• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 22
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Analyse von Einflussfaktoren auf die Gurtkräfte am Rucksack

Stöhr, Anika, Richter, Sophie, Schwanitz, Stefan, Michel, Frank Ingo 14 October 2022 (has links)
Zur Evaluierung des mechanischen Tragekomforts von Rucksäcken wurden die Einflussfaktoren Geschlecht, Last und Bewegung auf die Gurtkräfte am Rucksack untersucht. Dazu wurde ein individuelles Messsystem entwickelt. Aus der Datenanalyse lässt sich folgern, dass die Gurtkraft nicht vom Geschlecht des Rucksackträgers abhängt. Die Rucksacklast und die Form der Aktivität hingegen sind relevante Indikatoren. / To evaluate the mechanical wearing comfort of backpacks, the factors influencing the strap forces on the backpack were investigated, namely gender, load and movement. An individual measurement system was developed for this purpose. From the data analysis, it can be concluded that the strap force does not depend on the gender of the backpack wearer. The backpack load and the form of the activity, on the other hand, are relevant indicators.
22

Achieving Complex Motion with Fundamental Components for Lamina Emergent Mechanisms

Winder, Brian Geoffrey 01 March 2008 (has links) (PDF)
Designing mechanical products in a competitive environment can present unique challenges, and designers constantly search for innovative ways to increase efficiency. One way to save space and reduce cost is to use ortho-planar compliant mechanisms which can be made from sheets of material, or lamina emergent mechanisms (LEMs). This thesis presents principles which can be used for designing LEMs. Pop-up paper mechanisms use topologies similar to LEMs, so it is advantageous to study their kinematics. This thesis outlines the use of planar and spherical kinematics to model commonly used pop-up paper mechanisms. A survey of common joint types is given, as well as an overview of common monolithic and layered mechanisms. In addition, it is shown that more complex mechanisms may be created by combining simple mechanisms in various ways. The principles presented are applied to the creation of new pop-up joints and mechanisms, which also may be used for lamina emergent mechanisms. Models of the paper mechanisms presented in Chapter 2 of the thesis are found in the appendix, and the reader is encouraged to print, cut out and assemble them. One challenge associated with spherical and spatial LEM design is creating joints with the desired motion characteristics, especially where complex spatial mechanism topologies are required. Hence, in addition to a study of paper mechanisms, some important considerations for designing joints for LEMs are presented. A technique commonly used in robotics, using serial chains of revolute and prismatic joints to approximate the motion of complex joints, is presented for use in LEMs. Important considerations such as linkage configuration and mechanism prototyping are also discussed. Another challenge in designing LEMs is creating multi-stable mechanisms with the ability to have coplanar links. A method is presented for offsetting the joint axes of a spatial compliant mechanism to introduce multi-stability. A new bistable spatial compliant linkage that uses that technique is introduced. In the interest of facilitating LEM design, the final chapter of this thesis presents a preliminary design method. While similar to traditional methods, this method includes considerations for translating the mechanism topology into a suitable configuration for use with planar layers of material.

Page generated in 0.0211 seconds