• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5839
  • 1830
  • 1659
  • 671
  • 549
  • 174
  • 164
  • 137
  • 127
  • 101
  • 91
  • 51
  • 51
  • 51
  • 51
  • Tagged with
  • 13921
  • 1647
  • 1399
  • 973
  • 864
  • 779
  • 779
  • 746
  • 724
  • 689
  • 650
  • 627
  • 623
  • 559
  • 537
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
491

Conception d'un revêtement conducteur extrinsèque polymère/fils submicroniques d'argent : application à la métallisation de substrat thermodurcissable chargé fibres de carbone à finalité spatiale / Design of a polymer extrinsic conductive coating - silver nanowires : application to the metallization of thermosetting substrate filled with carbon fibers for spatial purpose

Dupenne, David 22 September 2017 (has links)
Ces travaux décrivent la réalisation et l'étude d'un procédé original permettant la métallisation de surface de substrats à matrice polymère chargés fibres de carbone (CFRP) par l'intermédiaire d'un revêtement polymère conducteur pour des applications de blindage électromagnétique. Ce revêtement conducteur est constitué d'une matrice polyuréthane (PU) contenant des fils submicroniques d'argent (AgNWs) obtenus par un procédé polyol. L'étude de la mobilité moléculaire de la matrice PU et de l'influence des AgNWs sur les propriétés physiques de la matrice ont été effectuées. Le revêtement PU/AgNWs présente un très faible seuil de percolation volumique et surfacique inférieur à 1 % en volume. Au-delà de ce seuil de percolation, la conductivité de surface est suffisante pour permettre l'électrodéposition. Les paramètres optimaux de l'électrodéposition ont été déterminés. Un dépôt homogène et uniforme est obtenu pour des revêtements faiblement chargés (4 %vol). La couche métallique conserve son adhérence, malgré les grandes variations thermiques, en adaptant les contraintes de dilatation. L'efficacité de blindage a été mesurée de 1 à 26 gigahertz. / This work describes the achievement and the study of an original process to permit the surface metallization of carbon fiber reinforced polymer (CFRP) substrates filled with carbon fibers through a conductive polymer coating for electromagnetic shielding applications. This conductive coating consists of a polyurethane (PU) matrix containing silver nanowires (AgNWs) obtained by a polyol process. The study of the molecular mobility of PU matrix and the influence of AgNWs on the physical properties of the matrix were carried out. The PU/AgNWs coating exhibits a very low volume and surface percolation threshold less than 1 % by volume. Above this percolation threshold, the surface conductivity allows metal electroplating. Optimal electrodeposition parameters were determined. A homogeneous and uniform deposition is obtained on the low-filled coatings (4 %vol). The metallic layer adheres to substrate for large thermal variations, by adapting the stresses of the thermal expansion. The EM shielding efficiency was measured from 1 to 26 gigahertz.
492

Surface-atmosphere interactions in the thermal infrared (8 - 14um)

McAtee, Brendon Kynnie January 2003 (has links)
Remote sensing of land surface temperature (LST) is a complex task. From a satellite-based perspective the radiative properties of the land surface and the atmosphere are inextricably linked. Knowledge of both is required if one is to accurately measure the temperature of the land surface from a space-borne platform. In practice, most satellite-based sensors designed to measure LST over the surface of the Earth are polar orbiting. They scan swaths of the order of 2000 km, utilizing zenith angles of observation of up to 60°. As such, satellite viewing geometry is important when comparing estimates of LST between different overpasses of the same point on the Earth's surface. In the case of the atmosphere, the optical path length through which the surfaceleaving radiance propagates increases with increasing zenith angle of observation. A longer optical path may in turn alter the relative contributions which molecular absorption and emission processes make to the radiance measured at the satellite sensor. A means of estimating the magnitudes of these radiative components in relation to the viewing geometry of the satellite needs to be developed if their impacts on the at-sensor radiance are to be accurately accounted for. The problem of accurately describing radiative transfer between the surface and the satellite sensor is further complicated by the fact that the surface-leaving radiance itself may also vary with sensor viewing geometry. Physical properties of the surface such as emissivity are known to vary as the zenith angle of observation changes. The proportions of sunlit and shaded areas with the field-of-view of the sensor may also change with viewing geometry depending on the type of cover (eg vegetation), further impacting the surface emissivity. / Investigation of the change in surface-leaving radiance as the zenith angle of observation varies is then also important in developing a better understanding of the radiative interaction between the land surface and the atmosphere. The work in this study investigates the atmospheric impacts using surface brightness temperature measurements from the ATSR-2 satellite sensor in combination with atmospheric profile data from radiosondes and estimates of the downwelling sky radiance made by a ground-based radiometer. A line-by-line radiative transfer model is used to model the angular impacts of the atmosphere upon the surfaceleaving radiance. Results from the modelling work show that if the magnitude of the upwelling and downwelling sky radiance and atmospheric transmittance are accurately known then the surface-emitted radiance and hence the LST may be retrieved with negligible error. Guided by the outcomes of the modelling work an atmospheric correction term is derived which accounts for absorption and emission by the atmosphere, and is based on the viewing geometry of the satellite sensor and atmospheric properties characteristic of a semi-arid field site near Alice Springs in the Northern Territory (Central Australia). Ground-based angular measurements of surface brightness temperature made by a scanning, self calibrating radiometer situated at this field site are then used to investigate how the surface-leaving radiance varies over a range of zenith angles comparable to that of the ATSR-2 satellite sensor. / Well defined cycles in the angular dependence of surface brightness temperature were observed on both diumal and seasonal timescales in these data. The observed cycles in surface brightness temperature are explained in terms of the interaction between the downwelling sky radiance and the angular dependence of the surface emissivity. The angular surface brightness temperature and surface emissivity information is then applied to derive an LST estimate of high accuracy (approx. 1 K at night and 1-2 K during the day), suitable for the validation of satellite-derived LST measurements. Finally, the atmospheric and land surface components of this work are combined to describe surface-atmosphere interaction at the field site. Algorithms are derived for the satellite retrieval of LST for the nadir and forward viewing geometries of the ATSR-2 sensor, based upon the cycles in the angular dependence of surface brightness temperature observed in situ and the atmospheric correction term developed from the modelling of radiative transfer in the atmosphere. A qualitative assessment of the performance of these algorithms indicates they may obtain comparable accuracy to existing dual angle algorithms (approx. 1.5 K) in the ideal case and an accuracy of 3-4 K in practice, which is limited by knowledge of atmospheric properties (eg downwelling sky radiance and atmospheric transmittance), and the surface emissivity. There are, however, strong prospects of enhanced performance given better estimates of these physical quantities, and if coefficients within the retrieval algorithms are determined over a wider range of observation zenith angles in the future.
493

A surface force apparatus study of the mercury/water interface with and without self-assembled monolayers

Clasohm, Lucy Y January 2005 (has links)
The surface force apparatus (SFA) has been an important technique for making direct force measurements and has contributed enormously to our understanding of colloidal interactions. The conventional SFA has been limited to measuring forces between solid surfaces, until recently when a modified SFA was developed at the Ian Wark Research Institute [1]. A fluid drop (mercury) is introduced into the apparatus which allows a range of deformable surfaces to be studied in the SFA. This project is an extension of this technique. Interactions between a mica sheet and a mercury drop are studied, including the modification of mercury with self-assembled monolayers (SAMs) of thiol surfactants, and the drop deformation due to non-equilibrium adsorption effects and hydrodynamic forces.
494

Patterned and switchable surfaces for biomaterial applications

Hook, Andrew Leslie, andrew.hook@flinders.edu.au January 2008 (has links)
The interactions of biomolecules and cells at solid-liquid interfaces play a pivotal role in a range of biomedical applications and have hence been studied in detail. An improved understanding of these interactions results in the ability to manipulate biomolecules and concurrently cells spatially and temporally at surfaces with high precision. Spatial control can be achieved using patterned surface chemistries whilst temporal control is achieved by switchable surfaces. The combination of these two surface properties offers unprecedented control over the behaviour of biomolecules and cells at the solid-liquid interface. This is particularly relevant for cell microarray applications, where a range of biological processes must be duly controlled in order to maximise the efficiency and throughput of these devices. Of particular interest are transfected cell microarrays (TCMs), which significantly widen the scope of microarray genomic analysis by enabling the high-throughput analysis of gene function within living cells Initially, this thesis focuses on the spatially controlled, electro-stimulated adsorption and desorption of DNA. Surface modification of a silicon chip with an allylamine plasma polymer (ALAPP) layer resulted in a surface that supported DNA adsorption and sustained cell attachment. Subsequent high density grafting of poly(ethylene glycol) (PEG) formed a layer resistant to biomolecule adsorption and cell attachment. PEG grafted surfaces also showed significantly reduced attachment of DNA with an equilibrium binding constant of 23 ml/mg as compared with 1600 ml/mg for ALAPP modified surfaces. Moreover, both hydrophobic and electrostatic interactions were shown to contribute to the binding of DNA to ALAPP. Spatial control over the surface chemistry was achieved using excimer laser ablation of the PEG coating which enabled the production of patterns of re-exposed ALAPP with high resolution. Preferential electro-stimulated adsorption of DNA to the ALAPP regions and subsequent desorption by the application of a negative bias was observed. Furthermore, this approach was investigated for TCM applications. Cell culture experiments demonstrated efficient and controlled transfection of cells. Electro-stimulated desorption of DNA was shown to yield enhanced solid phase transfection efficiencies with values of up to 30%. The ability to spatially control DNA adsorption combined with the ability to control the binding and release of DNA by application of a controlled voltage enables an advanced level of control over DNA bioactivity on solid substrates and lends itself to biochip applications. As an alternative approach to surface patterning, the fabrication and characterisation of chemical patterns using a technique that can be readily integrated with methods currently used for the formation of microarrays is also presented. Here, phenylazide modified polymers were printed onto low fouling ALAPP-PEG modified surfaces. UV irradiation of these polymer arrays resulted in the crosslinking of the polymer spots and their covalent attachment to the surface. Cell attachment was shown to follow the patterned surface chemistry. Due to the use of a microarray contact printer it was easily possible to deposit DNA on top of the polymer microarray spots. A transfected cell microarray was generated in this way, demonstrating the ability to limit cell attachment to specific regions and the suitability of this approach for high density cell assays. In order to allow for the high-throughput characterisation of the resultant polymer microarrays, surface plasmon resonance imaging was utilised to study the adsorption and desorption of bovine serum albumin, collagen and fibronectin. This analysis enabled insights into the underlying mechanisms of cell attachment to the polymers studied. For the system analysed here, electrostatic interactions were shown to dominate cellular behaviour.
495

L'application cotangente des surfaces de type général

Roulleau, Xavier 16 November 2007 (has links) (PDF)
Cette thèse est une étude des surfaces de type général dont le fibré cotangent est engendré par ses sections globales et dont l'irrégularité q est supérieure ou égale à 4.<br />L'objet et le moyen de cette étude est l'application cotangente qui est un morphisme du projectivisé du fibré cotangent dans l'espace projectif de dimension q-1. Nous étudions le degré de ce morphisme et le degré de son image.<br />Le fibré cotangent est ample si et seulement s'il n'existe pas de fibre de l'application cotangente de dimension strictement positive.<br />Si le fibré cotangent n'est pas ample, alors il existe une courbe C contenue dans la surface et il existe une section de C dans le projectivisé du fibré cotangent qui est contractée en un point par l'application cotangente. Une telle courbe C est qualifiée de courbe non-ample.<br />Nous donnons une classification des courbes non-amples de la surface suivant leur auto-intersection. Nous donnons ensuite une classification des surfaces possédant une infinité de courbes non-amples.<br />Un exemple pour lequel l'application cotangente intervient naturellement est celui des surfaces de Fano. Nous étudions le diviseur de ramification de leur application cotangente ainsi que leurs courbes non-amples.<br />Cette étude mène à la surface de Fano de la cubique de Fermat qui possède 30 courbes non-amples et dont nous détaillons les propriétés.
496

Study of Microbubbles Mechanical Behavior, Application to the Design of an Actuated Table for Micromanipulation in Liquid Media/Etude du comportement mécanique des microbulles. Application à la conception d’une table actionnée pour la micromanipulation en milieu liquide

Lenders, Cyrille 02 September 2010 (has links)
The scope of this thesis is micromanipulation in liquid media. This scientific field aims at understanding the relevant phenomena existing during the manipulation in a liquid of microcomponents having a size between $1,micrometer$ and a few millimeters. This work focuses on the study of surface tension forces in immersed media, because they have favorable scaling effect. The main idea is to use gas bubbles as actuation mean in a liquid, and requires to study the mechanical properties of these bubbles. The originality of the approach is the combination of two effects: surface tension and gas compressibility. The first step was the study of an efficient mean to generate a single bubble of predefined size. After a detailed review, it appeared that volume controlled bubble generation was a promising method. We have then developed a model to predict the size of a bubble, and emphasized the possible existence of a growing instability. An analytic dimensionless study allowed to define a criterion to predict the existence of this instability. The second step aimed at the mechanical characterization in quasi static equilibrium of a gas bubble caught between two solids. The purpose is to predict the force generated by the bubble, together with its stiffness. The model implemented allowed to infer interesting properties, notably a high compliance whose value is controllable by fluidic parameters. This compliance property being very important during micromanipulation, a demonstrator making use of gas bubbles has been designed and manufactured. It consists in a compliant microtable actuated by three bubbles. This work opens the way to new actuation or sensing means, using the transduction between fluidic and mechanic energy operated by a capillary bridge. / Cette thèse a pour contexte la micromanipulation en milieu liquide. Cette thématique scientifique vise à comprendre les phénomènes qui interviennent lors de la manipulation dans un liquide de microcomposants, dont la taille peut varier entre $1,micrometer$ et quelques millimètres. Les travaux de cette thèse se sont focalisés sur l'étude des forces de tension de surface en milieu immergé, car elles bénéficient d'effets d'échelle favorables. L'idée poursuivie est d'utiliser des bulles de gaz comme un moyen d'actionnement dans les milieux liquides, et nécessite d'étudier les propriétés mécaniques de ces bulles. L'originalité de l'approche repose sur la combinaison de deux effets : la tension de surface et la compressibilité du gaz. La première étape a été l'étude d'un moyen efficace pour générer une unique bulle de gaz de taille voulue. Après une analyse exhaustive, il est apparu que la génération de bulle par le contrôle en volume était une méthode prometteuse. Nous avons alors développé un modèle permettant de prédire la taille d'une bulle, et mis en évidence la possible existence d'une instabilité de la croissance de ces bulles. Une étude analytique adimensionnelle nous a permis de définir un critère pour prédire l'existence ou non de cette instabilité. La seconde étape a porté sur la caractérisation mécanique en régime quasi statique d'une bulle de gaz en contact avec deux solides. Le but étant de prédire la force générée par une bulle de gaz sur les solides ainsi que sa raideur. Le modèle implémenté a permis de déduire des propriétés intéressantes des bulles de gaz, notamment une grande compliance dont la valeur peut être contrôlée par des paramètres fluidiques. Cette propriété de compliance étant très recherchée en micromanipulation, un démonstrateur exploitant les bulles de gaz a été conçu. Il s'agit d'une microtable compliante actionnée par trois bulles. Ces travaux ouvrent la voie vers de nouveaux modes d'actionnement ou de capteur utilisant la transduction entre une énergie fluidique et mécanique opérée par un ménisque capillaire.
497

Modification of Float Glass Surfaces by Ion Exchange

Karlsson, Stefan January 2012 (has links)
Glass is a common material in each person’s life, e.g. drinking vessels, windows, displays, insulation and optical fibres. By modifying the glass surface it is possible to change the performance of the entire glass object, generally known as Surface Engineering. Ion exchange is a convenient technique to modify the glass surface composition and its properties, e.g. optical, mechanical, electrical and chemical properties, without ruining the surface finish of the glass.   This thesis reports the findings of two different research tasks; characterisation of the single-side ion exchange process and the novel properties induced. The characterisation of the ion exchange process was mainly performed by utilising a novel analytical equipment: the Surface Ablation Cell (SAC), allowing continuous removal of the flat glass surface by controlled isotropic dissolution. SAC-AAS has provided concentration vs. depth profiles of float glass ion exchanged with K+, Cu+, Rb+ and Cs+. In addition, SEM-EDX has provided concentration vs. depth profiles of Ag+ ion exchanged samples and validation of a copper concentration vs. depth profile. From the concentration vs. depth profiles, the effective diffusion coefficients and activation energies of the ion exchange processes have been calculated. Depending on the treatment time and treatment temperature, penetration depths in the range of 5-10 μm (Rb+, Cs+), 20-30 μm (K+, Cu+) and 80-100 μm (Ag+) can be readily obtained. The effective diffusion coefficients followed the order Ag+&gt;K+&gt;Cu+&gt;Rb+&gt;Cs+. This is in accordance with the ionic radii for the alkali ions (K+&lt;Rb+&lt;Cs+) but reverse for the noble metal ions (Cu+&lt;Ag+).   The glass properties modified by single-side ion exchange have mainly been characterised by UV-VIS spectroscopy and flexural strength measurements. Cu+ and Ag+ ion exchange give rise to surface colouration, Cu+ copper-ruby and Ag+ yellow/amber. The surface-ruby colouration was found to depend on the residual tin ions in the tin-side of the float glass. The flexural strength was studied using the coaxial double ring-test method which also was suitable for holed specimens. The flexural strength of K+ ion exchanged float glass samples was found to substantially increase compared to untreated.
498

Deep and Surface Circulation in the Northwest Indian Ocean from Argo, Surface Drifter, Satellite, and In Situ Profiling Current Observations

Stryker, Sarah 2011 August 1900 (has links)
The physical oceanography in the northwest Indian Ocean is largely controlled by the seasonal monsoon. The seasonal variability in circulation is complex. Many studies have investigated processes in the Persian (Arabian) Gulf and Arabian Sea, but little is understood about the Sea of Oman. This thesis incorporated observations from Argo floats, surface drifters and satellite imagery to study the deep and surface circulation in the northwest Indian Ocean. An assessment of four independent moorings located in the Sea of Oman and Arabian Sea, as well as a model skill comparison of the Simple Ocean Data Assimilation (SODA) model, contributed to understanding the dynamics in this region. Spatial patterns of surface current velocity produced from surface drifter data from 1995-2009 agreed with previously known surface currents. The Somali Current, East Arabian Current, Equatorial Current, Northeast/Southwest Monsoon Current, Great Whirl and Ras al Hadd Jet were all identified. During the Southwest Monsoon, flow direction was to the east and southeast in the Arabian Sea. The Somali Current flowed northeast along the Somali Coast extending to the East Arabian Current along the Oman coast. During the Northeast Monsoon, evaporation increased over the Arabian Sea, which resulted in a salinity gradient. This imbalance caused low-salinity surface water from the northeast Indian Ocean to flow into the northwest Indian Ocean as the Northeast Monsoon Current. Current direction reversed with the change of wind direction from the Southwest Monsoon to the Northwest Monsoon. Many characteristics seen at the surface were also identified in the subsurface as deep as 1500m. The comparison of moored observations to the Argo observations co-located in space and time showed reasonable agreement with the largest salinity difference of 0.23 and largest temperature difference of 0.78?C. The Murray Ridge mooring had a temperature correlation of 0.97 when compared to Argo observations. Argo observations were compared with SODA model numerical output from 1992-2001, and, after Argo, were assimilated from 2002-2009. With assimilation of Argo data into the SODA model, the temperature and salinity from the model numerical output improved, with most differences between model numerical output and Argo observations falling within one standard deviation.
499

Phenomenological and semi-phenomenological models of nano-particles freezing

Asuquo, Cletus 22 December 2009
Studies of nucleation in freezing nanoparticles usually assume that the embryo of the solid phase is completely wet by the liquid and forms in the core of the droplet. However, recent experiments and computer simulations have suggested that some nanoparticles start nucleating at the liquid-vapor interface of the drop in a pseudoheterogeneous process. The goal of the present work is to propose phenomenological models suitable for the study of surface nucleation in nanoparticle systems that can be used to understand the contributions of the various surface phenomena, such as surface and line tensions, to the nucleation barrier.<p/> The nucleation barrier for the freezing of a 276 atom gold cluster is calculated using Monte Carlo simulation techniques while previous simulation studies of a 456 atom gold cluster are extended in order to find the probability that the embryo forms in the surface or core of the nanoparticle. These calculations confirm that the crystal embryo forms at the liquid-vapor interface. Geometric studies measuring the liquid-solid and solid-vapor surface areas of the embryo suggest that it changes shape as it becomes larger and grows in towards the core of the droplet.<p/> Three phenomenological models that are based on the capillarity approximation and can account for surface nucleation are proposed. These models highlight the importance of accounting for the surface curvature contributions related to the Tolman length and the presence of the three phase contact line in calculating the nucleation free energy barrier. In some cases, the models are able to reproduce the qualitative properties of the free energy barriers obtain from simulation but numerical fits of the models generally result in estimates of the solid-liquid surface tension that are lower than the values expected on the basis of partial wetting in the bulk.<p/> Finally, a semi-phenomenological model approach to nucleation is proposed where the usual phenomenological expression for the free energy barrier is retained, but where the geometric prefactors are obtained from molecular simulation of the embryo. This method is applied to nucleation in the gold cluster and to the freezing of a bulk Lennard-Jones liquid.<p/>
500

Phenomenological and semi-phenomenological models of nano-particles freezing

Asuquo, Cletus 22 December 2009 (has links)
Studies of nucleation in freezing nanoparticles usually assume that the embryo of the solid phase is completely wet by the liquid and forms in the core of the droplet. However, recent experiments and computer simulations have suggested that some nanoparticles start nucleating at the liquid-vapor interface of the drop in a pseudoheterogeneous process. The goal of the present work is to propose phenomenological models suitable for the study of surface nucleation in nanoparticle systems that can be used to understand the contributions of the various surface phenomena, such as surface and line tensions, to the nucleation barrier.<p/> The nucleation barrier for the freezing of a 276 atom gold cluster is calculated using Monte Carlo simulation techniques while previous simulation studies of a 456 atom gold cluster are extended in order to find the probability that the embryo forms in the surface or core of the nanoparticle. These calculations confirm that the crystal embryo forms at the liquid-vapor interface. Geometric studies measuring the liquid-solid and solid-vapor surface areas of the embryo suggest that it changes shape as it becomes larger and grows in towards the core of the droplet.<p/> Three phenomenological models that are based on the capillarity approximation and can account for surface nucleation are proposed. These models highlight the importance of accounting for the surface curvature contributions related to the Tolman length and the presence of the three phase contact line in calculating the nucleation free energy barrier. In some cases, the models are able to reproduce the qualitative properties of the free energy barriers obtain from simulation but numerical fits of the models generally result in estimates of the solid-liquid surface tension that are lower than the values expected on the basis of partial wetting in the bulk.<p/> Finally, a semi-phenomenological model approach to nucleation is proposed where the usual phenomenological expression for the free energy barrier is retained, but where the geometric prefactors are obtained from molecular simulation of the embryo. This method is applied to nucleation in the gold cluster and to the freezing of a bulk Lennard-Jones liquid.<p/>

Page generated in 0.0302 seconds