• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 70
  • 16
  • 16
  • 15
  • 12
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 248
  • 248
  • 79
  • 63
  • 55
  • 52
  • 43
  • 42
  • 41
  • 38
  • 36
  • 35
  • 33
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

MECHANICAL BEHAVIORS OF BIOMATERIALS OVER A WIDE RANGE OF LOADING RATES

Xuedong Zhai (8102429) 10 December 2019 (has links)
<div>The mechanical behaviors of different kinds of biological tissues, including muscle tissues, cortical bones, cancellous bones and skulls, were studied under various loading conditions to investigate their strain-rate sensitivities and loading-direction dependencies. Specifically, the compressive mechanical behaviors of porcine muscle were studied at quasi-static (<1/s) and intermediate (1/s─10^2/s) strain rates. Both the compressive and tensile mechanical behaviors of human muscle were investigated at quasi-static and intermediate strain rates. The effect of strain-rate and loading-direction on the compressive mechanical behaviors of human frontal skulls, with its entire sandwich structure intact, were also studied at quasi-static, intermediate and high (10^2/s─10^3/s) strain rates. The fracture behaviors of porcine cortical bone and cancellous bone were investigated at both quasi-static (0.01mm/s) and dynamic (~6.1 m/s) loading rates, with the entire failure process visualized, in real-time, using the phase contrast imaging technique. Research effort was also focused on studying the dynamic fracture behaviors, in terms of fracture initiation toughness and crack-growth resistance curve (R-curve), of porcine cortical bone in three loading directions: in-plane transverse, out-of-plane transverse and in-plane longitudinal. A hydraulic material testing system (MTS) was used to load all the biological tissues at quasi-static and intermediate loading rates. Experiments at high loading rates were performed on regular or modified Kolsky bars. Tomography of bone specimens was also performed to help understand their microstructures and obtain the basic material properties before mechanical characterizations. Experimental results found that both porcine muscle and human muscle exhibited non-linear and strain-rate dependent mechanical behaviors in the range from quasi-static (10^(-2)/s─1/s) to intermediate (1/s─10^2/s) loading rates. The porcine muscle showed no significant difference in the stress-strain curve between the along-fiber and transverse-to-fiber orientation, while it was found the human muscle was stiffer and stronger along fiber direction in tension than transverse-to fiber direction in compression. The human frontal skulls exhibited a highly loading-direction dependent mechanical behavior: higher ultimate strength, with an increasing ratio of 2, and higher elastic modulus, with an increasing ratio of 3, were found in tangential loading direction when compared with those in the radial direction. A transition from quasi-ductile to brittle compressive mechanical behaviors of human frontal skulls was also observed as loading rate increased from quasi-static to dynamic, as the elastic modulus was increased by factors of 4 and 2.5 in the radial and tangential loading directions, respectively. Experimental results also suggested that the strength in the radial direction was mainly depended on the diploë porosity while the diploë layer ratio played the predominant role in the tangential direction. For the fracture behaviors of bones, straight-through crack paths were observed in both the in-plane longitudinal cortical bone specimens and cancellous bone specimens, while the cracks were highly tortuous in the in-plane transverse cortical bone specimens. Although the extent of toughening mechanisms at dynamic loading rate was comparatively diminished, crack deflections and twists at osteon cement lines were still observed in the transversely oriented cortical bone specimens at not only quasi-static loading rate but also dynamic loading rate. The locations of fracture initiations were found statistical independent on the bone type, while the propagation direction of incipient crack was significantly dependent on the loading direction in cortical bone and largely varied among different types of bones (cortical bone and cancellous bone). In addition, the crack propagation velocities were dependent on crack extension over the entire crack path for all the three loading directions while the initial velocity for in-plane direction was lower than the other two directions. Both the cortical bone and cancellous bone exhibited higher fracture initiation toughness and steeper R-curves at the quasi-static loading rate than the dynamic loading rate. For cortical bone at a dynamic loading rate (5.4 m/s), the R-curves were steepest, and the crack surfaces were most tortuous in the in-plane transverse direction while highly smooth crack paths and slowly growing R-curves were found in the in-plane longitudinal direction, suggesting an overall transition from brittle to ductile-like fracture behaviors as the osteon orientation varies from in-plane longitudinal to out-of-plane transverse, and to in-plane transverse eventually.</div>
242

Numerical investigations on the uniaxial tensile behaviour of Textile Reinforced Concrete / Numerische Untersuchungen zum einaxialen Zugtragverhalten von Textilbeton

Hartig, Jens 25 March 2011 (has links) (PDF)
In the present work, the load-bearing behaviour of Textile Reinforced Concrete (TRC), which is a composite of a fine-grained concrete matrix and a reinforcement of high-performance fibres processed to textiles, exposed to uniaxial tensile loading was investigated based on numerical simulations. The investigations are focussed on reinforcement of multi-filament yarns of alkali-resistant glass. When embedded in concrete, these yarns are not entirely penetrated with cementitious matrix, which leads associated with the heterogeneity of the concrete and the yarns to a complex load-bearing and failure behaviour of the composite. The main objective of the work was the theoretical investigation of effects in the load-bearing behaviour of TRC, which cannot be explained solely by available experimental results. Therefore, a model was developed, which can describe the tensile behaviour of TRC in different experimental test setups with a unified approach. Neglecting effects resulting from Poisson’s effect, a one-dimensional model implemented within the framework of the Finite Element Method was established. Nevertheless, the model takes also transverse effects into account by a subdivision of the reinforcement yarns into so-called segments. The model incorporates two types of finite elements: bar and bond elements. In longitudinal direction, the bar elements are arranged in series to represent the load-bearing behaviour of matrix or reinforcement. In transverse direction these bar element chains are connected with bond elements. The model gains most of its complexity from non-linearities arising from the constitutive relations, e. g., limited tensile strength of concrete and reinforcement, tension softening of the concrete, waviness of the reinforcement and non-linear bond laws. Besides a deterministic description of the material behaviour, also a stochastic formulation based on a random field approach was introduced in the model. The model has a number of advantageous features, which are provided in this combination only in a few of the existing models concerning TRC. It provides stress distributions in the reinforcement and the concrete as well as properties of concrete crack development like crack spacing and crack widths, which are in some of the existing models input parameters and not a result of the simulations. Moreover, the successive failure of the reinforcement can be studied with the model. The model was applied to three types of tests, the filament pull-out test, the yarn pull-out test and tensile tests with multiple concrete cracking. The results of the simulations regarding the filament pull-out tests showed good correspondence with experimental data. Parametric studies were performed to investigate the influence of geometrical properties in these tests like embedding and free lengths of the filament as well as bond properties between filament and matrix. The presented results of simulations of yarn pull-out tests demonstrated the applicability of the model to this type of test. It has been shown that a relatively fine subdivision of the reinforcement is necessary to represent the successive failure of the reinforcement yarns appropriately. The presented results showed that the model can provide the distribution of failure positions in the reinforcement and the degradation development of yarns during loading. One of the main objectives of the work was to investigate effects concerning the tensile material behaviour of TRC, which could not be explained, hitherto, based solely on experimental results. Hence, a large number of parametric studies was performed concerning tensile tests with multiple concrete cracking, which reflect the tensile behaviour of TRC as occurring in practice. The results of the simulations showed that the model is able to reproduce the typical tripartite stress-strain response of TRC consisting of the uncracked state, the state of multiple matrix cracking and the post-cracking state as known from experimental investigations. The best agreement between simulated and experimental results was achieved considering scatter in the material properties of concrete as well as concrete tension softening and reinforcement waviness. / Die vorliegende Arbeit beschäftigt sich mit Untersuchungen zum einaxialen Zugtragverhalten von Textilbeton. Textilbeton ist ein Verbundwerkstoff bestehend aus einer Matrix aus Feinbeton und einer Bewehrung aus Multifilamentgarnen aus Hochleistungsfasern, welche zu textilen Strukturen verarbeitet sind. Die Untersuchungen konzentrieren sich auf Bewehrungen aus alkali-resistentem Glas. Das Tragverhalten des Verbundwerkstoffs ist komplex, was aus der Heterogenität der Matrix und der Garne sowie der unvollständigen Durchdringung der Garne mit Matrix resultiert. Das Hauptziel der Arbeit ist die theoretische Untersuchung von Effekten und Mechanismen innerhalb des Lastabtragverhaltens von Textilbeton, welche nicht vollständig anhand verfügbarer experimenteller Ergebnisse erklärt werden können. Das entsprechende Modell zur Beschreibung des Zugtragverhaltens von Textilbeton soll verschiedene experimentelle Versuchstypen mit einem einheitlichen Modell abbilden können. Unter Vernachlässigung von Querdehneffekten wurde ein eindimensionales Modell entwickelt und im Rahmen der Finite-Elemente-Methode numerisch implementiert. Es werden jedoch auch Lastabtragmechanismen in Querrichtung durch eine Unterteilung der Bewehrungsgarne in sogenannte Segmente berücksichtigt. Das Modell enthält zwei Typen von finiten Elementen: Stabelemente und Verbundelemente. In Längsrichtung werden Stabelemente kettenförmig angeordnet, um das Tragverhalten von Matrix und Bewehrung abzubilden. In Querrichtung sind die Stabelementketten mit Verbundelementen gekoppelt. Das Modell erhält seine Komplexität hauptsächlich aus Nichtlinearitäten in der Materialbeschreibung, z.B. durch begrenzte Zugfestigkeiten von Matrix und Bewehrung, Zugentfestigung der Matrix, Welligkeit der Bewehrung und nichtlineare Verbundgesetze. Neben einer deterministischen Beschreibung des Materialverhaltens beinhaltet das Modell auch eine stochastische Beschreibung auf Grundlage eines Zufallsfeldansatzes. Mit dem Modell können Spannungsverteilungen im Verbundwerkstoff und Eigenschaften der Betonrissentwicklung, z.B. in Form von Rissbreiten und Rissabständen untersucht werden, was in dieser Kombination nur mit wenigen der existierenden Modelle für Textilbeton möglich ist. In vielen der vorhandenen Modelle sind diese Eigenschaften Eingangsgrößen für die Berechnungen und keine Ergebnisse. Darüber hinaus kann anhand des Modells auch das sukzessive Versagen der Bewehrungsgarne studiert werden. Das Modell wurde auf drei verschiedene Versuchstypen angewendet: den Filamentauszugversuch, den Garnauszugversuch und Dehnkörperversuche. Die Berechnungsergebnisse zu den Filamentauszugversuchen zeigten eine gute Übereinstimmung mit experimentellen Resultaten. Zudem wurden Parameterstudien durchgeführt, um Einflüsse aus Geometrieeigenschaften wie der eingebetteten und freien Filamentlänge sowie Materialeigenschaften wie dem Verbund zwischen Matrix und Filament zu untersuchen. Die Berechnungsergebnisse zum Garnauszugversuch demonstrierten die Anwendbarkeit des Modells auf diesen Versuchstyp. Es wurde gezeigt, dass für eine realitätsnahe Abbildung des Versagensverhaltens der Bewehrungsgarne eine relativ feine Auflösung der Bewehrung notwendig ist. Die Berechnungen lieferten die Verteilung von Versagenspositionen in der Bewehrung und die Entwicklung der Degradation der Garne im Belastungsverlauf. Ein Hauptziel der Arbeit war die Untersuchung von Effekten im Zugtragverhalten von Textilbeton, die bisher nicht durch experimentelle Untersuchungen erklärt werden konnten. Daher wurde eine Vielzahl von Parameterstudien zu Dehnkörpern mit mehrfacher Matrixrissbildung, welche das Zugtragverhalten von Textilbeton ähnlich praktischen Anwendungen abbilden, durchgeführt. Die Berechnungsergebnisse zeigten, dass der experimentell beobachtete dreigeteilte Verlauf der Spannungs-Dehnungs-Beziehung von Textilbeton bestehend aus dem ungerissenen Zustand, dem Zustand der Matrixrissbildung und dem Zustand der abgeschlossenen Rissbildung vom Modell wiedergegeben wird. Die beste Übereinstimmung zwischen berechneten und experimentellen Ergebnissen ergab sich unter Einbeziehung von Streuungen in den Materialeigenschaften der Matrix, der Zugentfestigung der Matrix und der Welligkeit der Bewehrung.
243

Exploring Biopolymer-Clay Nanocomposite Materials by Molecular Modelling

Wang, Yan January 2015 (has links)
In this thesis, bio-nanocomposites made from two alternative biopolymers and montmorillonite (Mnt) clay have been investigated by molecular modelling. These biopolymers are xyloglucan (XG) and chitosan (CHS), both of which are abundant, renewable, and cost-effective. After being reinforced by Mnt clay nanoparticles, the polymer nanocomposites gains in multifunctionality and in the possibility to register unique combinations of properties, like mechanical, biodegradable, electrical, thermal and gas barrier properties. I apply molecular dynamics (MD) simulations to study the interfacial mechanisms of the adhesion of these biopolymers to the Mnt nanoplatelets at an atomic level. For the XG-Mnt system, a strong binding affinity of XG to a fully hydrated Mnt interface was demonstrated. It was concluded that the dominant driving force for the interfacing is the enthalpy, i.e. the potential energy of the XG-Mnt interacting system. The adsorbed XG favors a flat conformation with a galactose residue in its side chain that facilitates the adsorption of the polymer to the nanoclay.  The XG adsorption was found do depend strongly on the hydration ability of counterions. The binding affinity of XG to Mnt was found to be strongest in the K-Mnt/XG system, followed by, in decreasing order, Na-Mnt/XG, Li-Mnt/XG, and Ca-Mnt/XG. The competing mechanism between ions, water and the XG in the interlayer region was shown to play an important role. The dimensional stability upon moisture exposure, i.e. the ability of a material to resist swelling, is an important parameter for biopolymer-clay nanocomposites. While pure clay swells significantly even at low hydration levels, it is here shown that for the XG-Mnt system, at a hydration level below 50%, the inter-lamellar spacing is well preserved, suggesting a stable material performance. However, at higher hydration levels, the XG-Mnt composite was found to exhibit swelling at the same rate as the pure hydrated Mnt clay. For the CHS-Mnt system, the significant electrostatic interactions from the direct charge-charge attraction between the polymer and the Mnt clay play a key role in the composite formation. Varying the degree of acetylation (DA) and the degree of protonation (DPr) resulted in different effects on the polymer-clay interaction. For the heavily acetylated CHS (DA &gt; 50%, also known as chitin), the strong adhesion of the neutral chitin to the Mnt clay was attributed to strong correlation between the acetyl functional groups and the counterions which act as an electrostatic “glue”. Similarly, the poor adhesion of the fully deprotonated (DPr = 0%) neutral CHS to the clay is attributed to a weak correlation between the amino functional group and the counterions. The stress-strain behavior of the CHS-Mnt composite shows that the mechanical properties are highly affected by the volume fraction of the Mnt clay and the degree of exfoliation of the composite. The material structure has a close relationship to the material properties. Biopolymer-clay nanocomposites hold a bright future to replace petroleum-derived polymer plastics and will become widely used in common life. The theme of the thesis is that further critical improvements of these materials can be accomplished by development of the experimental methods in conjunction with increased understanding of the interactions between polymer, clay, water, ions, solutions in the polymer-clay mixtures provided by molecular modelling. / I denna avhandling har molekylär modellering och molekyldynamisk (MD) simulering använts för att studera modellsystem för bio-nanokompositer bestående av montmorillonit-lera samt två olika sorters biopolymerer – xyloglukan (XG) och kitosan (CHS). Båda dessa polymerer är naturligt förekommande och mycket vanliga. De är dessutom förnyelsebara och kostnadseffektiva. Då polymererna förstärkts med nanopartiklar av montmorillonit får det resulterande kompositmaterialet en unik kombination av egenskaper såsom mekaniska, elektriska, termiska och barriär egenskaper etc. Genom att använda molekyldynamiska (MD) simuleringar, studeras här växelverkan mellan dessa biopolymerer och lernanopartiklar (Mnt) på grundläggande atomistisk detaljnivå. Mellan XG och Mnt i ett fullt hydrerat system kunde stark bindningsaffinitet påvisas. Den dominerande drivkraften för affiniteten var entalpi, d.v.s. potentiell växelverkansenergi. Den adsorberade XG-kedjan antar en platt konformation på ytan. Ett förslag utifrån simuleringsresultaten var att galaktosresidyn i xyloglukanets sidokedja underlättar adsorptionen till lerytan. Simuleringarna kunde också visa att adsorption av XG till Mnt beror starkt på motjonernas hydreringsförmåga. Bindningsaffiniteten mellan XG och Mnt var som starkast i K-Mnt/XG- systemet. Därefter följde, i minskande ordning, Na-Mnt/XG, Li-Mnt/XG och Ca-Mnt/XG. Det kunde visas att strukturen vid gränsytan styrs av konkurrerande mekanismer mellan joner, vatten och XG. Dimensionsstabilitet vid fuktexponering, d.v.s. förmågan hos ett material att motverka svällning, är en viktig egenskap för biopolymer-lernanokompositer. Ren lera sväller signifikant även vid låga fukthalter. Dock kunde MD simuleringar visa att ett modellsystem av XG-Mnt behåller sitt ursprungliga interlamellära avstånd vid hydreringsnivåer under 50%, vilket indikerar ett stabilare material. Vid högre hydrering uppmättes dock svällningen vara densamma som för ren lera. I CHS-Mnt-systemet visade det sig att direkt elektrostatisk växelverkan med signifikant styrka mellan laddningar på polymer och Mnt-yta spelar störst roll för kompositformeringen. Olika effekt på polymer-lerväxelverkan uppnåddes genom att variera acetyleringsgraden (DA) respektive protoneringsgraden (DPr). För den tungt acetylerade CHS-polymeren (DA &gt; 50%, även kallad kitin) visade sig den starka vidhäftningen bero på korrelation mellan acetylgrupperna och motjonerna som i sin tur verkade som ett elektrostatiskt “lim”. På liknande sätt kunde den svaga vidhäftningen mellan fullt deprotonerad (DPr = 0%) neutral CHS och lera förklaras med en betydligt svagare korrelation mellan aminogrupperna och motjonerna. Spänning-töjningsbeteendet hos CHS-Mnt modellen visar att dess mekaniska egenskaper beror kraftigt på volymsandelen Mnt och graden av exfoliering i kompositen. Materialets struktur är nära relaterat till materialegenskaperna. Framtiden för nanokompositer av biopolymerer och lera är ljus då de kan komma att ersätta oljebaserade plaster och användas frekvent i våra dagliga liv. Materialen kommer successivt förbättras genom utveckling av experimentella metoder i kombination med molekylmodellering för ökad förståelse för växelverkan mellan polymer, lera, vatten, joner och lösningsmedel. / 本论文利用分子动力学模拟技术研究了两种备选生物大分子与蒙脱土(Montmorillonite, Mnt)(一种粘土)组成的生物纳米复合材料,分别是木葡聚糖(Xyloglucan, XG)/蒙脱土和壳聚糖(Chitosan, CHS)/蒙脱土。木葡聚糖与壳聚糖都是自然界广泛存在的生物大分子,资源丰富且取材面宽,提取及加工成本低廉,加之可以生物降解并可再生,是优秀的生物复合材料备选原料。经过蒙脱土纳米颗粒加固后,这些基于生物大分子的复合材料将获得多功能且有多种独特特性相结合的优点,比如,更好的力学性能,生物可降解,良好的导电性能,传热性能和屏蔽气体与液体侵扰的能力等等。论文中,我们采用分子动力学模拟的方法着重对生物大分子与蒙脱土在界面上的粘附相互作用机理进行了深入探讨。  首先,对于木葡聚糖/蒙脱土纳米复合材料,我们发现糖分子与土分子间有着很强的天然亲和力。研究证明它们之间的这种相互作用,热焓是主要的推动力,也就是糖和土分子间的相互作用势能。含有半乳糖残基的木葡聚糖分子(本文中亦称天然木葡聚糖分子)吸附到粘土表面后,分子构型呈现扁平状,半乳糖残基似有辅助木葡聚糖大分子吸附到粘土颗粒上的作用。  进一步研究发现,木葡聚糖分子在粘土表面上的吸附与溶液中抗衡离子的水和作用密切相关。在钾离子平衡的糖/粘土系统中,糖分子与土分子的相互作用最强,钠离子平衡的糖/粘土系统次之,紧接着是锂离子平衡的糖/粘土系统,最弱的是钙离子平衡的糖/粘土系统。研究发现,离子,水分子,以及糖分子在粘土层间的竞争机制在糖分子的粘附过程中起着重要的作用。  材料暴露于潮湿环境中的尺寸稳定性,也就是材料抗肿胀的能力是生物大分子/蒙脱土所构成的复合材料的重要参数。蒙脱土自身即使在很低的潮湿环境下就会有明显地膨胀现象,然而,对木葡聚糖/蒙脱土复合材料来说,尺寸稳定性可以在水和值低于50%以下有效保存。其夹层尺寸的稳定保持暗示了材料在这个程度的潮湿环境下的稳定性。然而,当水和值高于50%时,木葡聚糖/蒙脱土复合材料将出现明显的肿胀现象,表现在夹层尺寸的明显增大,且其膨胀速率与粘土自身的膨胀速率逐渐趋于相当水平。  其次,对于壳聚糖/蒙脱土复合材料,我们发现由电荷-电荷间直接产生地强烈的静电吸引作用是壳聚糖分子与蒙脱土分子相互粘附并构成复合材料的关键因素。通过改变壳聚糖分子的乙酰化程度(Degree of acetylation, DA)和质子化程度(Degree of protonation, DPr),糖分子与土分子的相互作用有着显著地不同。对于乙酰化程度(DA)高于50%的壳聚糖分子(亦成为甲壳素分子chitin, CHT),电中性的甲壳素分子与土分子间的强吸附作用源于乙酰基功能团与抗衡离子的强相关性。抗衡离子此时扮演着类似于“电子胶”的作用,可以有效地将电中性的甲壳素分子与土分子粘结在一起。类似地,当质子化程度最低时,亦即壳聚糖分子完全非质子化,即呈现电中性时,较差的糖/土吸附作用源于氨基功能团与抗衡离子的较弱的相关性。  进一步对壳聚糖/蒙脱土复合材料的分子系统进行应力应变计算发现,复合材料的力学性能直接受蒙脱土体积分数和其剥离程度的影响,通常,粘土的体积分数越大体系的力学性能越高,且剥离程度对材料的整体性能也有直接影响。因此,材料的结构与其性能的表征有着密切联系。  我们相信生物大分子与蒙脱土构成的生物复合材料有着光明的前景,可以取代石油提取物制成的塑料材料,并将能够广泛应用在日常生活中。通过实验技术的改善和应用分子模拟技术对复合材料体系中生物大分子,蒙脱土分子,水分子,离子,溶液环境等混合物质相互作用的理解增加,这种可再生的新材料将会得到重要改进,这也是整本论文的主旋律。 / <p>QC 20150520</p> / Bio-nanocomposites
244

Únavová odolnost a mechanizmy únavového poškození v materiálech pro vysoké teploty / Fatigue resistance and mechanisms of the fatigue damage in materials for high temperatures

Petráš, Roman January 2021 (has links)
Superaustenitická korozivzdorná ocel typu 22Cr25NiWCoCu určená pro vysokoteplotní aplikace v energetickém průmyslu byla studována za podmínek nízkocyklové únavy při pokojové a zvýšené teplotě. Jednotlivé vzorky byly podrobeny různým zátěžným procedurám, což umožnilo studium materiálové odezvy spolu s mechanismem poškození. Křivky cyklického zpevnění/změkčení, cyklického napětí a Coffin-Mansonovy křivky byly vyhodnoceny. Únavová životnost materiálu byla diskutována s ohledem na uplatňované mechanismy poškození, které se vyvinuly za specifických zátěžných podmínek. Standardní izotermální únavové experimenty byly provedeny při pokojové a zvýšené teplotě. Hysterezní smyčky zaznamenané během cyklického zatěžování byly analyzovány pomocí zobecněné statistické teorie hysterezní smyčky. Pro různé amplitudy napětí byla určena jak distribuce hustoty pravděpodobnosti interních kritických napětí (dále PDF), tak rovněž zjištěn její vývoj během cyklického namáhání. Zjištěné průběhy PDF byly korelovány s vývojem povrchového reliéfu a vnitřního dislokačního uspořádání zdokumentované pro obě teploty pomocí rastrovací elektronové mikroskopie (SEM) vybavené technikou fokusovaného iontového svazku (FIB), která umožnila rovněž efektivní studium nukleace povrchových únavových trhlin. Při cyklickém zatížení při pokojové teplotě byla pozorována lokalizace cyklické plastické deformace do perzistentních skluzových pásů (PSP). V místech, kde tyto PSP vystupují na povrch materiálu byly pozorovány perzistentní skluzové stopy (PSS) tvořené extruzemi a intruzemi. Postupné prohlubování intruzí, zejména na čele nejhlubší intruze, vede k iniciaci únavové trhliny. Odlišný mechanismus tvorby trhlin byl zjištěn při únavové zkoušce při zvýšené teplotě, kde zásadní roli hrál vliv prostředí. Rychlá oxidace hranic zrn a jejich následné popraskání představuje dominantní mechanismus v I. stádiu nukleace trhlin. Aplikace desetiminutové prodlevy v tahové části zátěžného cyklu vedlo k vývoji vnitřního (kavitačního) poškozování. Mechanismy vnitřního poškozování byly studovány na podélných řezech rovnoběžných s napěťovou osou zkušebních vzorků. Trhliny a jejich vztah k hranicím zrn a dvojčat byly studovány pomocí difrakce zpětně odražených elektronů (EBSD). Vliv prodlevy na únavovou životnost byl korelován s vývojem povrchového reliéfu a vnitřního poškození. Vzorky z uvedené oceli byly rovněž podrobeny zkouškám termomechanické únavy (TMF), při nichž se v čase mění jak zátěžná síla tak i teplota. Termomechanické únavové zkoušky v režimu soufázném (in-phase) a protifázném (out-of-phase) byly provedeny jak s prodlevou, tak i bez ní. Ve všech případech bylo pozorováno rychlé cyklické zpevnění bez ohledu na použitou amplitudu deformace, u vzorků testovaných v out-of-phase režimu byla zjištěna tendence k saturaci. Zkoumáním povrchového reliéfu za pomocí technik SEM a FIB byla odhalena přednostní oxidace hranic zrn a následné praskání těchto hranic kolmo k ose zatížení. Prodlevy v cyklech při maximálním napětí vedly ke zvýšení amplitudy plastické deformace a následně ke creepovému poškození ve formě vnitřních kavit a trhlin. Interkrystalické šíření trhlin bylo pozorováno na vzorcích testovaných v režimu in-phase. Vývoj poškození v režimu out-of-phase nebyl principiálně ovlivněn zařazením prodlevy do zátěžného cyklu. Charakteristickým znakem namáhání v režimu out-of-phase je nukleace několika trhlin v homogenní oxidické vrstvě jdoucích napříč zrny kolmo k ose zatěžování.
245

Numerical investigations on the uniaxial tensile behaviour of Textile Reinforced Concrete

Hartig, Jens 27 January 2011 (has links)
In the present work, the load-bearing behaviour of Textile Reinforced Concrete (TRC), which is a composite of a fine-grained concrete matrix and a reinforcement of high-performance fibres processed to textiles, exposed to uniaxial tensile loading was investigated based on numerical simulations. The investigations are focussed on reinforcement of multi-filament yarns of alkali-resistant glass. When embedded in concrete, these yarns are not entirely penetrated with cementitious matrix, which leads associated with the heterogeneity of the concrete and the yarns to a complex load-bearing and failure behaviour of the composite. The main objective of the work was the theoretical investigation of effects in the load-bearing behaviour of TRC, which cannot be explained solely by available experimental results. Therefore, a model was developed, which can describe the tensile behaviour of TRC in different experimental test setups with a unified approach. Neglecting effects resulting from Poisson’s effect, a one-dimensional model implemented within the framework of the Finite Element Method was established. Nevertheless, the model takes also transverse effects into account by a subdivision of the reinforcement yarns into so-called segments. The model incorporates two types of finite elements: bar and bond elements. In longitudinal direction, the bar elements are arranged in series to represent the load-bearing behaviour of matrix or reinforcement. In transverse direction these bar element chains are connected with bond elements. The model gains most of its complexity from non-linearities arising from the constitutive relations, e. g., limited tensile strength of concrete and reinforcement, tension softening of the concrete, waviness of the reinforcement and non-linear bond laws. Besides a deterministic description of the material behaviour, also a stochastic formulation based on a random field approach was introduced in the model. The model has a number of advantageous features, which are provided in this combination only in a few of the existing models concerning TRC. It provides stress distributions in the reinforcement and the concrete as well as properties of concrete crack development like crack spacing and crack widths, which are in some of the existing models input parameters and not a result of the simulations. Moreover, the successive failure of the reinforcement can be studied with the model. The model was applied to three types of tests, the filament pull-out test, the yarn pull-out test and tensile tests with multiple concrete cracking. The results of the simulations regarding the filament pull-out tests showed good correspondence with experimental data. Parametric studies were performed to investigate the influence of geometrical properties in these tests like embedding and free lengths of the filament as well as bond properties between filament and matrix. The presented results of simulations of yarn pull-out tests demonstrated the applicability of the model to this type of test. It has been shown that a relatively fine subdivision of the reinforcement is necessary to represent the successive failure of the reinforcement yarns appropriately. The presented results showed that the model can provide the distribution of failure positions in the reinforcement and the degradation development of yarns during loading. One of the main objectives of the work was to investigate effects concerning the tensile material behaviour of TRC, which could not be explained, hitherto, based solely on experimental results. Hence, a large number of parametric studies was performed concerning tensile tests with multiple concrete cracking, which reflect the tensile behaviour of TRC as occurring in practice. The results of the simulations showed that the model is able to reproduce the typical tripartite stress-strain response of TRC consisting of the uncracked state, the state of multiple matrix cracking and the post-cracking state as known from experimental investigations. The best agreement between simulated and experimental results was achieved considering scatter in the material properties of concrete as well as concrete tension softening and reinforcement waviness. / Die vorliegende Arbeit beschäftigt sich mit Untersuchungen zum einaxialen Zugtragverhalten von Textilbeton. Textilbeton ist ein Verbundwerkstoff bestehend aus einer Matrix aus Feinbeton und einer Bewehrung aus Multifilamentgarnen aus Hochleistungsfasern, welche zu textilen Strukturen verarbeitet sind. Die Untersuchungen konzentrieren sich auf Bewehrungen aus alkali-resistentem Glas. Das Tragverhalten des Verbundwerkstoffs ist komplex, was aus der Heterogenität der Matrix und der Garne sowie der unvollständigen Durchdringung der Garne mit Matrix resultiert. Das Hauptziel der Arbeit ist die theoretische Untersuchung von Effekten und Mechanismen innerhalb des Lastabtragverhaltens von Textilbeton, welche nicht vollständig anhand verfügbarer experimenteller Ergebnisse erklärt werden können. Das entsprechende Modell zur Beschreibung des Zugtragverhaltens von Textilbeton soll verschiedene experimentelle Versuchstypen mit einem einheitlichen Modell abbilden können. Unter Vernachlässigung von Querdehneffekten wurde ein eindimensionales Modell entwickelt und im Rahmen der Finite-Elemente-Methode numerisch implementiert. Es werden jedoch auch Lastabtragmechanismen in Querrichtung durch eine Unterteilung der Bewehrungsgarne in sogenannte Segmente berücksichtigt. Das Modell enthält zwei Typen von finiten Elementen: Stabelemente und Verbundelemente. In Längsrichtung werden Stabelemente kettenförmig angeordnet, um das Tragverhalten von Matrix und Bewehrung abzubilden. In Querrichtung sind die Stabelementketten mit Verbundelementen gekoppelt. Das Modell erhält seine Komplexität hauptsächlich aus Nichtlinearitäten in der Materialbeschreibung, z.B. durch begrenzte Zugfestigkeiten von Matrix und Bewehrung, Zugentfestigung der Matrix, Welligkeit der Bewehrung und nichtlineare Verbundgesetze. Neben einer deterministischen Beschreibung des Materialverhaltens beinhaltet das Modell auch eine stochastische Beschreibung auf Grundlage eines Zufallsfeldansatzes. Mit dem Modell können Spannungsverteilungen im Verbundwerkstoff und Eigenschaften der Betonrissentwicklung, z.B. in Form von Rissbreiten und Rissabständen untersucht werden, was in dieser Kombination nur mit wenigen der existierenden Modelle für Textilbeton möglich ist. In vielen der vorhandenen Modelle sind diese Eigenschaften Eingangsgrößen für die Berechnungen und keine Ergebnisse. Darüber hinaus kann anhand des Modells auch das sukzessive Versagen der Bewehrungsgarne studiert werden. Das Modell wurde auf drei verschiedene Versuchstypen angewendet: den Filamentauszugversuch, den Garnauszugversuch und Dehnkörperversuche. Die Berechnungsergebnisse zu den Filamentauszugversuchen zeigten eine gute Übereinstimmung mit experimentellen Resultaten. Zudem wurden Parameterstudien durchgeführt, um Einflüsse aus Geometrieeigenschaften wie der eingebetteten und freien Filamentlänge sowie Materialeigenschaften wie dem Verbund zwischen Matrix und Filament zu untersuchen. Die Berechnungsergebnisse zum Garnauszugversuch demonstrierten die Anwendbarkeit des Modells auf diesen Versuchstyp. Es wurde gezeigt, dass für eine realitätsnahe Abbildung des Versagensverhaltens der Bewehrungsgarne eine relativ feine Auflösung der Bewehrung notwendig ist. Die Berechnungen lieferten die Verteilung von Versagenspositionen in der Bewehrung und die Entwicklung der Degradation der Garne im Belastungsverlauf. Ein Hauptziel der Arbeit war die Untersuchung von Effekten im Zugtragverhalten von Textilbeton, die bisher nicht durch experimentelle Untersuchungen erklärt werden konnten. Daher wurde eine Vielzahl von Parameterstudien zu Dehnkörpern mit mehrfacher Matrixrissbildung, welche das Zugtragverhalten von Textilbeton ähnlich praktischen Anwendungen abbilden, durchgeführt. Die Berechnungsergebnisse zeigten, dass der experimentell beobachtete dreigeteilte Verlauf der Spannungs-Dehnungs-Beziehung von Textilbeton bestehend aus dem ungerissenen Zustand, dem Zustand der Matrixrissbildung und dem Zustand der abgeschlossenen Rissbildung vom Modell wiedergegeben wird. Die beste Übereinstimmung zwischen berechneten und experimentellen Ergebnissen ergab sich unter Einbeziehung von Streuungen in den Materialeigenschaften der Matrix, der Zugentfestigung der Matrix und der Welligkeit der Bewehrung.
246

Verifikace nelineárních materiálových modelů betonu / Verification of nonlinear material models of concrete

Král, Petr January 2015 (has links)
Diploma thesis is focused on the description of the parameters of nonlinear material models of concrete, which are implemented in a computational system LS-DYNA, interacting with performance of nonlinear test calculations in system LS-DYNA on selected problems, which are formed mainly by simulations of tests of mechanical and physical properties of concrete in uniaxial compressive and tensile on cylinders with applying different boundary conditions and by simulation of bending slab, with subsequent comparison of some results of test calculations with results of the experiment. The thesis includes creation of appropriate geometric models of selected problems, meshing of these geometric models, description of parameters and application of nonlinear material models of concrete on selected problems, application of loads and boundary conditions on selected problems and performance of nonlinear calculations in a computational system LS-DYNA. Evaluation of results is made on the basis of stress-strain diagrams and load-displacement diagrams based on nonlinear calculations taking into account strain rate effects and on the basis of hysteresis curves based on nonlinear calculations in case of application of cyclic loading on selected problems. Verification of nonlinear material models of concrete is made on the basis of comparison of some results of test calculations with results obtained from the experiment.
247

Gesteinsmechanische Versuche und petrophysikalische Untersuchungen – Laborergebnisse und numerische Simulationen

Baumgarten, Lars 26 May 2016 (has links) (PDF)
Dreiaxiale Druckprüfungen können als Einstufenversuche, als Mehrstufenversuche oder als Versuche mit kontinuierlichen Bruchzuständen ausgeführt werden. Bei der Anwendung der Mehrstufentechnik ergeben sich insbesondere Fragestellungen hinsichtlich der richtigen Wahl des Umschaltpunktes und des optimalen Verlaufs des Spannungspfades zwischen den einzelnen Versuchsstufen. Fraglich beim Versuch mit kontinuierlichen Bruchzuständen bleibt, ob im Versuchsverlauf tatsächlich Spannungszustände erfasst werden, welche die Höchstfestigkeit des untersuchten Materials repräsentieren. Die Dissertation greift diese Fragestellungen auf, ermöglicht den Einstieg in die beschriebene Thematik und schafft die Voraussetzungen, die zur Lösung der aufgeführten Problemstellungen notwendig sind. Auf der Grundlage einer umfangreichen Datenbasis gesteinsmechanischer und petrophysikalischer Kennwerte wurde ein numerisches Modell entwickelt, welches das Spannungs-Verformungs-, Festigkeits- und Bruchverhalten eines Sandsteins im direkten Zug- und im einaxialen Druckversuch sowie in dreiaxialen Druckprüfungen zufriedenstellend wiedergibt. Das Festigkeitsverhalten des entwickelten Modells wurde in Mehrstufentests mit unterschiedlichen Spannungspfaden analysiert und mit den entsprechenden Laborbefunden verglichen.
248

Gesteinsmechanische Versuche und petrophysikalische Untersuchungen – Laborergebnisse und numerische Simulationen

Baumgarten, Lars 25 November 2015 (has links)
Dreiaxiale Druckprüfungen können als Einstufenversuche, als Mehrstufenversuche oder als Versuche mit kontinuierlichen Bruchzuständen ausgeführt werden. Bei der Anwendung der Mehrstufentechnik ergeben sich insbesondere Fragestellungen hinsichtlich der richtigen Wahl des Umschaltpunktes und des optimalen Verlaufs des Spannungspfades zwischen den einzelnen Versuchsstufen. Fraglich beim Versuch mit kontinuierlichen Bruchzuständen bleibt, ob im Versuchsverlauf tatsächlich Spannungszustände erfasst werden, welche die Höchstfestigkeit des untersuchten Materials repräsentieren. Die Dissertation greift diese Fragestellungen auf, ermöglicht den Einstieg in die beschriebene Thematik und schafft die Voraussetzungen, die zur Lösung der aufgeführten Problemstellungen notwendig sind. Auf der Grundlage einer umfangreichen Datenbasis gesteinsmechanischer und petrophysikalischer Kennwerte wurde ein numerisches Modell entwickelt, welches das Spannungs-Verformungs-, Festigkeits- und Bruchverhalten eines Sandsteins im direkten Zug- und im einaxialen Druckversuch sowie in dreiaxialen Druckprüfungen zufriedenstellend wiedergibt. Das Festigkeitsverhalten des entwickelten Modells wurde in Mehrstufentests mit unterschiedlichen Spannungspfaden analysiert und mit den entsprechenden Laborbefunden verglichen.

Page generated in 0.0341 seconds