271 |
Développement de modèles mécanistiques et évaluation de l'incertitude des paramètres par bootstrap : application aux médicaments anti-angiogéniquesThai, Hoai-Thu 24 May 2013 (has links) (PDF)
L'angiogenèse, la croissance de nouveaux vaisseaux sanguins à partir de vaisseaux préexistants, joue un rôle crucial dans la croissance des tumeurs malignes et le développement des métastases. Elle est médiée notamment par le facteur de croissance vasculaire endothélial (VEGF), cible thérapeutique de nouveaux médicaments anti-angiogéniques comme l'aflibercept (Zaltrap , développé conjointement par Regeneron et Sanofi). Il s'agit d'une protéine de fusion comportant des domaines des récepteurs VEGFR-1VEGFR-2 et un fragment Fc des IgG1. Il bloque le VEGF A, le VEGF-B ainsi que le facteur de croissance placentaire (PIGF) et donc l'angiogenèse. Du fait de cette liaison, les propriétés pharmacocinétique (PK)/pharmacodynamique (PD) de ce nouveau médicament deviennent plus complexes. Dans cette thèse, nous avons étudié le mécanisme d'action de l'aflibercept en développant des modèles PK/PD de population. Nous avons tout d'abord construit le modèle PK conjoint de l'aflibercept libre etchez les volontaires sains grâce aux données riches. Nous avons ensuite appliqué avec succès ce modèle aux données chez les patients atteints de cancer et étudié également l'influence de facteurs physiopathologiques sur leur PK. Ce modèle a permis de simuler les différents schémas d'administration et de supporter le choix de dose thérapeutique. Afin de mieux évaluer l'efficacité de l'aflibercept, nous avons par la suite construit un modèle PD caractérisant l'inhibition de la croissance tumorale sous l'effet combiné de l'afliberceptdu FOLFIRI (5-fluorouracile, la leucovorine et l'irinotécan) chez les patients atteints du cancer colorectal métastatique. L'incertitude liée à l'estimation des paramètres dans des modèles complexes peut être biaiséeparfois n'est pas obtenue. Nous avons donc étudié par simulation l'incertitude des paramètres obtenue par différentes méthodes de bootstrap permettant de rééchantillonner deux niveaux de variabilité (inter- sujet et résiduelle) dans les modèles non linéaires à effets mixtes (MNLEM). Ainsi, nous avons montré que le bootstrap ne fournit de meilleures estimations de l'incertitude des paramètres que dans les MNLEM avec une forte non linéarité par rapport à l'approche asymptotique. Le bootstrap par paires fonctionne aussi bien que le bootstrap non paramétrique des effets aléatoires et des résidus. Cependant, ils peuvent être confrontés à des problèmes pratiques, par exemple des distributions asymétriques dans les estimations des paramètres et des protocoles déséquilibrés où la stratification pourrait être insuffisante.
|
272 |
Développement de méthodes d'analyse de données en ligneBar, Romain 29 November 2013 (has links) (PDF)
On suppose que des vecteurs de données de grande dimension arrivant en ligne sont des observations indépendantes d'un vecteur aléatoire. Dans le second chapitre, ce dernier, noté Z, est partitionné en deux vecteurs R et S et les observations sont supposées identiquement distribuées. On définit alors une méthode récursive d'estimation séquentielle des r premiers facteurs de l'ACP projetée de R par rapport à S. On étudie ensuite le cas particulier de l'analyse canonique, puis de l'analyse factorielle discriminante et enfin de l'analyse factorielle des correspondances. Dans chacun de ces cas, on définit plusieurs processus spécifiques à l'analyse envisagée. Dans le troisième chapitre, on suppose que l'espérance θn du vecteur aléatoire Zn dont sont issues les observations varie dans le temps. On note Zn_tilde = Zn − θn et on suppose que les vecteurs Zn_tilde forment un échantillon indépendant et identiquement distribué d'un vecteur aléatoire Z_tilde. On définit plusieurs processus d'approximation stochastique pour estimer des vecteurs directeurs des axes principaux d'une analyse en composantes principales (ACP) partielle de Z_tilde. On applique ensuite ce résultat au cas particulier de l'analyse canonique généralisée (ACG) partielle après avoir défini un processus d'approximation stochastique de type Robbins-Monro de l'inverse d'une matrice de covariance. Dans le quatrième chapitre, on considère le cas où à la fois l'espérance et la matrice de covariance de Zn varient dans le temps. On donne finalement des résultats de simulation dans le chapitre 5.
|
273 |
Inférence statistique dans un modèle à variances isolées de grande dimensionPassemier, Damien 04 December 2012 (has links) (PDF)
Cette thèse s'intéresse à l'estimation statistique dans un modèle à variances isolées (modèle spike) de grande dimension. La théorie des matrices aléatoires permet de prendre en compte cette spécificité, puisque la plupart des résultats limites s'appliquent aux matrices dont la taille tend vers l'infini. Une part importante de ces résultats concerne la matrice de covariance empirique. Dans un premier temps, nous nous intéressons à l'estimation du nombre de facteurs/spikes. La différence de comportement des valeurs propres de la matrice de covariance empirique, selon que l'on considère celles correspondant aux spikes ou non, nous permet de construire un estimateur. Ce dernier correspond à la différence de deux valeurs propres consécutives ordonnées. Nous établissons la consistance de l'estimateur dans le cas où toutes les spikes sont distinctes, et le comparons à deux méthodes existantes à travers des simulations. L'estimateur dépend d'un seuil qui doit remplir certaines conditions. Dans la suite, nous étendons le résultat de consistance au cas d'égalité et améliorons l'estimateur en changeant de seuil. Dans un second temps, nous considérons les estimateurs du maximum de vraisemblance d'un modèle à facteurs strict à variance homoscédastique. En utilisant un théorème limite pour les statistiques spectrales linéaires, nous corrigeons l'estimateur de la variance commune en grande dimension en donnant l'expression de son biais et en établissant sa loi limite. Nous présentons une version corrigée du test du rapport de vraisemblance d'adéquation à un modèle à facteurs. Finalement, nous construisons un test d'égalité de deux spikes.
|
274 |
Propriétés asymptotiques de la distribution d'un échantillon dans le cas d'un plan de sondage informatifBonnéry, Daniel 24 November 2011 (has links) (PDF)
Étant donné un modèle de super-population (des variables aléatoires sont générées indépendamment et selon une même loi initiale sur une population) et un plan de sondage informatif, une loi de probabilité limite et une densité de probabilité limite des observations sur l'échantillon sont définies correspondant à des tailles de population et d'échantillon tendant vers l'infini. Le processus aléatoire de sélection peut induire une dépendance entre les observations sélectionnés. Un cadre asymptotique et des conditions faibles sur le processus de sélection sont donnés, sous lesquels les propriétés asymptotiques classiques sont conservées malgré la dépendance des données : la convergence uniforme de la fonction de répartition empirique. Par ailleurs, nous donnons la vitesse de convergence de l'estimateur à noyau de la densité vers la densité limite de l'échantillon. Ces résultats constituent des indications selon lesquelles il est parfois possible de considérer que les réalisations sur l'échantillon sont id et suivent approximativement la densité limite définie, notamment dans une perspective d'inférence sur le modèle de super-population. Par exemple, étant donné un modèle paramétrique on peut définir la vraisemblance approchée de l'échantillon comme produit de densités limites et un estimateur de maximum de vraisemblance approchée, dont on établit la normalité asymptotique . La dernière partie traite de tirage équilibré : des algorithmes de calcul de probabilités d'inclusion minimisant une approximation de la variance de l'estimateur de Horvitz-Thompson d'un total sont proposés.
|
275 |
Quelques contributions à la modélisation et l'analyse statistique de processus spatiauxHardouin, Cécile 11 July 2011 (has links) (PDF)
Le thème de cette habilitation est centré sur la modélisation et l'étude statistique de processus spatiaux ou spatio-temporels. Le premier chapitre synthétise les travaux sur une modélisation spatio-temporelle générale, consistant en des chaînes de Markov (temporelles) de champs de Markov (spatiaux), et à une généralisation des auto-modèles de Besag qui constituent une classe de champs markoviens particulièrement utilisés en statistique spatiale. Ces modèles généraux permettent une modélisation non hiérarchique pour des données spatiales ou spatio-temporelles de nature mixte, composées par exemple d'une masse en zéro accompagnée de valeurs réelles. Nous étudions la structure de ces modèles et leurs propriétés statistiques, comme l'ergodicité ou l'estimation paramétrique. Des applications sur des données réelles en météorologie ou en images illustrent les résultats. Le second chapitre concerne la modélisation de mécanismes conduisant à l'adoption de certains standards technologiques, dans un cadre de l'économie spatiale. Le but est de décrire la diffusion d'un processus technologique et de proposer des tests de coordination spatiale lorsque la règle de choix est locale et peut être dictée par les choix précédents des voisins. Le chapitre 3 présente quelques résultats récents sur le calcul de la constante de normalisation pour un processus de Gibbs via un algorithme récursif sur les lois conditionnelles. Enfin, le chapitre 4 reprend des travaux plus anciens en statistique paramétrique sur les méthodes d'estimation par minimum de contraste en situation non ergodique, et les méthodes de régression temporelle avec résidu à longue mémoire.
|
276 |
Sur quelques résultats d'inférence pour les processus fractionnaires et les processus ponctuels spatiaux de GibbsCoeurjolly, Jean-François 23 November 2010 (has links) (PDF)
Ce mémoire présente une synthèse de mes activités de recherche depuis mon doctorat. Ces travaux sont organisés en trois parties distinctes. Les deux premières parties ont pour point commun l'inférence statistique de quelques processus stochastiques. Les processus centraux en question sont respectivement le mouvement Brownien fractionnaire (et quelques unes de ses extensions) et les processus ponctuels spatiaux de Gibbs. Comme, nous le verrons par la suite, bien que ces processus soient de nature très diff érente, ils s'inscrivent dans la modélisation de données dépendantes qu'elles soient temporelles ou spatiales. Nos travaux ont pour objectifs communs d'établir des propriétés asymptotiques de méthodes d'estimation ou de méthodes de validation, classiques ou originales. Par ailleurs, une autre similitude est la mise en perspective de ces processus avec des applications faisant intervenir des systèmes complexes (modélisation de signaux issus d'Imagerie par Résonance Magnétique Fonctionnelle et modélisation de taches solaires). La troisième partie, quant à elle, regroupe des thèmes satellites regroupés sous la dénomination contributions à la statistique appliquée.
|
277 |
Détection et classification de cibles multispectrales dans l'infrarougeMaire, F. 14 February 2014 (has links) (PDF)
Les dispositifs de protection de sites sensibles doivent permettre de détecter des menaces potentielles suffisamment à l'avance pour pouvoir mettre en place une stratégie de défense. Dans cette optique, les méthodes de détection et de reconnaissance d'aéronefs se basant sur des images infrarouge multispectrales doivent être adaptées à des images faiblement résolues et être robustes à la variabilité spectrale et spatiale des cibles. Nous mettons au point dans cette thèse, des méthodes statistiques de détection et de reconnaissance d'aéronefs satisfaisant ces contraintes. Tout d'abord, nous spécifions une méthode de détection d'anomalies pour des images multispectrales, combinant un calcul de vraisemblance spectrale avec une étude sur les ensembles de niveaux de la transformée de Mahalanobis de l'image. Cette méthode ne nécessite aucune information a priori sur les aéronefs et nous permet d'identifier les images contenant des cibles. Ces images sont ensuite considérées comme des réalisations d'un modèle statistique d'observations fluctuant spectralement et spatialement autour de formes caractéristiques inconnues. L'estimation des paramètres de ce modèle est réalisée par une nouvelle méthodologie d'apprentissage séquentiel non supervisé pour des modèles à données manquantes que nous avons développée. La mise au point de ce modèle nous permet in fine de proposer une méthode de reconnaissance de cibles basée sur l'estimateur du maximum de vraisemblance a posteriori. Les résultats encourageants, tant en détection qu'en classification, justifient l'intérêt du développement de dispositifs permettant l'acquisition d'images multispectrales. Ces méthodes nous ont également permis d'identifier les regroupements de bandes spectrales optimales pour la détection et la reconnaissance d'aéronefs faiblement résolus en infrarouge.
|
278 |
Le suicide à Paris de 1865 à 1913 : étude épidémiologiqueProulx, Diane 24 April 2018 (has links)
L'analyse des statistiques de suicides à Paris de 1865 à 1913 permet de constater les fluctuations, les tendances, les groupes plus à risque de se suicider, les temps et les méthodes de suicide préférés. En comparant Paris avec la France, nous pouvons voir les particularités de la métropole. Ainsi, nous percevons un effondrement du taux de suicide parisien de 1894 à 1904. Les groupes les plus à risque sont les hommes, les personnes âgées, les veufs et divorcés. Les méthodes de suicide à Paris ne changent guère, à l'exception des suicides par arme à feu qui augmentent et des noyades volontaires qui chutent. Si Paris semble davantage propice au suicide que la France, la capitale semble au contraire "protéger" ses habitants du suicide si on la compare à sa région. / Québec Université Laval, Bibliothèque 2013
|
279 |
Nonlinear acoustic wave propagation in complex media : application to propagation over urban environmentsLeissing, Thomas 30 November 2009 (has links) (PDF)
Dans cette recherche, un modèle de propagation d'ondes de choc sur grandes distances sur un environnement urbain est construit et validé. L'approche consiste à utiliser l'Equation Parabolique Nonlinéaire (NPE) comme base. Ce modèle est ensuite étendu afin de prendre en compte d'autres effets relatifs à la propagation du son en milieu extérieur (surfaces non planes, couches poreuses, etc.). La NPE est résolue en utilisant la méthode des différences finies et donne des résultats en accord avec d'autres méthodes numériques. Ce modèle déterministe est ensuite utilisé comme base pour la construction d'un modèle stochastique de propagation sur environnements urbains. La Théorie de l'Information et le Principe du Maximum d'Entropie permettent la construction d'un modèle probabiliste d'incertitudes intégrant la variabilité du système dans la NPE. Des résultats de référence sont obtenus grâce à une méthode exacte et permettent ainsi de valider les développements théoriques et l'approche utilisée
|
280 |
Contributions à l'identification de modèles avec des erreurs en les variablesThil, Stéphane 04 December 2007 (has links) (PDF)
La procédure d'identification consiste à rechercher un modèle mathématique adéquat pour un système donné à partir de données expérimentales et de connaissances disponibles a priori. La majorité des techniques ont été développées sous l'hypothèse d'un signal d'entrée parfaitement connu. Or, dans certains cas, celui-ci est également mesuré avec un capteur, et sa connaissance est autant sujette à erreur que celle de la sortie. C'est cette dernière situation où l'entrée et la sortie du système sont entachées de bruits -- nommée identification de modèles avec des erreurs en les variables (EIV) - qui est étudiée.<br />Le chapitre d'introduction permet de motiver l'intérêt porté aux modèles EIV. Le problème est ensuite formellement posé, avant la mise en évidence de quelques-unes des difficultés qui lui sont inhérentes.<br />Le second chapitre traite de l'identification de modèles à temps discret, et est lui-même divisé en deux parties. La première partie s'intéresse aux méthodes utilisant les statistiques d'ordre deux. Après avoir exposé les principales méthodes existantes, une présentation unifiée des méthodes de compensation du biais de l'estimateur des moindres carrés est donnée. Différents estimateurs fondés sur la technique de la variable instrumentale sont ensuite proposés. La seconde partie du chapitre porte sur les méthodes ayant recours aux statistiques d'ordre supérieur. Après un rapide état de l'art, les estimateurs des moindres carrés et des moindres carrés itératifs fondés sur l'équation du modèle, vérifiée par les cumulants, sont présentés. Enfin, le chapitre se conclut par l'obtention de l'expression de la matrice de covariance asymptotique de l'estimateur des moindres carrés fondés sur les cumulants d'ordre trois, proposé auparavant.<br />Le chapitre trois traite de l'identification de modèles EIV à temps continu. Si l'identification de modèles EIV à temps discret a fait l'objet de nombreux travaux au cours des dernières années, le cas des modèles à temps continu n'a en revanche été que très peu étudié. Après avoir exposé l'intérêt particulier des méthodes directes d'identification de modèles à temps continu, un état de l'art est dressé, au cours duquel nous présentons sur les rares méthodes existantes. Des estimateurs ayant recours aux cumulants d'ordre trois et d'ordre quatre sont ensuite proposés. Ils permettent en particulier de s'affranchir des hypothèses structurelles sur les bruits en entrée et en sortie, et par conséquent de traiter le cas général de bruit colorés (et même mutuellement corrélés) en entrée et en sortie.
|
Page generated in 0.0257 seconds