101 |
Comparison of 3-D Friction Stir Welding Viscoplastic Finite Element Model with Weld Data and Physically-Simulated DataPosada, Maria 06 December 2012 (has links) (PDF)
Models (both physical and numerical) of the friction stir (FS) welding process are used to develop a greater understanding of the influence of independent process parameters on dependent process output variables, such as torque, power, specific weld energy, peak temperature, cooling rates and various metallurgical factors (e.g., grain size and precipitates). An understanding of how the independent process parameters influence output variables and ultimately their effect on resultant properties (e.g., strength, hardness, etc..) is desirable. Most models developed have been validated primarily for aluminum alloys with relatively small amounts of experimental data. Fewer models have been validated for steels or stainless steels, particularly since steels and stainless steels have proven more challenging to friction stir than aluminum alloys. The Gleeble system is also a powerful tool with the capability to perform thermomechanical simulations in a known and controlled environment and provide physical representation of resultant microstructure and hardness values. The coupling of experimental data and physical simulated data can be extremely useful in assessing the capabilities of friction stir numerical process models. The overall approach is to evaluate Isaiah an existing three-dimensional finite element code developed at Cornell University by comparing against experimental and physically-simulated data to determine how well the code output relates to real FS data over a range of nine processing conditions. Physical simulations replicating select thermomechanical streamline histories were conducted to provide a physical representation of resultant metallurgy and hardness. Isaiah shows promise in predicting qualitative trends over a limited range of parameters and is not recommended for use as a predictive tool but rather a complimentary tool, Once properly calibrated, the Isaiah code can be a powerful tool to gain insight into the process, strength evolution during the process and coupled with a texture evolution model may also provide insight into microstructural and texture evolution over a range for which it is calibrated.
|
102 |
Processing Mechanics of Additive Friction Stir DepositionHartley II, William Douglas 03 July 2023 (has links)
Additive friction stir deposition (AFSD) is a newly developed solid-state metal additive manufacturing (AM) technology that adds a material feeding mechanism to the friction stir principle (Yu et al.., 2018). As a newly developed process, the development of a sound understanding of the process mechanics is necessary and may shed light on both limiting factors and new opportunities. This work explores the fundamental modes of deformation through an analytical decomposition of three flow components: 1) radial spreading, 2) rotating, and 3) traversing shear flow. The analytical models provide 'back-of-the-envelope' estimates of mechanical requirements (machine torque, for example), and straightforward algebraic equations for estimating the peak strain rate associated with deformation and the expected residence time of material underneath the AFSD tool head. A more complex, but preliminary, numerical modeling approach is then presented to models the steady state material flow as a fully coupled non-Newtonian fluid with rate and temperature dependent properties. Additionally, a transient thermal model is presented which captures the thermal history of the material along a dynamic printing trajectory. The numerical models provide insight into the pressure distribution underneath the AFSD tool, which impacts deformation bonding conditions at the interface, and suggest that temperature differences under the tool may be as high as 70℃. Several interface fracture experiments reveal a well-bonded center region, with high ductility and energy dissipation, and a poorly bonded outer edge region. Novel characterization work has been presented showing evidence of a nearly uniform 50μm thick shear layer on the top surface of a deposit. Analysis of the Prandtl number suggests that this shear layer is a consequence of a thin thermal boundary layer, which in the presence of frictional shear stress, becomes a thermo-mechanical boundary layer with a distinct flow regime from the bulk. Further characterization shows viscous mixing patterns in the wake of tool pins, and incomplete bonding at the edges of the deposition track. An additional application is presented for AFSD – selective area cladding of thin sheet metal. Substrates as thin as 1.4mm were clad without localized deformation, which is dependent on the clamping configuration of the substrate. Cladding quality, interface integrity, and certain failure modes are identified for thin cladding operations. In-situ monitoring and ex-situ laser scanning shows the slow evolution of thermal distortion during cooling of the cladding-on-sheet system. Finally, residual stress and strain estimates are made using curvature methods for bi-layer specimens extracted from the cladding. / Doctor of Philosophy / Additive manufacturing of metal components (colloquially called "3D printing") has generated significant interest and excitement as the manufacturing method of the future, where new materials with complex shapes and functionalities may unlock new possibilities for commerce and industry. Metal 3D printing also gives us new methods to repair aging and damaged structures, providing opportunities to extend the life of existing infrastructure. This work is centrally focused on understanding the most important factors and physical principles at play during a particular metal additive manufacturing process, additive friction stir deposition (ASFD). AFSD uses deformation to heat and bond materials together, building on the principles of friction welding and forge welding. A fundamental understanding of the process mechanics will allow for a better understanding of the current limits and potential opportunities this new technology can provide. Using a combination of analytical analysis, numerical modeling, and experiments, this work aims to provide a deeper understanding of the material flow, thermal fields, and mechanical forces associated with depositing material by AFSD, which may be insightful for new materials, tunable material properties, and may lead to new machine design opportunities.
|
103 |
Processamento e caracterização de ligas do sistema Co-Ni-Al-W-Cr-(Nb,Ta)-C-B visando aplicação como material de ferramenta para soldagem por atrito / Processing and characterization of alloys from the Co-Ni-W-Cr-(Nb, Ta)-C-B system aiming application as tool material for friction stir weldingSalgado, Marcus Vinicius da Silva 31 August 2015 (has links)
Os objetivos deste trabalho foram processar e caracterizar microestrutural e mecanicamente superligas à base de cobalto do sistema Co-Al-W-Ni-Cr-(Nb,Ta)- C-B com microestrutura ?/?\'. Visando possível aplicação em ferramenta para Soldagem por Atrito com Pino Não Consumível (SAPNC), em inglês Friction Stir Welding (FSW) nas composições: (Co-10Al-7,5W-30Ni-10Cr-3,0Nb-0,6C-0,06B %at. ) - 30Ni-3Nb, (Co-10Al-7,5W-40Ni-10Cr-3,0Nb-0,6C-0,06B %at.) - 40Ni-3Nb, (Co-10Al-7,5W-50Ni-10Cr-3,0Nb-0,6C-0,06B %at.) - 50Ni-3Nb além da liga patenteada (Co-10Al-7,5W-40Ni-10Cr-3,0Ta-0,6C-0,06B %at.) - 40Ni-3Ta considerada padrão para este projeto. A caraterização microestrutural foi feita por microscopia eletrônica de varredura (MEV), microscopia eletrônica de varredura por emissão de campo (MEV-FEG), medidas de microanálise semi-quantitativa e mapeamento químico por EDS, caracterização por difração de raios X, além do ensaio mecânico de dureza Vickers em todas as amostras. Os resultados da caracterização microestrutural e mecânica para a liga 40Ni-3Ta mostraram-se semelhantes aos encontrados na literatura enquanto que a composição 40Ni-3Nb foi a que apresentou resultados mais próximos em relação à liga padrão. / The objectives of this study were to process and characterize microstructural and mechanical cobalt-based superalloys from Co-Al-W-Ni-Cr-(Nb,Ta)-C-B system with ?/? \' microstructure. Aiming possible application for Friction Stir Welding (FSW) tool in the compositions: (Co-10Al-7.5W-30Ni-10Cr-3.0Nb-0.6C-0.06B %at.) - 30Ni-3Nb, (Co-10Al-7.5W-40Ni-10Cr-3.0Nb-0.6C-0.06B %at. ) - 40Ni-3Nb, (Co-10Al-7.5W-50Ni-10Cr-3.0Nb-0.6C-0.06B %at.) - 50Ni-3Nb, including the patented alloy (Co-10Al-7.5W -40Ni-10Cr-3.0Ta-0.6C-0.06B %at.) - 40Ni-3Ta considered the standard alloy for this project. The microstructural characterization was made by Scanning Electron Microscopy (SEM), Scanning Electron Microscopy with Field Emission Gun (SEM-FEG), semi-quantitative microanalysis measures and chemical mapping by EDS, characterization by X - ray diffraction and mechanical test of hardness Vickers in all the samples. The results of the microstructural and mechanical characterization for 40Ni-3Ta alloy were similar to those found in the literature. The 40Ni-3Nb alloy showed the closest results, among the other alloys studied in comparison with the standard alloy.
|
104 |
Processamento e caracterização de ligas do sistema Co-Ni-Al-W-Cr-(Nb,Ta)-C-B visando aplicação como material de ferramenta para soldagem por atrito / Processing and characterization of alloys from the Co-Ni-W-Cr-(Nb, Ta)-C-B system aiming application as tool material for friction stir weldingMarcus Vinicius da Silva Salgado 31 August 2015 (has links)
Os objetivos deste trabalho foram processar e caracterizar microestrutural e mecanicamente superligas à base de cobalto do sistema Co-Al-W-Ni-Cr-(Nb,Ta)- C-B com microestrutura ?/?\'. Visando possível aplicação em ferramenta para Soldagem por Atrito com Pino Não Consumível (SAPNC), em inglês Friction Stir Welding (FSW) nas composições: (Co-10Al-7,5W-30Ni-10Cr-3,0Nb-0,6C-0,06B %at. ) - 30Ni-3Nb, (Co-10Al-7,5W-40Ni-10Cr-3,0Nb-0,6C-0,06B %at.) - 40Ni-3Nb, (Co-10Al-7,5W-50Ni-10Cr-3,0Nb-0,6C-0,06B %at.) - 50Ni-3Nb além da liga patenteada (Co-10Al-7,5W-40Ni-10Cr-3,0Ta-0,6C-0,06B %at.) - 40Ni-3Ta considerada padrão para este projeto. A caraterização microestrutural foi feita por microscopia eletrônica de varredura (MEV), microscopia eletrônica de varredura por emissão de campo (MEV-FEG), medidas de microanálise semi-quantitativa e mapeamento químico por EDS, caracterização por difração de raios X, além do ensaio mecânico de dureza Vickers em todas as amostras. Os resultados da caracterização microestrutural e mecânica para a liga 40Ni-3Ta mostraram-se semelhantes aos encontrados na literatura enquanto que a composição 40Ni-3Nb foi a que apresentou resultados mais próximos em relação à liga padrão. / The objectives of this study were to process and characterize microstructural and mechanical cobalt-based superalloys from Co-Al-W-Ni-Cr-(Nb,Ta)-C-B system with ?/? \' microstructure. Aiming possible application for Friction Stir Welding (FSW) tool in the compositions: (Co-10Al-7.5W-30Ni-10Cr-3.0Nb-0.6C-0.06B %at.) - 30Ni-3Nb, (Co-10Al-7.5W-40Ni-10Cr-3.0Nb-0.6C-0.06B %at. ) - 40Ni-3Nb, (Co-10Al-7.5W-50Ni-10Cr-3.0Nb-0.6C-0.06B %at.) - 50Ni-3Nb, including the patented alloy (Co-10Al-7.5W -40Ni-10Cr-3.0Ta-0.6C-0.06B %at.) - 40Ni-3Ta considered the standard alloy for this project. The microstructural characterization was made by Scanning Electron Microscopy (SEM), Scanning Electron Microscopy with Field Emission Gun (SEM-FEG), semi-quantitative microanalysis measures and chemical mapping by EDS, characterization by X - ray diffraction and mechanical test of hardness Vickers in all the samples. The results of the microstructural and mechanical characterization for 40Ni-3Ta alloy were similar to those found in the literature. The 40Ni-3Nb alloy showed the closest results, among the other alloys studied in comparison with the standard alloy.
|
105 |
Thermomechanical Processing, Additive Manufacturing and Alloy Design of High Strength Mg AlloysPalanivel, Sivanesh 05 1900 (has links)
The recent emphasis on magnesium alloys can be appreciated by following the research push from several agencies, universities and editorial efforts. With a density equal to two-thirds of Al and one-thirds of steel, Mg provides the best opportunity for lightweighting of metallic components. However, one key bottleneck restricting its insertion into industrial applications is low strength values. In this respect, Mg-Y-Nd alloys have been promising due to their ability to form strengthening precipitates on the prismatic plane. However, if the strength is compared to Al alloys, these alloys are not attractive. The primary reason for low structural performance in Mg is related to low alloying and microstructural efficiency. In this dissertation, these terminologies are discussed in detail. A simple calculation showed that the microstructural efficiency in Mg-4Y-3Nd alloy is 30% of its maximum potential. Guided by the definitions of alloying and microstructural efficiency, the two prime objectives of this thesis were to: (i) to use thermomechanical processing routes to tailor the microstructure and achieve high strength in an Mg-4Y-3Nd alloy, and (ii) optimize the alloy chemistry of the Mg-rare earth alloy and design a novel rare—earth free Mg alloy by Calphad approach to achieve a strength of 500 MPa.
Experimental, theoretical and computational approaches have been used to establish the process-structure-property relationships in an Mg-4Y-3Nd alloy. For example, increase in strength was observed after post aging of the friction stir processed/additive manufactured microstructure. This was attributed to the dissolution of Mg2Y particles which increased the alloying and microstructural efficiency. Further quantification by numerical modeling showed that the effective diffusivity during friction stir processing and friction stir welding is 60 times faster than in the absence of concurrent deformation leading to the dissolution of thermally stable particles. In addition, the investigation on the interaction between dislocations and strengthening precipitate revealed that, specific defects like the I1 fault aid in the accelerated precipitation of the strengthening precipitate in an Mg-4Y-3Nd alloy. Also, the effect of external field (ultrasonic waves) was studied in detail and showed accelerated age hardening response in Mg-4Y-3Nd alloy by a factor of 24.
As the bottleneck of low strength is addressed, the answers to the following questions are discussed in this dissertation: What are the fundamental micro-mechanisms governing second phase evolution in an Mg-4Y-3Nd alloy? What is the mechanical response of different microstructural states obtained by hot rolling, friction stir processing and friction stir additive manufacturing? Is defect engineering critical to achieve high strength Mg alloys? Can application of an external field influence the age hardening response in an Mg-4Y-3Nd alloy? Can a combination of innovative processing for tailoring microstructures and computational alloy design lead to new and effective paths for application of magnesium alloys?
|
106 |
Soudage d'alliages d'aluminium par la technologie Friction Stir Welding Bobbin Tool / Friction Stir Welding with Bobbin Tool of aluminium alloysGuerin, Baptiste jean patrice 04 March 2010 (has links)
Dans le domaine des matériaux métalliques, les techniques d’assemblage par soudageconduisent à des réductions de masse et de coûts importantes susceptibles d’intéresserles industries aéronautiques. Néanmoins, les procédés de soudage classiquespar fusion ne s’appliquent pas aux dernières générations d’alliages d’aluminium aéronautiques.Dans ce contexte, le procédé de soudage Friction Stir Welding présentedes atouts considérables, de nature à rendre compétitives les structures métalliquesface à la montée en puissance des matériaux composites.L’objectif de cette thèse est double. Il s’agit d’une part d’améliorer notre compréhensiondu procédé de soudage Friction Stir Welding Bobbin Tool puis dans undeuxième temps de proposer une méthodologie visant à prédire les paramètres desoudage optimaux.Afin de mener à bien ces objectifs, des essais de soudage ont été menés pour troisalliages d’aluminium aéronautique, incluant deux alliages d’aluminium-lihtium, etdeux épaisseurs, représentatives d’une jonction de peau de fuselage. Les résultatsd’essais ont par la suite été exploités et ont permis de mettre en évidence des corrélationsentre paramètres de soudage, température, puissance et malaxage du noyausoudé.Dans un troisième temps, afin de supporter la démarche expérimentale, des outilsde simulation ont été utilisés. Un modèle thermo-fluide local a été développé afinde simuler les phénomènes de malaxage dans le noyau soudé. A l’échelle globale, unmodèle thermique a permis de reproduire fidèlement les phénomènes de diffusion dela chaleur dans la structure. Enfin, le couplage des deux modèles a montré qu’il étaitpossible de simuler puis de prédire un domaine de soudabilité. / In the field of metallic materials, welding technologies can provide significantmass reductions and cost savings to aircraft industries. Nevertheless, classical fusionwelding processes can not be applied to last generations of aeronautical aluminiumalloys. In this context, Friction Stir Welding offers many advantages and can helpmetallic parts to face the build up of composite materials.This thesis has mainly two objectives. We aim first at improving our understandingof Friction Stir Welding with Bobbin Tool and then at proposing a kind ofmethodology able to predict optimal welding parameters.Welding trials were carried out using three aeronautical aluminium alloys includingtwo aluminium lithium and two thicknesses representative of a fuselagejunction. Results were analyzed and some correlations were found between weldingparameters, temperature and stirring of the weld nugget.This work was also supported by several modeling tools. A local thermo-fluidapproach has been used to simulate stirring of the material in the weld nugget. Aglobal thermal model has been used to simulate heat diffusion in the structure. Then,a coupled approach of these previous modeling tools shows that it was possible tonumerically predict a processing window.
|
107 |
Avaliação do processamento por atrito linear em chapas da liga de titânio Ti-6Al-4V. / Evaluation of friction stir processed titatnium Ti-6AI-4V sheets.Farias, Adalto de 12 May 2015 (has links)
Esta tese tem por objetivo a aplicação do processamento por atrito linear na liga de titânio Ti-6Al-4V. Derivado da solda por atrito linear, é um processo recente desenvolvido na década de 90 para união de alumínio. Sua aplicação em outros tipos de materiais como aços e ligas de alto desempenho, em especial o titânio, tem interessado a industria. A metodologia utilizada nesta tese para avaliar o processamento por atrito linear, consistiu na execução de ensaios mecânicos de tração em condições mistas em chapas da liga de titânio Ti-6Al-4V. A máquina utilizada para o processamento das chapas foi um centro de usinagem CNC convencional, adaptado com dispositivos especiais. Além dos ensaios de tração em condições mistas, foram executadas medições de microdurezas nas regiões atingidas pelo processo, avaliação das microestruturas resultantes e medições de tensão residual para uma caracterização mais ampla do processo. As microestruturas na região processada são caracterizadas por uma estrutura totalmente transformada. As temperaturas de pico na região processada excederam a temperatura -transus durante o processamento e a transformação da fase + ocorreu durante a fase de resfriamento. A transformação da fase para resultou na formação de agulhas de fase nos contornos e pelo interior dos grãos da fase . Pequenas regiões com estrutura equiaxial de grãos ( globular) foram observados na zona de processamento. A abordagem dos resultados quantitativos foi feita de forma estatística, visando identificar os parâmetros de maior interação com os resultados observados. Foi identificado nesta tese que a rotação da ferramenta apresentou a maior influência nos resultados de tensão residual, microdureza e tensão de escoamento. Uma importante contribuição à modelagem da tensão de escoamento para materiais anisotrópicos é proposta, baseado em um critério de escoamento ortotrópico. Equações complementares baseadas nos testes mistos de tração e cisalhamento são propostas para modificar o modelo ortotrópico. O intuito deste modelo é indicar em que condições o material tem seu regime de escoamento atingido, podendo servir de base para simulações práticas de peças em condições similares. / This thesis aims at the application of friction stir processing (FSP) in Ti-6Al-4V titanium alloy. Derived from friction stir welding (FSW), it is a recent process developed in the 90s for aluminum joining. Its application to other types of materials such as steel and high performance alloys, in particular titanium, has interested industry. The methodology applied in this thesis to evaluate FSP, consisted in the execution of tensile test at mixed conditions to Ti-6Al-4V sheets 4. The machine used for processing the sheet was a conventional CNC milling machine, assembled with special fixture devices. In addition to tensile tests, measurements have been performed to the regions affected by the process such as evaluation of microhardness, microstructure and residual stress condition. The microstructures at the processed region are characterized by a transformed structure. The peak temperatures, in the processed region, exceeded the -transus temperature during the processing and transformation of the phase + occurred during the cooling phase. This transformation resulted in the formation of boundary and intergranular phase (Widmanstätten) at the grains. Small regions of equiaxed grain structure (globular ) were observed in the processed zone. The approach to the quantitative results was made in statistical form aiming to identify the parameters interaction with the observed results. It was identified in this thesis that the tool spinning rotation showed the highest influence on the results of residual stress, hardness and yield strength. An important contribution to the modeling of anisotropic materials yield stress is proposed based on an orthotropic yield criterion. Additional equations based on the mixed tests for tensile and shear are proposed to modify the orthotropic model. The purpose of this model is to indicate the conditions under which the material has reached its yield regime, and may be a basis for practical simulations in similar conditions.
|
108 |
Avaliação do processamento por atrito linear em chapas da liga de titânio Ti-6Al-4V. / Evaluation of friction stir processed titatnium Ti-6AI-4V sheets.Adalto de Farias 12 May 2015 (has links)
Esta tese tem por objetivo a aplicação do processamento por atrito linear na liga de titânio Ti-6Al-4V. Derivado da solda por atrito linear, é um processo recente desenvolvido na década de 90 para união de alumínio. Sua aplicação em outros tipos de materiais como aços e ligas de alto desempenho, em especial o titânio, tem interessado a industria. A metodologia utilizada nesta tese para avaliar o processamento por atrito linear, consistiu na execução de ensaios mecânicos de tração em condições mistas em chapas da liga de titânio Ti-6Al-4V. A máquina utilizada para o processamento das chapas foi um centro de usinagem CNC convencional, adaptado com dispositivos especiais. Além dos ensaios de tração em condições mistas, foram executadas medições de microdurezas nas regiões atingidas pelo processo, avaliação das microestruturas resultantes e medições de tensão residual para uma caracterização mais ampla do processo. As microestruturas na região processada são caracterizadas por uma estrutura totalmente transformada. As temperaturas de pico na região processada excederam a temperatura -transus durante o processamento e a transformação da fase + ocorreu durante a fase de resfriamento. A transformação da fase para resultou na formação de agulhas de fase nos contornos e pelo interior dos grãos da fase . Pequenas regiões com estrutura equiaxial de grãos ( globular) foram observados na zona de processamento. A abordagem dos resultados quantitativos foi feita de forma estatística, visando identificar os parâmetros de maior interação com os resultados observados. Foi identificado nesta tese que a rotação da ferramenta apresentou a maior influência nos resultados de tensão residual, microdureza e tensão de escoamento. Uma importante contribuição à modelagem da tensão de escoamento para materiais anisotrópicos é proposta, baseado em um critério de escoamento ortotrópico. Equações complementares baseadas nos testes mistos de tração e cisalhamento são propostas para modificar o modelo ortotrópico. O intuito deste modelo é indicar em que condições o material tem seu regime de escoamento atingido, podendo servir de base para simulações práticas de peças em condições similares. / This thesis aims at the application of friction stir processing (FSP) in Ti-6Al-4V titanium alloy. Derived from friction stir welding (FSW), it is a recent process developed in the 90s for aluminum joining. Its application to other types of materials such as steel and high performance alloys, in particular titanium, has interested industry. The methodology applied in this thesis to evaluate FSP, consisted in the execution of tensile test at mixed conditions to Ti-6Al-4V sheets 4. The machine used for processing the sheet was a conventional CNC milling machine, assembled with special fixture devices. In addition to tensile tests, measurements have been performed to the regions affected by the process such as evaluation of microhardness, microstructure and residual stress condition. The microstructures at the processed region are characterized by a transformed structure. The peak temperatures, in the processed region, exceeded the -transus temperature during the processing and transformation of the phase + occurred during the cooling phase. This transformation resulted in the formation of boundary and intergranular phase (Widmanstätten) at the grains. Small regions of equiaxed grain structure (globular ) were observed in the processed zone. The approach to the quantitative results was made in statistical form aiming to identify the parameters interaction with the observed results. It was identified in this thesis that the tool spinning rotation showed the highest influence on the results of residual stress, hardness and yield strength. An important contribution to the modeling of anisotropic materials yield stress is proposed based on an orthotropic yield criterion. Additional equations based on the mixed tests for tensile and shear are proposed to modify the orthotropic model. The purpose of this model is to indicate the conditions under which the material has reached its yield regime, and may be a basis for practical simulations in similar conditions.
|
109 |
Modelling of friction stir spot weldingReilly, Aidan January 2013 (has links)
Friction stir spot welding (FSSW) is a solid-state welding process which is especially useful for joining precipitation-hardened aluminium alloys that undergo adverse property changes during fusion welding. It also has potential as an effective method for solid-state joining of dissimilar alloys. In FSSW, heat generation and plastic flow are strongly linked, and the scale of the process in time and space is such that it is difficult to separate and control the influence of all the relevant input parameters. The use of modelling is well-established in the field of welding research, and this thesis presents an analysis of the thermal and mechanical aspects of FSSW, principally using the finite element (FE) technique. Firstly, a thermal FE model is shown, which is subsequently validated by reference to experimental temperature data in both aluminium-to-aluminium and aluminium-to-steel welds. Correlations between high-quality welds and temperature fields are established, and predictions are made for peak temperatures reached under novel welding conditions. Deformation and heating are strongly linked in FSSW, but existing modelling tools are poorly suited to modelling flow processes in the conditions extant in FSSW. This thesis discusses the development and optimisation of two novel techniques to overcome the limitations of current approaches. The first of these uses greatly simplified constitutive behaviour to convert the problem into one defined purely by kinematics. In doing so, the boundary conditions reduce to a small number of assumptions about the contact conditions between weld material and tool, and the model calculation time is very rapid. This model is used to investigate changes in the slip condition at the tool to workpiece interface without an explicit statement of the friction law. Marker experiments are presented which use dissimilar composition but similar strength alloys to visualise flow patterns. The layering behaviour and surface patterns observed in the model agree well with observations from these experiments. The second approach extends the FE method to include deformation behaviour without the need for a fully-coupled approach, guided by the kinematic model. This is achieved using an innovative sequential small-strain analysis method in which thermal and deformation analyses alternate, with each running at a very different timescale. This technique avoids the requirement to either remesh the model domain at high strains or to use an explicit integration scheme, both of which impose penalties in calculation time and model complexity. The method is used to relate the purely thermal analysis developed in the work on thermal modelling to welding parameters such as tool speed. The model enables predictions of the spatial and temporal evolution of heat generation to be made directly from the constitutive behaviour of the alloy and the assumed velocity profile at the tool-workpiece interface. Predictions of the resulting temperature history are matched to experimental data and novel conditions are simulated, and these predictions correlate accurately with experimental results. Hence, the model is used to predict welding outcomes for situations for which no experimental data exists, and process charts are produced to describe optimum welding parameters. The methods and results presented in this thesis have significant implications for modelling friction stir spot welding, from optimising process conditions, to integration with microstructural models (to predict softening in the heat-affected zone, or the formation of intermetallics at the interface in dissimilar welds). The technique developed for sequential small strain finite element analysis could also be investigated for use in other kinematically constrained solid-state friction joining processes.
|
110 |
Étude expérimentale et numérique du procédé de soudage FSW (Friction Stir Welding). Analyse microstructurale et modélisation thermomécanique des conditions de contact outil/matière transitoires. / Experimental and numerical investigation in Friction Stir Welding. Microstructural study and thermomechanical modeling of transient boundary conditions at tool/workpiece.Tongne, Amèvi 03 December 2014 (has links)
Le soudage FSW (Friction Stir Welding) est un procédé de soudage en phase solide pressenti pour des applications de transport en générale aérospatial et naval. Malgré le nombre considérable d’études qui ont été réalisées depuis son avènement en 1991, le contrôle du procédé n’est pas encore effectif.Ce travail a consisté en une partie expérimentale visant à la génération, par un outil trigone, de joints soudés dont la microstructure a été corrélée à l’écoulement de matière pendant le procédé. La connaissance de cet écoulement de matière a permis dans la deuxième partie d’enrichir le modèle thermofluide développé en périodique pour prédire la microstructure des joints de soudure FSW, notamment les "onion rings". Finalement, l’occurrence des "onion rings" a été corrélée à la vitesse de déformation maximale atteinte par les particules de la zone soudée, prédite par le modèle. Par ailleurs, un travail d’affinement du champ de vitesse en voisinage du pion est réalisé en modélisant l’outil trigone. Ce qui permet en plus de l’interaction (entrainement) outil/matière par frottement, d’intégrer une interaction par obstacle. Cette approche devrait permettre, en perspectives de ce travail, une meilleur description thermomécanique locale et par voie de conséquence microstructurale. / Friction Stir Welding is a solid state joining process developed for transport applications as aerospace and naval. Since its introduction, a large number of investigations have been carried out but the process is not fully controlled. This work including experimental section in which welds have been generated by trigonal tool. The microstructure of these welds has been correlated with the material flow during the process. By understanding the material flow, the transient thermofluid model developed in the second section has been significantly enriched. This modeled has been developed for predicting the microstructure of the weld, especially, the "onion rings". Finally, the occurrence of "onion rings" has been correlated with the maximal strain rate reached by any particle in the weld seam, simulated by the model. However, the velocity has been refined at the vicinity of the tool through the trigonal pin modelling. This was helpful to move the material not only by friction but also by obstacle at the interaction tool/material. The above approach should enable, in this work layout, a better local thermomechanical description and consequently microstructural.
|
Page generated in 0.0269 seconds