251 |
Tribological behaviour of metal sulfides UHMWPE composites in dry lubricationPizone Vaz, Bruno January 2021 (has links)
The increasing worldwide demand for more eco-friendly materials with improved tribo- logical properties has expanded the interest in research on polymer as an alternative for conventional metal/metal contacts under dry lubrication. Specifically, UHMWPE, a semi-crystalline polymer, has shown interesting tribological properties for low demanding applications, allied with excellent recyclability, manufacturability and low cost. Though, its limited working temperature range and wear resistance claims reinforcements to modulate these drawbacks. Metal sulfides, such as MoS2 and SnS2 are well-known 2D materials with outstanding thermal, mechanical and tribological properties which have the potential to increase the range of applicability of UHMWPE. Therefore, this work aims to investigate the influence of metal sulfide-based micro-particles on UHMWPE-based composites properties under reciprocating movement and to determine further acknowledgements about the mechanisms involved. The results showed that the incorporation of fillers im- proved in hardness and wettability, whereas thermal properties were conserved. Though, it is noted that chemical degradation processes (oxidation and un-saturation reactions) that occurred during the manufacturing negatively influenced the composite’s tribological response. Higher reinforcement weight percentages (10%) promoted metal-sulfides agglomeration, increased degradation and ultimately diminished wear resistance. Overall, optimizing the amount of filler in the matrix at 5 wt% provided its homogeneous dispersion and a good interface with the matrix, leading to enhancement in wear resistance up to 62%. Indeed, the incorporation of metal-sulfide based materials in the UHMWPE matrix revealed an excellent solution where wear resistance improvements are needed.
|
252 |
Study of Titania supported transition metal sulfides for the photocatalytic production of hydrogen / Production photocatalytique d'hydrogène avec des sulfures de métaux de transitions supportés sur TiO2Maheu, Clément 23 September 2019 (has links)
La photocatalyse est une voie de synthèse prometteuse de l’hydrogène comme carburant solaire. La production photocatalytique est un moyen, à la fois de stocker l’énergie solaire sous forme d’énergie chimique et de produire des carburants de manière renouvelables en utilisant l’eau ou des alcools biosourcés comme matière première. L’objectif de cette thèse est d’étudier la déshydrogénation photocatalytique d’alcools à l’aide de sulfures de métaux de transitions, supportés sur TiO2 (MSx/TiO2). Ces sulfures de métaux de transitions ont des propriétés d’activation de l’hydrogène, des propriétés électrochimiques et des propriétés optiques intéressantes. Une série de sept MSx/TiO2 (M = Co, Ni, Cu, Mo, Ru, Ag, Hg) ont été étudiés. La réaction de déshydrogénation photocatalytique du propan-2-ol est utilisée comme réaction modèle. Des corrélations sont établies entre les propriétés intrinsèques de ces MSx/TiO2 et leur activité photocatalytique. De plus, la mesure d’énergie d’activation d’apparente apporte une compréhension supplémentaire sur les mécanismes photocatalytiques. Cette dernière montre que la production photocatalytique d’hydrogène est principalement limitée par les phénomènes de séparation et de transfert de charges dans les photocatalyseurs. Ainsi, une méthodologie combinant la spectroscopie de photoélectrons UV et la spectroscopie d’absorption UV-Visbile a été mis en place pour déterminer la structure électronique des poudre photocatalytiques. Ce travail conclue sur le caractère central de la structure électronique en photocatalyse. Dans le cas du photocatalyseur RuS2/TiO2, le transfert électronique est l’étape cinétiquement déterminante pour la déshydrogénation photocatalytique du propan-2-ol / Photocatalysis is a promising way to synthesize H2 as a solar fuel. On one hand, the photocatalytic H2 production stores solar energy under chemical energy. On the other hand, it produces H2 with a renewable process using water and bio-based alcohols as a feedstock. This Ph.D thesis aims to study the photocatalytic dehydrogenation of alcohols with transition metal sulfides supported on TiO2 (MSx/TiO2). Those transition metal sulfides have versatile and highly tunable properties. They can activate H2, they have promising electrochemical behavior and optical properties. Seven MSx/TiO2 (M = Co, Ni, Cu, Mo, Ru, Ag, Hg) are therefore studied. The photocatalytic dehydrogenation of propan-2-ol is used as a model reaction. Structure-activity relationships are found between the intrinsic properties of the MSx/TiO2 and their photocatalytic activity. Measuring an apparent activation energy provides additional mechanistic insights. It shows that the photocatalytic production of hydrogen is mostly limited by the charge carrier separation and by the electronic transfer. Therefore a method combining the UPS and the UV-Visbile absorption spectroscopies has been develop to establish the electronic structure of photocatalytic powders. This work concludes that the electronic structure plays a crucial role in photocatalysis. With RuS2/TiO2 photocatalyst, the electron transfer is evidenced as the rate-determining step of the photocatalytic dehydrogenation of propan-2-ol
|
253 |
Исследование комбинированной технологии переработки медно-цинковых промпродуктов : магистерская диссертация / Study of the combined technologies of processing of copper-zinc middlingsБерстенев, Н. В., Berstenev, N. V. January 2016 (has links)
В представленной работе на тему «Исследование комбинированной технологии переработки медно-цинковых промпродуктов» произведены теоретические и лабораторные исследования по определению оптимальной технологии переработки медно-цинковых сульфидных промпродуктов гидрометаллургическим способом. Рассмотрены две эффективные технологии, проведено сравнение по объективным показателям, сделаны экологоэкономический и экономический расчеты. / In this study, entitled "Study of the combined technologies of processing of copper-zinc middlings" produced theoretical and laboratory studies to determine the best technology processing of copper-zinc sulphide middlings hydro- metallurgical method. Two efficient technologies are considered, compared to objective indicators, are made of ecological, and economic calculations.
|
254 |
A REVIEW OF IRON SULFIDES AND OXIDES IN COAL MINE WASTE, HUFF RUN WATERSHED, OHIOBurkey, Michael F. 11 May 2018 (has links)
No description available.
|
255 |
Three-dimensional Investigations of Different Sulfides in Steels by Using Electrolytic ExtractionLam, Pang Kit Jerry January 2016 (has links)
The emphasis of this study is focusing on three-dimensional (3D) investigations of the manganese sulfide (MnS) inclusions characteristics in steels by using electrolytic extraction (EE). Two steel grades, 42CrMo4 and 157C, heat treated (HT) at 900 oC were investigated. 42CrMo4 steel samples were heat treated for 5, 10, 15 and 30 minutes while 157C steel samples were heat treated for 5 minutes. Samples of 42CrMo4 were taken from middle zone of an as-cast steel bar while that for grade 157C were taken from 3 different zones (centre, middle and surface). Inclusions were collected on film filters and analyzed by SEM for classification and determination of their characteristics including the size, number density (Nv), morphology and composition. The aspect ratio (AR) as well as particle size distribution (PSD) were also compared for steel samples conducted at various HT times. The result showed that EE is a reliable method of investigation inclusion characteristics. The inclusions were classified into 3 types according to their morphology and composition. Type I was elongated rod-like MnS, type II was coarsened sheet-like MnS and type III was spherical MnS inclusions. In addition, HT significantly reduced the Nv and fairly reduced AR but no significant reduction in size observed. The peak of PSD decreased with an increased HT time. The change of Nv, length, AR and PSD could be altered because of uneven inclusion distribution in filter and different sampling positions.
|
256 |
Entwicklung einer Technologie zur langzeitstabilen Biologischen Reinigung schwermetallbelasteter BergbauwässerDeusner, Christian 04 October 2004 (has links) (PDF)
A new technology for biotechnological treatment of mine waters with both high concentrations of heavy metals and sulphate was developed. The technology is based on the technical coupling of microbially mediated hydrolysis, fermentation and microbial sulphate reduction in a self-stabilising process. Electron donor for sulphate reduction is supplied by degradation of a solid substrate (silage). Elimination of metals is primarily achieved by sulphide precipitation within the sulphate reduction zone. The organic compounds are either supplied by elution or by hydrolysis of polymeric compounds which was named active elution. The concept was realised as a two-phase process with (active) elution in the first phase (R1) and sulphate reduction and metal elimination in the second phase (R2). With this process setup the supply of sufficient amounts of electron donor in R1, a stable and effective sulphate reduction yield as the basis of metal elimination in R2 and a stable separation of microbial processes in R1 and R2 was achieved at hydraulic retention times of 69 h in R1 and 40 h in R2. Almost complete elimination of heavy metals was achieved from wastewaters with 0.2 mM Ni2+, Cu2+, Zn2+, Fe2+ and Mn2. A structurised mathematical model describing the two-phase process was developed on the basis of literature values and tested with data from continuous experiments. Microbial processes were significantly influenced in the presence of precipitated heavy metal sulfides. The effect was dependent on both the bound metal (Ni2+ or Fe2+) and the relative distance between sediment and biomass. / Es wurde eine neuartige Technologie zur biotechnologischen Reinigung von schwermetallbelasteten, sulfathaltigen Bergbauwässern entwickelt. Die Technologie basiert auf der technischen Kopplung von mikrobiell vermittelter Hydrolyse, Fermentation und mikrobieller Sulfatreduktion in einem selbststabilisierenden Prozess, wobei aus Abbau eines festen Substanzgemisches (Silage) Elektronendonor zur Sulfatreduktion bereitgestellt wird. Die Schwermetallelimination erfolgt vorrangig durch sulfidische Fällung, die technisch einstufig mit der mikrobiellen Sulfatreduktion realisiert wurde. Die organischen Verbindungen wurden durch Elution bereitgestellt bzw. durch hydrolytischen Abbau von polymeren Verbindungen. Hierfür wurde der Begriff der ?Aktiven Elution? geprägt. Die Konzeption wurde technisch zweistufig umgesetzt. In der ersten Stufe (R1) erfolgt die (Aktive) Elution, in der zweiten Stufe (R2) erfolgen Sulfatreduktion und Schwermetallelimination. Mit der verfahrenstechnischen Umsetzung wurde die Bereitstellung einer ausreichenden Menge an Elektronendonor in R1, eine effektive und stabile Sulfatreduktionsausbeute als Bedingung der Schwermetallelimination in R2 und eine weitgehende Trennung der mikrobiellen Prozesse in R1 und R2 bei Verweilzeiten von 69 h in R1 und 40 h in R2 erreicht. Bei Behandlung von wässrigen Lösungen mit 0,2 mM Ni2+, Cu2+, Zn2+, Fe2+ und Mn2+ konnte eine nahezu vollständige Elimination der Schwermetalle aus der Lösung erreicht werden. Es wurde ein strukturiertes mathematisches Modell für den zweistufigen Prozess auf der Basis von Literaturangaben entwickelt und anhand der kontinuierlichen Laborversuche überprüft. Es wurde ein erheblicher Einfluss schwermetallsulfidischer Präzipitate auf die mikrobiellen Prozesse festgestellt. Dabei wurde dieser Einfluss in Abhängigkeit von der Art der gebundenen Metallionen (Ni2+ oder/und Fe2+) und in Abhängigkeit der relativen räumlichen Anordnung von Sediment und Biomasse festgestellt.
|
257 |
Layered transition metal sulfide- based negative electrode materials for lithium and sodium ion batteries and their mechanistic studiesGao, Suning 21 September 2020 (has links)
The environmental concerns over the use of fossil fuels, and their resource constraints, as well as energy security concerns, have spurred great interest in generating electric energy from renewable sources. Solar and wind energy are abundant and potentially readily available. However, the generation of sustainable energies is generally intermittent and these energies have geographical limits which are relative to current large-scale energy generation facilities. To smooth out the intermittency of renewable energy production, low-cost electrical energy storage (EES) devices are becoming highly necessary. Among these EES technologies, lithium ion batteries are one of the most promising EES devices in terms of the characteristics of high gravimetric, volumetric energy density and environmentally friendly compared to lead-acid batteries and Ni-Cd batteries. Other advantages of Li-ion batteries are the ability of being recharged hundreds of times and high stability. Moreover, the dramatically growing market share of hybrid electrical and electrical vehicles in automobiles has motivated the development of high energy and power density LIBs with high mass loading. However, there are still several remaining challenges in LIBs for their further application in grid-scale ESSs. One of the global issues to date is the high costs including the cost of raw materials such as lithium and cobalt, production, machining, and transportation, etc. In addition, the increasing energy demand thereby leads to the pressures on the resource supply chains and thus increasing the cost of LIBs. Therefore, it is urgent to find a complementary or alternative EES device in a short term to satisfy the growing energy demand. Under the background of fast development of LIBs technology as well as the establishment of Li chemistry fundamentals in the last 40 years, rechargeable battery systems utilizing Na element have been extensively studied to develop less expensive and more sustainable ESSs. The sodium resource is abundantly existed in the planet. According to the periodic table, sodium is the most possible alternative to lithium, because it has the similar chemical and physical properties towards to lithium. As a consequence, the established fundamentals in LIBs can be reasonably analogized to SIBs. Moreover, Sodium is readily available from various sources-foods that contain sodium naturally, foods containing salt and other sodium-containing ingredients. Therefore, The study of SIBs technology and sodium chemistry are gaining increasing interests and attentions both in the scientific researchers and battery industry. However, theoretically speaking, the energy density of SIBs is lower than that of LIBs by using same electrode materials because sodium is more than 3 times heavier than Li as well as the standard electrode potential of Na (-2.71 V) is higher than Li (-3.04 V). Therefore, SIBs are not thought as an ideal candidate to substitute LIBs in the fields of small or middle-size portable devices, but are more favorable in a large grid support where the operation cost is the primary choice. Negative electrode is important component in a single cell. Exploring negative electrode materials with high electrochemical performance in LIBs and SIBs is indeed required for fulfilling the spreading energy demand. Among various negative electrode materials, layered transition metal sulfides (MSs) are reckoned as a promising class with high theoretical specific capacity and power capability due to their intrinsically layered structure which is beneficial to the diffusion of Li+ and Na+ . However, layered transition metal sulfides are suffering from intrinsically poor electrical conductivity, volume changes, high irreversibility and sluggish kinetics during Li+ /Na+ storage process. To address these issues, numerous strategies are applied to explore high performance LIBs and SIBs negative electrode materials in this PHD thesis. / Die ökologischen Bedenken hinsichtlich der Nutzung fossiler Brennstoffe und deren Ressourcenbeschränkungen sowie Bedenken hinsichtlich der Energiesicherheit haben großes Interesse an der Erzeugung elektrischer Energie aus erneuerbaren Quellen geweckt. Sonnen- und Windenergie sind im Überfluss vorhanden und potenziell leicht verfügbar. Die Erzeugung nachhaltiger Energien ist jedoch in der Regel intermittierend, und diese Energien haben geographische Grenzen, die im Vergleich zu den derzeitigen großen Energieerzeugungsanlagen relativ begrenzt sind. Um die Unterbrechungen in der Produktion erneuerbarer Energien auszugleichen, werden kostengünstige elektrische Energiespeicher (EES) dringend notwendig. Unter diesen EES-Technologien sind Lithium-Ionen-Batterien eines der vielversprechendsten EES-Geräte hinsichtlich der Eigenschaften einer hohen gravimetrischen, volumetrischen Energiedichte und umweltfreundlich im Vergleich zu Blei-Säure-Batterien und Ni-Cd-Batterien. Weitere Vorteile von Lithium-Ionen-Batterien sind die Fähigkeit, hunderte Male wieder aufgeladen werden zu können, und die hohe Stabilität. Darüber hinaus hat der dramatisch wachsende Marktanteil von Hybrid- und Elektrofahrzeugen in Automobilen die Entwicklung von LIBs mit hoher Energie- und Leistungsdichte und hoher Massenbelastung motiviert. Es gibt jedoch noch einige Herausforderungen in den LIBs, die für die weitere Anwendung in den ESSs im Rastermaßstab erforderlich sind. Eine der bisherigen globalen Fragen sind die Gesamtkosten einschließlich der Kosten für Rohstoffe wie Lithium und Kobalt, Produktion, Bearbeitung und Transport usw. Darüber hinaus führt die steigende Energienachfrage dadurch zu einem Druck auf die Ressourcenversorgungsketten und damit zu einer Verteuerung der LIBs. Daher ist es dringend erforderlich, kurzfristig eine ergänzende und alternative EES-Technologie zu finden, um den wachsenden Energiebedarf zu decken. Vor dem Hintergrund der schnellen Entwicklung der LIBs-Technologie sowie der Etablierung der Grundlagen der Li-Chemie in den letzten 40 Jahren wurden wiederaufladbare Batteriesysteme, die das Na-Element verwenden, umfassend untersucht, um kostengünstigere und nachhaltigere ESSs zu
entwickeln. Die Natriumressource ist auf der Erde im Überfluss vorhanden. Nach dem Periodensystem ist Natrium die möglichste Alternative, da es die ähnlichen chemischen und physikalischen Eigenschaften von Lithium hat. Folglich lassen sich die etablierten Grundlagen der LIBs in vernünftiger Weise mit denen der SIBs vergleichen. Darüber hinaus ist Natrium aus verschiedenen Quellen leicht erhältlich - aus Lebensmitteln, die von Natur aus Natrium enthalten, aus Lebensmitteln, die Salz und andere natriumhaltige Zutaten enthalten. Daher gewinnt das Studium der SIBs-Technologie und Natriumchemie sowohl in der wissenschaftlichen Forschung als auch in der Batterieindustrie zunehmend an Interesse und Aufmerksamkeit. Theoretisch gesehen ist jedoch die Energiedichte von SIBs bei Verwendung der gleichen Elektrodenmaterialien niedriger als die von LIBs, da Natrium mehr als dreimal schwerer als Li ist und das Standardelektrodenpotential von Na (-2,71 V) höher als Li (-3,04 V) ist. Daher werden SIBs nicht als idealer Kandidat für den Ersatz von LIBs im
Bereich kleiner oder mittelgroßer tragbarer Geräte angesehen, sondern sie sind günstiger bei einer großen Netzunterstützung, bei der die Betriebskosten die primäre Wahl sind. Die negative Elektrode ist ein notwendiger und wichtiger Teil in einer einzelnen Zelle. In der Tat ist es zur Erfüllung des sich ausbreitenden Energiebedarfs erforderlich, negative Elektroden-Materialien mit hoher elektrochemischer Leistung in LIBs und SIBs zu untersuchen. Unter den verschiedenen Materialien für negative Elektroden gelten geschichtete Übergangsmetallsulfide (MS) als eine vielversprechende Klasse mit hoher theoretischer spezifischer Kapazität und Leistungskapazität aufgrund ihrer intrinsisch geschichteten Struktur, die der Diffusion von Li+ und Na+ förderlich ist. Allerdings leiden schichtförmige Übergangsmetallsulfide unter inhärent schlechter elektrischer Leitfähigkeit, Volumenänderungen, hoher Irreversibilität und träger Kinetik während des Li+ /Na+ -Speicherprozesses. Um diese Probleme anzugehen, werden in dieser Doktorarbeit zahlreiche Strategien zur Untersuchung von Hochleistungs-LIBs und SIBs für negative Elektrodenmaterialien angewandt.
|
258 |
Entwicklung einer Technologie zur langzeitstabilen Biologischen Reinigung schwermetallbelasteter BergbauwässerDeusner, Christian 27 May 2004 (has links)
A new technology for biotechnological treatment of mine waters with both high concentrations of heavy metals and sulphate was developed. The technology is based on the technical coupling of microbially mediated hydrolysis, fermentation and microbial sulphate reduction in a self-stabilising process. Electron donor for sulphate reduction is supplied by degradation of a solid substrate (silage). Elimination of metals is primarily achieved by sulphide precipitation within the sulphate reduction zone. The organic compounds are either supplied by elution or by hydrolysis of polymeric compounds which was named active elution. The concept was realised as a two-phase process with (active) elution in the first phase (R1) and sulphate reduction and metal elimination in the second phase (R2). With this process setup the supply of sufficient amounts of electron donor in R1, a stable and effective sulphate reduction yield as the basis of metal elimination in R2 and a stable separation of microbial processes in R1 and R2 was achieved at hydraulic retention times of 69 h in R1 and 40 h in R2. Almost complete elimination of heavy metals was achieved from wastewaters with 0.2 mM Ni2+, Cu2+, Zn2+, Fe2+ and Mn2. A structurised mathematical model describing the two-phase process was developed on the basis of literature values and tested with data from continuous experiments. Microbial processes were significantly influenced in the presence of precipitated heavy metal sulfides. The effect was dependent on both the bound metal (Ni2+ or Fe2+) and the relative distance between sediment and biomass. / Es wurde eine neuartige Technologie zur biotechnologischen Reinigung von schwermetallbelasteten, sulfathaltigen Bergbauwässern entwickelt. Die Technologie basiert auf der technischen Kopplung von mikrobiell vermittelter Hydrolyse, Fermentation und mikrobieller Sulfatreduktion in einem selbststabilisierenden Prozess, wobei aus Abbau eines festen Substanzgemisches (Silage) Elektronendonor zur Sulfatreduktion bereitgestellt wird. Die Schwermetallelimination erfolgt vorrangig durch sulfidische Fällung, die technisch einstufig mit der mikrobiellen Sulfatreduktion realisiert wurde. Die organischen Verbindungen wurden durch Elution bereitgestellt bzw. durch hydrolytischen Abbau von polymeren Verbindungen. Hierfür wurde der Begriff der ?Aktiven Elution? geprägt. Die Konzeption wurde technisch zweistufig umgesetzt. In der ersten Stufe (R1) erfolgt die (Aktive) Elution, in der zweiten Stufe (R2) erfolgen Sulfatreduktion und Schwermetallelimination. Mit der verfahrenstechnischen Umsetzung wurde die Bereitstellung einer ausreichenden Menge an Elektronendonor in R1, eine effektive und stabile Sulfatreduktionsausbeute als Bedingung der Schwermetallelimination in R2 und eine weitgehende Trennung der mikrobiellen Prozesse in R1 und R2 bei Verweilzeiten von 69 h in R1 und 40 h in R2 erreicht. Bei Behandlung von wässrigen Lösungen mit 0,2 mM Ni2+, Cu2+, Zn2+, Fe2+ und Mn2+ konnte eine nahezu vollständige Elimination der Schwermetalle aus der Lösung erreicht werden. Es wurde ein strukturiertes mathematisches Modell für den zweistufigen Prozess auf der Basis von Literaturangaben entwickelt und anhand der kontinuierlichen Laborversuche überprüft. Es wurde ein erheblicher Einfluss schwermetallsulfidischer Präzipitate auf die mikrobiellen Prozesse festgestellt. Dabei wurde dieser Einfluss in Abhängigkeit von der Art der gebundenen Metallionen (Ni2+ oder/und Fe2+) und in Abhängigkeit der relativen räumlichen Anordnung von Sediment und Biomasse festgestellt.
|
259 |
The Effect of Flow on the Development and Retention of Iron Sulfide Corrosion ProductLayersAnyanwu, Ezechukwu John 04 June 2019 (has links)
No description available.
|
260 |
Geology of the Palo Verde Ranch Area, Owl Head Mining District, Pinal County, ArizonaApplebaum, Steven January 1975 (has links)
A quartz diorite intrusion of probable early Tertiary age that crops out over at least 6 square miles in the Palo Verde Ranch area in Pinal County, Arizona was mapped as a distinct intrusion. The quartz diorite intrudes an area comprising Pinal Schist, Oracle granite, andesitic flows, granoaplite, and dike rocks including both pegmatite and diabase. Two major physical features, the Owl Head Buttes and Chief Buttes volcanic areas, both remnants of an extensive early Tertiary series of flows of intermediate composition that covered the area, now remain as lava-capped buttes above the pediment. Weak but persistent fracture-controlled copper mineralization is found in the quartz diorite and the Pinal Schist at or near their mutual contacts in the form of chrysocolla, malachite, black copper oxides, chalcocite, chalcopyrite, and bornite, in decreasing order. Pyrite is rare. Alteration related to northeast and northwest-trending fractures increases in intensity from the common propylitic to argillic to the northeast toward the San Juan claims area. A barely discernible increase in copper sulfides mirrors the alteration zoning, although geochemical sampling showed background copper in the quartz diorite to be more uniform away from fractures.
|
Page generated in 0.0261 seconds