• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 211
  • 162
  • 12
  • 12
  • 12
  • 10
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 525
  • 82
  • 80
  • 63
  • 46
  • 38
  • 34
  • 33
  • 24
  • 24
  • 22
  • 22
  • 21
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Biosignatures of modern microbial mats, Kiritimati/Kiribati, Central Pacific

Shen, Yan 20 September 2019 (has links)
No description available.
272

Biocatalytic transformation of steroids using solvent-enhanced Beauveria bassiana

Gonzalez, Richard 01 May 2015 (has links)
This dissertation describes efforts to improve the oxidative capacity of n-alkane- induced Beauveria bassiana; a fungus and a versatile whole cell biocatalyst used in the biotransformation of steroids. n-Hexadecane was used as the carbon source during the growth of B. bassiana, presumably to induce the expression of oxidative enzymes, thus enhancing the oxidation of unactivated carbons. Dehydroepiandrosterone (DHEA) is an essential endogenous male-hormone and serves as a metabolic intermediate in the production of more potent androgens. Using DHEA as a substrate also provides the opportunity to study the hydroxylation of an unfunctionalized carbon, an attractive reaction that produces valuable intermediates for chemical synthesis. Results showed that exposing and inducing cells in n-hexadecane improves the synthesis of 11α-hydroxy derivatives. Reactions were carried out with cells grown on n-hexadecane, resulting in 65 ± 6.3 % conversion of DHEA to androstenediol (40.3% mM) and 3β,11∝,17β- trihydroxyandrost-5-ene (22.8% mM), as determined by HPLC, NMR and LCMS analyses. However, experiments with non-induced cells resulted in a poor substrate conversion (17%). To extend use of B. bassiana to pharmaceutical applications, it was necessary to optimize reaction conditions such as biocatalyst preparation, substrate concentration, agitation reaction temperature and pH. Higher substrate conversion, selectivity and yield of desired product were achieved with the reactor arrangement of “Resting Cells”. The apparent rate of reaction fits a Michaelis-Menten kinetic model with a maximum reaction rate of 4.45 mM/day, revealing that the transformation of intermediate androstenediol to desired 3β,11∝,17β-trihydroxyandrost-5-ene is the limiting step in the reaction. Interestingly, when a diluted amount of substrate was used, a higher yield of 11∞-hydroxy steroid was achieved. Also, reactions at 26°C with pH ranges between 6.0 and 7.0, resulted in the highest conversion (70%) and the higher product yield (45.8%). The maximum conversion of DHEA (71%) was achieved in experiments with high biomass loading, and the increment of desired product yield (11∝-hydroxy) was directly proportional to the amount of biomass used. Moreover, a high VMax/KM value was achieved with high biomass yields. Interestingly, the changes in biomass yield did not have a considerable effect on reaction selectivity. The main drawbacks of biocatalysis for production of steroids were addressed and approaches to minimize the drawbacks have been presented. The production of desired product (11∝-DHEA) was significantly improved using cells previously adapted to n-hexadecane.
273

Identification and Validation of Small Molecules Inhibiting Human Adenovirus Replication

Saha, Bratati 01 October 2019 (has links)
Human adenovirus (HAdV) mainly causes minor illnesses, but can lead to severe disease and death in both immunocompromised and immunocompetent patients. In such cases, the current standards of treatment often do not improve disease outcome and no approved antiviral therapy against HAdV exists. Since HAdV relies on cellular machinery to assist in the progression of the virus lifecycle, we hypothesized that small molecules targeting certain cellular proteins/pathways, without severely affecting cell health, may serve as effective anti-HAdV compounds. Thus, we aimed to identify novel inhibitors of HAdV, and investigate the molecular mechanism to determine new therapeutic targets for intervention in HAdV infection. We first examined the antiviral properties of pan-histone deacetylase (HDAC) inhibitor SAHA and found that the drug affects multiple stages of the HAdV lifecycle, resulting in significant reductions in virus yield. SAHA was effective in decreasing gene expression from clinically relevant HAdV serotypes. Subsequent investigations on the role of HDACs in HAdV infection led us to determine that class I HDAC activity, mainly HDAC2, is necessary for optimal viral gene expression. Using a wildtype-like HAdV reporter construct that allows us to monitor virus replication by fluorescence microscopy, we then designed an efficient system for screening small molecules to identify novel HAdV inhibitors. We screened over 1300 small molecules, and the screen was sensitive enough to detect compounds with both robust and modest antiviral activity. Several positive hits were validated to reduce HAdV gene expression and yield from infected cells. Further investigation on the efficacy of these compounds and the mechanism behind their inhibition of HAdV can lead to the discovery of new pharmacological targets and the development of more effective antivirals.
274

Calming the ocular storm : the effect of corticosteroids in inflammatory oedema

Banz, Kelly January 2009 (has links)
The primary aim of this research is to test the therapeutic potential of certain new generation corticosteroid drugs in order to develop safe and effective treatment for eye diseases that result in oedema, or swelling. The rising incidence of diabetes and the ageing population of developed countries mean that the prevalence of uveitis, diabetic retinopathy and age related macular degeneration will rise. Often, oedema is one of the reasons for vision loss. Corticosteroids are often used to reduce inflammation. Inflammation is one of several sources of oedema. Glucocorticoids, a class of corticosteroids that have anti-inflammatory properties, are thus used to treat ocular oedema. There is an unmet need to support clinical experience of the efficacy of steroids for ocular inflammation and oedema with more substantial scientific evidence. None of the drugs under investigation, with the exceptions of dexamethasone and triamcinolone, have been used for any ocular therapeutic purpose before. This thesis investigates “repurposing” fludrocortisone to the ophthalmic area. 11-Desoxycorticosterone (11D) and Deoxycorticosterone (DCS), other potentially valuable mineralocorticoids, remain completely untested. Lastly, Kenacort ®, or triamcinolone acetonide (TCA), is only used off-label by ophthalmologists. Methods: In the first study, corticosteroids, and especially mineralocorticoids, were investigated for their treatment efficacy in experimental uveitis, or intraocular inflammation (using a model known as endotoxin induced uveitis). In the second study, endothelial cells from choroidal blood vessels in the back of the eye were used in vitro to study whether corticosteroids reduce paracellular (between cells) permeability. Lastly, since endophthalmitis due to frequent injections is a side effect of corticosteroid use, the pharmacokinetics of different size formulations of corticosteroids were studied in an effort to find a formula that would have a prolonged dwell time within the eye.
275

Hormonal Regulation of Neural Stem Cell Proliferation and Fate Determination

Brännvall, Karin January 2004 (has links)
<p>Stem cells have the capacity for both self renewal, and to form all cell types in the body. Interestingly, so called neural stem cells (NSCs) are found in the adult human brain, which is of significance both out of a developmental perspective and from a clinical point of view. At the present moment, the regulation of neural stem cell (NSC) proliferation and fate determination is not completely understood.</p><p>The overall aim of this thesis was to study the mechanisms that regulate NSC proliferation and fate determination <i>in vitro</i> and <i>in vivo</i>. In particular, the roles of the female sex hormone estrogen and the testosterone analogue nandrolone, as well as the melanocortin α-melanocyte stimulating hormone (α-MSH), were analyzed in this context. Also, the breast cancer susceptibility gene one (BRCA-1), was studied in the brain with emphasis on regions containing NSCs.</p><p>Our findings show that estrogen and nandrolone have similar effects on NSCs; both decreased NSC proliferation and increased neurogenesis. Estrogen's ability to reduce proliferation was due to increased levels of p21, an inhibitor of cyclin dependent kinases. In contrast, no change in p21 was observed in the case of nandrolone, indicating differential regulation. Adult rats subjected to nandrolone injections had 30% reduced NSC proliferation in the dentate gyrus, indicating profound effects on NSCs <i>in vivo</i>.</p><p>The melanocortin α-MSH acted as a mitogen by increasing levels of cyclinD1 and retinoblastoma protein; as a result NSC proliferation was doubled.</p><p>Finally, BRCA-1 is expressed while NSCs proliferate, but is drastically down regulated upon differentiation, indicating that BRCA-1 could be used as a possible NSC marker.</p><p>In summary, in this thesis estrogen and nandrolone were identified as NSC regulators which decrease proliferation and positively influence neurogenesis. Also, we have identified the hormone α-MSH as a NSC mitogen, and BRCA-1 as a possible NSC marker.</p>
276

Hormonal Regulation of Neural Stem Cell Proliferation and Fate Determination

Brännvall, Karin January 2004 (has links)
Stem cells have the capacity for both self renewal, and to form all cell types in the body. Interestingly, so called neural stem cells (NSCs) are found in the adult human brain, which is of significance both out of a developmental perspective and from a clinical point of view. At the present moment, the regulation of neural stem cell (NSC) proliferation and fate determination is not completely understood. The overall aim of this thesis was to study the mechanisms that regulate NSC proliferation and fate determination in vitro and in vivo. In particular, the roles of the female sex hormone estrogen and the testosterone analogue nandrolone, as well as the melanocortin α-melanocyte stimulating hormone (α-MSH), were analyzed in this context. Also, the breast cancer susceptibility gene one (BRCA-1), was studied in the brain with emphasis on regions containing NSCs. Our findings show that estrogen and nandrolone have similar effects on NSCs; both decreased NSC proliferation and increased neurogenesis. Estrogen's ability to reduce proliferation was due to increased levels of p21, an inhibitor of cyclin dependent kinases. In contrast, no change in p21 was observed in the case of nandrolone, indicating differential regulation. Adult rats subjected to nandrolone injections had 30% reduced NSC proliferation in the dentate gyrus, indicating profound effects on NSCs in vivo. The melanocortin α-MSH acted as a mitogen by increasing levels of cyclinD1 and retinoblastoma protein; as a result NSC proliferation was doubled. Finally, BRCA-1 is expressed while NSCs proliferate, but is drastically down regulated upon differentiation, indicating that BRCA-1 could be used as a possible NSC marker. In summary, in this thesis estrogen and nandrolone were identified as NSC regulators which decrease proliferation and positively influence neurogenesis. Also, we have identified the hormone α-MSH as a NSC mitogen, and BRCA-1 as a possible NSC marker.
277

Anabolic androgenic steroids and central monoaminergic systems : Supratherapeutic doses of nandrolone decanoate affect dopamine and serotonin

Birgner, Carolina January 2008 (has links)
Supratherapeutic doses of anabolic androgenic steroids (AASs) are administered, not only as performance-enhancing drugs in the world of sports, but also in order to modify behaviour. AAS abusers are at risk of developing serious physical and psychological side effects such as dependence and aggressive behaviour. The aim of this thesis was to investigate the impact of supratherapeutic doses of nandrolone decanoate after subchronic administration on dopamine and serotonin pathways involved in drug dependence and aggression, in the male rat brain. Adult male Sprague-Dawley rats received intramuscular injections of nandrolone decanoate (3 or 15 mg/kg) or vehicle once daily for 14 days. Nandrolone decanoate pre-exposure abolished the effect of amphetamine on the 3,4-dihydroxyphenylacetic acid (DOPAC) tissue level in the hypothalamus and on the DOPAC/dopamine ratio in the hypothalamus and the hippocampus. A significant decrease of the basal extracellular DOPAC and homovanillic acid (HVA) levels could be detected in the nucleus accumbens, which remained low during the first hour following the amphetamine challenge. Nandrolone decanoate significantly reduced the activity of both monoamine oxidase A and B (MAO-A and -B) in the caudate putamen and amygdala. The gene transcript levels of MAO-B, and the dopamine D1 and D4 receptors were altered in limbic regions. No changes in transcriptional levels could be detected among the serotonin receptor genes examined. However, the density of the serotonin transporter protein was elevated in a range of aggression-related brain regions. Taken together, subchronic administration of nandrolone decanoate causes dopaminergic and serotonergic dysregulations in distinct brain regions. These areas of the brain are involved in the development of drug dependence and expression of impulsive and aggressive behaviours. These results may contribute to explain some of the behavioural changes often reported in AAS abusers, such as polydrug use and impaired impulse control.
278

Strenght training and anabolic steroids : a comparative study of the trapezius, a shoulder muscle and the vastus lateralis, a thigh muscle, of strength trained athletes

Eriksson, Anders January 2006 (has links)
Strength training is widely used to increase performance in sports with high physical demands. The use of drugs such as anabolic steroids among athletes is a wellknown phenomenon, and the effects of these drugs on physical performance documented. The studies presented in this thesis focused on the mechanisms of muscle fiber hypertrophy in the vastus lateralis and the trapezius muscles of strength trained elite athletes. The main hypothesis was that the muscle adaptations to strength training and anabolic steroids are muscle specific. Biopsies were obtained from the trapezius and the vastus lateralis from three groups of elite power lifters. Nine used drugs, ten did not and seven had previously used drugs. Six sedentary males served as controls. The biopsies were frozen and cut in serial cross sections. Histological and immunohistochemical staining techniques were used to analyze muscle fiber morphology and pathology. Fiber type distribution, fiber area, myonuclei number and distribution, satellite cell number and proportion of split fibers were counted and compared for the two muscles within and between the groups. The main findings were that: a) Muscle fiber hypertrophy by strength training is further increased by anabolic steroids. b) The number of nuclei per muscle fiber is higher in power lifters using anabolic steroids compared to non-steroids using lifters. c) Among power lifters who have withdrawn from anabolic steroid usage and training for several years, the number of myonuclei, both subsarcolemmal and internal, remains high. d) In active power lifters, anabolic steroids have no further effect on the number of satellite cells per fiber. e) Power lifters have a high proportion of split fibers. High intensity resistance training increases muscle strength and banned substances such as testosterone and anabolic steroids can enhance the training effects. The studies on muscle cell morphology presented in this thesis reveals that anabolic steroids and testosterone increases muscle fiber size and adds more nuclei to the muscle cell. Based on the morphological appearance of muscle sections from doped and nondoped power lifters, we conclude that testosterone and anabolic steroids enhances the hypertrophic effects of training without adding new features. The addition of myonuclei by training and doping appears to be longer lasting in some muscles than in others. The high proportion of split fibers in power lifter is probably due to high mechanical stress. The findings and conclusions in this thesis raise questions regarding relevant suspension times for athletes caught with banned substances in the body.
279

Biosynthesis of Various Steroids in vitro by Isolated Adrenal Cells in Primary Aldosteronism, Cushing's Syndrome, and Adrenogenital Syndrome due to Adrenocortical Adenoma

FUNAHASHI, HIROOMI, MIZUNO, SHIGERU 11 1900 (has links)
No description available.
280

The Behavioral Neuroendocrinology of Fish Sex Change: The Role of Steroids and Monoamines

Lorenzi, Varenka 02 July 2009 (has links)
Social status influences reproductive physiology in many species, and sex change in marine teleost fishes provides an excellent model to understand how an organism can modulate its reproductive system in response to social stimuli. The series of experiments presented in this dissertation has focused on the proximate mechanisms underlying sex change and, in particular, the neuroendocrine factors that might translate social information into physiological changes. The bluebanded goby (Lythrypnus dalli) is a sexually plastic fish, and the dominant female typically changes sex when the male is removed from the social group. The direct physical interactions between the male and the females were found to be the main sensory cues that inhibit sex change. Sex steroids can both modulate and be modulated by behavior, and as a result they have been the most obvious candidates for a key role in the regulation of sex change. Males and females showed similar diurnal patterns for steroid hormones, but females had significantly higher water-borne estrogen levels. Concentrations of estradiol, testosterone and 11-ketotestosterone presented sex and tissue differences in brain, gonad and muscle, and they varied in complex ways in different tissues during sex change. The neurotransmitter serotonin (5-HT) has been suggested to be involved in the inhibition of socially regulated sex change because of its role in the modulation of both reproductive and aggressive behavior. None of the pharmacological manipulations performed in L. dalli to alter serotonergic activity was able to overcome the input from the social environment and affect sex change. Neither monoamine levels nor the area or number of 5-HT immunoreactive neurons were different between males, females and sex changers or between dominant and subordinate females. The results do not support the hypothesis of a serotonergic inhibition on sex change in L. dalli, but show that rapid changes in brain androgen levels might be implicated in inducing behavioral or morphological changes associated with sex reversal. Also, steroids respond to changes in the social environment in different ways in different tissues so local steroid synthesis should receive greater attention, and caution is required when using circulating levels to understand behavioral regulation.

Page generated in 0.036 seconds