent est mis sur la précision de la localisation et son optimisation. Une étude de validation des tables de propagation est enfin abordée en considérant des stations du Système de Surveillance Internationale (SSI) situées le long d'un méridien - I18DK (Groenland, Danemark), I51UK (Bermudes, Angleterre), I25FR (Guyane, France), I08BO (La Paz, Bolivie), I01AR (Paso Flores, Argentine), I02AR (Ushuaia, Argentine), I54US (Antarctique, États-Unis). Ces tables permettent d'évaluer les variabilités spatiales, saisonnières et quotidiennes obtenues pour différents modèles atmosphériques empiriques HWM-93/MSISE-90 et réalistes ECMWF.
114

Applying Contact Angle to a Two-dimensional Smoothed Particle Hydrodynamics (SPH) model on a Graphics Processing Unit (GPU) Platform

Farrokhpanah, Amirsaman 22 November 2012 (has links)
A parallel GPU compatible Lagrangian mesh free particle solver for multiphase fluid flow based on SPH scheme is developed and used to capture the interface evolution during droplet impact. Surface tension is modeled employing the multiphase scheme of Hu et al. (2006). In order to precisely simulate the wetting phenomena, a method based on the work of Šikalo et al. (2005) is jointly used with the model proposed by Afkhami et al. (2009) to ensure accurate dynamic contact angle calculations. Accurate predictions were obtained for droplet contact angle during spreading. A two-dimensional analytical model is developed as an expansion to the work of Chandra et al. (1991). Results obtain from the solver agrees well to this analytical results. Effects of memory management techniques along with a variety of task assigning algorithms on GPU are studied. GPU speedups of up to 120 times faster than a single processor CPU were obtained.
115

Applying Contact Angle to a Two-dimensional Smoothed Particle Hydrodynamics (SPH) model on a Graphics Processing Unit (GPU) Platform

Farrokhpanah, Amirsaman 22 November 2012 (has links)
A parallel GPU compatible Lagrangian mesh free particle solver for multiphase fluid flow based on SPH scheme is developed and used to capture the interface evolution during droplet impact. Surface tension is modeled employing the multiphase scheme of Hu et al. (2006). In order to precisely simulate the wetting phenomena, a method based on the work of Šikalo et al. (2005) is jointly used with the model proposed by Afkhami et al. (2009) to ensure accurate dynamic contact angle calculations. Accurate predictions were obtained for droplet contact angle during spreading. A two-dimensional analytical model is developed as an expansion to the work of Chandra et al. (1991). Results obtain from the solver agrees well to this analytical results. Effects of memory management techniques along with a variety of task assigning algorithms on GPU are studied. GPU speedups of up to 120 times faster than a single processor CPU were obtained.
116

Etude physique et numérique de l'écoulement dans un dispositif d'injection de turbine Pelton

Leduc, Julien 13 December 2010 (has links) (PDF)
La turbine Pelton est une turbine hydraulique dont le fonctionnement se caractérise par l'interaction d'un jet d'eau avec les augets d'une roue. Cette étude a pour but de comprendre les phénomènes influençant le jet et son interaction avec les augets. Pour cela deux actions différentes ont été menées. Une première a visé à caractériser expérimentalement la fragmentation d'un jet de turbine Pelton. La seconde s'est attachée à développer une méthode numérique pouvant mener'à la simulation précise de jets réels de turbines Pelton. La partie expérimentale a permis de déterminer le mode de fragmentation de ces jets (atomisation turbulente), mais aussi l'influence de la rugosité des parois de l'injecteur sur les performances de la turbine. La participation de ce travail à un projet expérimental a permis de montrer l'influence de l'écoulement en sortie d'injecteur sur la fragmentation du jet. Les phénomènes physiques influençant principalement l'évolution du jet ont ainsi été déterminés. La partie numérique a eu pour but de mettre en place une méthode permettant de simuler l'évolution d'un jet de turbine Pelton (fragmentation) et son interaction avec un auget. Etant donnés les progrès de la méthode SPH-ALE pour la simulation d'impact de jets pour les turbines Pelton, il a été décidé d'adapter cette méthode pour les simulations visées. Ainsi une étude du choix de la vitesse des interfaces de problème de Riemann a permis de réaliser un modèle multiphase stable pour les forts rapports de densité (eau-air). Cette méthode s'est avérée garantir les propriétés de continuité de vitesse normale et de pression à l'interface entre les fluides. L'ajout des phénomènes de tension de surface s'est fait par l'adaptation du modèle CSF (Continuum Surface Force) et le développement d'un second modèle nommé Laplace Law Pressure Correction (LLPC).L'intégration du saut de pression dans le solveur de Riemann a nécessité une étude précise du calcul de la courbure et a permis d'améliorer la simulation de loi de Laplace. La méthode numérique a été ensuite validée sur les cas académiques d'onde gravitaire, de rupture de barrage et d'oscillation de goutte. Les ressources en mémoire et le temps de calcul associé à cette méthode ont nécessité la parallélisation du code de calcul. Le caractère lagrangien de la méthode a très largement influencé la méthode de découpe de domaine pour permettre une bonne répartition de la charge de calcul entre les différents processeurs. En conclusion les phénomènes physiques influençant la fragmentation de jets issus d'injecteurs de turbine Pelton sont désormais mieux connus et ils ont pu être introduits dans la méthode numérique. Les prochains développements porteront sur la simulation de jets dont la condition d'entrée s'attachera à être représentative des caractéristiques d'un écoulement en sortie d'un injecteur de turbine Pelton.
117

Développement d'une méthode de simulation de couplage fluide-structure à l'aide de la méthode SPH

LI, Zhe 14 November 2013 (has links) (PDF)
L'Interaction Fluide-Structure (IFS) est un sujet d'intérêt dans beaucoup de problèmes pratiques aussi bien pour les recherches académiques ainsi que pour les applications industrielles. Différents types d'approches de simulation numérique peuvent être utilisés pour étudier les problèmes d'IFS afin d'obtenir de meilleurs conceptions et d'éviter des incidents indésirables. Dans ce travail, le domaine du fluide est simulé par une méthode hybride sans maillage (SPH-ALE), et la structure est discrétisée par la méthode d' ' Eléments Finis (EF). Considérant le fluide comme un ensemble de particules, on peut suivre l'interface entre le fluide et la structure d'une manière naturelle. Une stratégie de couplage conservant l'énergie est proposée pour les problèmes d'IFS transitoires où différents intégrateurs temporels sont utilisés pour chaque sous-domaine: 2nd ordre schéma de Runge-Kutta pour le fluide et schéma de Newmark pour le solide. En imposant la continuité de la vitesse normale à l'interface, la méthode proposée peut assurer qu'il n'y a ni injection d'énergie ni dissipation d'énergie à l'interface. L'énergie de l'interface est donc nulle (aux erreurs de troncature près) durant toute la période de simulation numérique. Cette méthode de couplage assure donc que la simulation de couplage est numériquement stable en temps. Les expérimentations numériques montrent que le calcul converge en temps avec l'ordre de convergence minimal des schémas utilisés dans chaque sous-domaine. Cette méthode proposée est d'abord appliquée 'a un problème de piston mono-dimensionnel. On vérifie sur ce cas qu'elle ne dégrade pas l'ordre de précision en temps des schémas utilisés. On effectue ensuite les études des phénomènes de propagation d'ondes de choc au travers de l'interface fluide-structure. Un excellent accord avec la solution analytique est observé dans les cas de teste de propagation d'onde en 1-D. Finalement, les exemples multi-dimensionnels sont présentés. Ses résultats sont comparés avec ceux obtenus par d'autres méthodes de couplage.
118

Représentation et rendu de l'océan en synthèse d'images réalistes

Darles, Emmanuelle 24 October 2008 (has links) (PDF)
De nos jours, les images de synthèse sont omniprésentes dans notre quotidien. Le réalisme de ces images est grandissant, surprenant, et il n'est souvent pas aisé de distinguer la réalité de la virtualité, cette réalité faite et enrichie par toute la complexité des phénomènes naturels qui nous entourent. L'eau est un de ces phénomènes dont la variété et la richesse dynamique rend la représentation complexe. Nous nous intéressons dans cette thèse 'a sa forme la plus étendue, celle des océans, qui font partie intégrante de nos paysages. Dans un premier temps, nous étudions les méthodes permettant la simulation et le rendu de l'océan à la fois dans le domaine physique mais aussi dans le domaine de la synthèse d'images réalistes. Dans le second chapitre, nous proposons une nouvelle méthode de rendu unifiée permettant une visualisation plus rapide de l'océan au large et permettant d'approximer les échanges lumineux surfaciques et sous-surfaciques, l'écume et les phénomènes d' éblouissements. Dans le chapitre 3, nous nous intéressons au déferlement des vagues en proposant une nouvelle approche adaptative basée physique permettant de reproduire ce phénomène et de réduire les temps de calculs imposés par la résolution des équations de la mécanique des fluides en 3D. Dans le quatrième chapitre, nous étendons ce modèle en proposant une approche hiérarchique permettant une plus forte accélération du processus de résolution et d'obtenir une simulation proche de l'interactivité.
119

Formation of stars and stellar clusters in galactic environment

Smilgys, Romas January 2018 (has links)
Star and stellar cluster formation in spiral galaxies is one of the biggest questions of astrophysics. In this thesis, I study how star formation, and the formation of stellar clusters, proceeds using SPH simulations. These simulations model a region of 400 pc and 107 solar masses. Star formation is modelled through the use of sink particles which represent small groups of stars. Star formation occurs in high density regions, created by galactic spiral arm passage. The spiral shock compresses the gas and generates high density regions. Once these regions attain sufficiently high density, self-gravity becomes dominant and drives collapse and star formation. The regions fragment hierarchically, forming local small groups of stars. These fall together to form clusters, which grow through subsequent mergers and large scale gas infall. As the individual star formation occurs over large distances before forming a stellar cluster, this process can result in significant age spreads of 1-2 Myrs. One protocluster is found to fail to merge due to the large scale tidal forces from the nearby regions, and instead expands forming a dispersed population of young stars such as an OB association.
120

Using numerical simulations to identify observational signatures of self-gravitating protostellar discs

Hall, Cassandra January 2017 (has links)
In this thesis, I study numerical and semi-analytical models of self-gravitating protostellar discs, with the aim of furthering our understanding of the role of disc-self gravity in planet formation. At the time of writing, the ALMA era of observational astronomy is upon us. Therefore, I place my research into this context with synthetic images of both numerical and semi-analytical models. I begin with an examination into the apparent lack of convergence, with increasing resolution, of the fragmentation boundary in Smoothed Particle Hydrodynamics (SPH) simulations of a protostellar disc. I run a suite of SPH with different numerical implementations, and find that even very similar implementations can fundamentally change the final answer. I analyse a suite of SPH simulations that fragment to form gravitationally bound objects, with the motivation of informing future population synthesis model development. I find that fragment-fragment and fragment-disc interaction dominates the orbital evolution of the system even at very early times, and any attempt to produce a population of objects from the gravitational instability process must include these interactions. Before a disc fragments, it will go through a self-gravitating phase. If the disc cools globally on a timescale such that it is balanced by heating due to gravitational stresses, the disc will be in a state of quasi-equilibrium. So long as the disc mass is sufficiently low, and spirals are sufficiently tightly wound, then angular momentum transport can be described by the local approximation, for which there is an analytical description. Using this analytical description, I develop an existing 1D model into 3D, and examine a wide range of parameter space for which disc self-gravity produces significant non-axisymmetry. Using radiative transfer calculations coupled with synthetic observations, I determine that there is a very narrow range of parameter space in which a disc will have sufficiently large gravitational stresses so as to produce detectable spirals, but the stresses not be so large as to cause the disc to fragment. By developing a simple analytical prescription for dust, I show that this region of parameter space can be broadened considerably. However, it requires grains that are large enough to become trapped by pressure maxima in the disc, so I conclude that if self-gravitating spiral arms are detected in the continuum, it is likely that at least some grain growth has taken place.

Page generated in 0.0299 seconds