• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 11
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 49
  • 49
  • 15
  • 10
  • 9
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Conception et réalisation d'un bio-microsystème basé sur la diélectrophorèse et l'électrofusion en vue de l'immunothérapie du cancer

Mottet, Guillaume 14 September 2009 (has links) (PDF)
Notre sujet de recherche vient d'une demande de cliniciens pour obtenir en grande quantité des hybridomes issus de la fusion entre cellules cancéreuses et cellules dendritiques. Ces travaux s'insèrent dans la recherche contre le cancer par un procédé proche de la vaccination, appelé immunothérapie du cancer. Il existe actuellement des dispositifs commercialisés, mais ceux-ci ne parviennent pas à produire de façon importante des hybridomes de qualités. L'idée était donc de se placer à l'échelle des cellules, pour interagir sur elles de façon précise, tout en bénéficiant de la miniaturisation pour contrôler un grand nombre de cellules en parallélisant le dispositif. Restait à choisir quelles forces utiliser pour agir sur les cellules pour les déplacer, les placer et les fusionner, car à l'échelle microscopique le rapport des forces sont différents de ceux à notre échelle. Nous avons opté pour l'emploi de la microfluidique pour le transport des cellules, de la diélectrophorèse pour les positionner et de l'électrofusion pour les fusionner. Ce projet est à la conjonction de savoir-faire dans les domaines de la microtechnologie, de l'interaction champs électriques-cellules et de la biologie cellulaire.
22

Microtechnologies polymères pour les laboratoires sur puces

Abgrall, Patrick 07 February 2006 (has links) (PDF)
Linvention du concept de µTAS (micro total chemical analysis system) au début des années quatre vingt dix a ouvert aux fluides la porte du monde des microsystèmes. Un laboratoire sur puce intègre toutes les fonctions dun laboratoire macroscopique (déplacer, mélanger, chauffer des liquides, filtrer, séparer, détecter des molécules, etc.) sur une petite surface (typiquement quelques centimètres carrés). Le challenge technologique repose sur le couplage entre un microsystème conventionnel et un réseau microfluidique. Si les procédés silicium et verre ont été largement utilisés durant les années quatre vingt dix, ils présentent plusieurs inconvénients rédhibitoires : incompatibilité des technologies silicium avec les forts champs électriques nécessaires pour les séparations électrophorétiques et/ou le pompage électroosmotique, technologies non adaptées pour des grandes surfaces, difficultés dintégration dans un système complet, prix élevé des matériaux et des procédés associés, etc. La solution explorée dans cette thèse consiste à construire directement le réseau microfluidique sur un microsystème conventionnel dans des résines photosensibles (SU-8), ce qui facilite lintégration et autorise la fabrication de structures 3D avec un excellent alignement niveau à niveau. Les outils de caractérisation microfluidique développées et utilisés dans le cadre de ce travail sont présentés. Les effets de surface étant fondamentaux à cette échelle, une stratégie générique de modification des propriétés physicochimiques de la SU-8 est proposée et caractérisée.
23

A novel SU-8 stamping and electrostatic pulling method for microlens array fabrication

Kuo, Shu-Ming 16 February 2011 (has links)
This research reports a simple and novel method to fabricate microlens arrays by soft stamping the unexposed SU-8 photoresist. A SU-8 based stamp composed of micro-nozzle arrays with a reservoir structure on a glass substrate is first fabricated using a process of dosage control exposure. The unexposed SU-8 is then encapsulated in the cross-linked SU-8 shell and was used as the ¡§ink¡¨ for the stamping process. The proposed SU-8 microlens array is then formed by stamping the formed SU-8 structure on a bare glass substrate at a temperature higher than the glass transition temperature (Tg) of the unexposed SU-8 microlens array. Lenses with various radii of curvature can be formed by controlling the working temperature during the stamping process. In addition, this work also employed a simple electric static pulling scheme to manipulate the fabricated lenses profiles. Aspherical SU-8 microlens arrays with a wide range of tunable focal lengths were fabricated with this approach. Furthermore, we develop an advanced localize E-field control technique to fabricate microlenses with various focus length and microlenses with different tilt angle in a single lens array sheet. A novel grayscale mask fabrication technique is also proposed first. This low cost and rapid method is applied on stepwise and continuous tilt plane fabrication for produces a gradually changed E-field. Hetero axes and focus lengths microlenses are fabricated with this approach. In order to farther understand the real E-field distribution, a novel PCF based E-field sensor fabrication technique is also proposed. This technique also shows the potential on various PCF based devices fabrications.
24

A thin film transistor driven microchannel device

Lee, Hyun Ho 17 February 2005 (has links)
Novel electrophoresis devices for protein and DNA separation and identification have been presented and studied. The new device utilizes a contact resistance change detection method to identify protein and DNA in situ. The devices were prepared with a microelectronic micromechanical system (MEMS) fabrication method. Three model proteins and six DNA fragments were separated by polyacrylamide gel microchannel electrophoresis and surface electrophoresis. The detection of the proteins or DNA fragments was accomplished using the contact resistance increase of the detection electrode due to adsorption of the separated biomolecules. Key factors for the success of these devices were the optimization of fabrication process and the enhancement of detection efficiency of the devices. Parameters, such as microchannel configuration, size of electrode, and affinity of protein or polyacrylamide gel to the microchannel sidewall and bottom surface were explored in detail. For DNA analysis, the affinity to the bottom surface of the channel was critical. The surface modification method was used to enhance the efficiency of the microchannel surface electrophoresis device. The adsorption of channel separated protein and DNA on the detection electrode was confirmed with the electron spectroscopy for chemical analysis (ESCA) method. The electrical current (I) from the protein microchannel electrophoresis was usually noisy and fluctuated at the early stage of the electrophoresis process. In order to remove the current perturbation, an amorphous silicon (a-Si:H) thin film transistor (TFT) was connected to the microchannel device. The self-aligned a-Si:H TFT was fabricated with a two-photomask process. The result shows that the attachment of the TFT successfully suppressed the current fluctuation of the microchannel electrophoresis process. In summary, protein and DNA samples were effectively separated and detected with the novel TFT-driven or surface microchannel electrophoresis device.
25

Stabilization of Horseradish Peroxidase Using Epoxy Novolac Resins for Applications with Microfluidic Paper-Based Analytical Devices

Chaplan, Cory A. 01 June 2014 (has links)
Microfluidic paper-based analytical devices (microPADs) are an emerging platform for point-of-care diagnostic tests for use by untrained users with potential applications in healthcare, environmental monitoring, and food safety. These devices can be developed for a multitude of different tests, many of which employ enzymes as catalysts. Without specialized treatment, some enzymes tend to lose their activity when stored on microPADs within 48 hours, which is a major hurdle for taking these types of devices out of the laboratory and into the real world. This work focused on the development of simple methods for stabilizing enzymes by applying polymers to chromatography paper. The longterm stabilization was exlored and SU-8 of various concentrations was found to stabilize horseradish peroxidase for times in excess of two weeks. A variety of microPAD fabrications, enzyme dispensing methods, and substrate delivery techniques were explored.
26

Aerosol Jet Printing of SU-8 for Capacitor Applications

Williams, Richard A., III 20 December 2018 (has links)
No description available.
27

Low-Loss Hollow Waveguide Platforms for Optical Sensing and Manipulation

Lunt, Evan J. 11 August 2010 (has links) (PDF)
This dissertation presents a method for fabricating integrated hollow and solid optical waveguides on planar substrates. These waveguides are antiresonant reflecting optical waveguides (ARROWs), where high-index cladding layers confine light to hollow cores through optical interference. Hollow waveguides that can be filled with liquids or gases are an important new building block for creating highly-integrated optical sensors. The method developed for fabricating these integrated waveguides employs standard processes and materials used in the microelectronics industry, allowing for parallel, low-cost fabrication. Dielectric cladding layers are deposited on a silicon wafer using plasma-enhanced chemical vapor deposition (PECVD). After the lower cladding layers have been deposited, a sacrificial material is deposited and patterned using photolithography to produce the hollow-core shape. After the sacrificial cores are defined, they are coated with additional PECVD dielectric layers to form the sides and tops of the waveguides. Integrated solid-core waveguides can be easily created by etching a ridge into the top dielectric cladding layer. Finally, the ends of the sacrificial cores are exposed and removed with an acid solution, resulting in hollow waveguides. Improved optical performance for integrated ARROW platforms can be achieved by only using a single over-coating for the cladding on the sides and top of the hollow waveguide. Such a structure resulted in 70% improvement in optical throughput for the platforms and increased sensitivity for optical manipulation and fluorescence detection of single particles, including viruses. Reduced loss for the hollow waveguides can be obtained by surrounding the core with a terminal layer of air on the sides and top of the waveguide. Such devices were created by forming the hollow waveguides on top of a pedestal on the silicon substrate. This process produces the ideal geometry for hollow ARROW waveguides, and loss measurements of waveguides with air-filled cores had loss coefficients of 1.54/cm, which is the lowest achieved for air-core ARROWs.
28

Basic Study Of Micromachined Dep (dielectrophoretic) Manipulator

Sundaram, Vivek 01 January 2004 (has links)
The capability of manipulating microparticle in small volumes is fundamental to many biological and medical applications, including separation and detection of cells. The development of microtools for effective sample handling and separation in such volumes is still a challenge. DEP (dielectrophoresis) is one of the most widely used methods in handling the microparticles. In this thesis we show that forces generated by nonuniform electric field (DEP) can be used for trapping and separating the microparticles (latex beads). This work further explores the DEP force based on different electrode geometries and medium conductivity. A micromanipulator for latex bead separation was designed, fabricated and characterized. For the development of DEP manipulator, the fabrication and packaging of microfluidic structure with the microelectrode is crucial for reliable analysis. A combination of SU-8 photoresist and polydimethylsiloxane polymer was used for this purpose. Besides, the DEP manipulator, preliminary study on a Coulter counter was conducted. The Coulter counter works on the principle of resistive pulse sensing. This counter is used for counting the beads as they pass through the microfluidic channel. Its possible integration with the manipulator was also explored.
29

Measuring Impedance of Tissues Using a Microfabricated Microelectrode Array

Bhat, Ashwini 01 December 2012 (has links) (PDF)
MEASURING IMPEDANCE OF TISSUES USING A MICROFABRICATED MICROELECTRODE ARRAY By Ashwini Bhat This thesis looks at the possibility of using impedance spectroscopy for differentiating tissue, using a microelectrode array (MEA). The thesis first discusses the background and the motivation for this thesis. It covers the certain basic concepts of the human skin starting from the top epidermis layer all the way to the deep dermis layers of the skin. Then it discusses different types of skin cancer and how they occur, in humans. It also discusses various microfabrication techniques such as oxidation, wet etching, sputtering and photolithography for the creation of a MEA in order to test the tissue. The microfabricated MEA is then used to measure impedance across cooked and raw chicken at different frequencies in order to see if the two types of tissues can be differentiated using their respective impedances. The data shows that the MEA was not able to successfully differentiate the two types of the tissues. It does however list multiple improvements in the fabrication of the MEA and improvements that could be made to the testing procedures which could possible give greater difference in impedance between the two tissues
30

Novel Electrowetting Microvalve

Yang, Jia 06 December 2010 (has links)
No description available.

Page generated in 0.0174 seconds