• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 252
  • 58
  • 58
  • 56
  • 21
  • 12
  • 10
  • 9
  • 8
  • 7
  • 6
  • 5
  • 3
  • 3
  • 2
  • Tagged with
  • 562
  • 226
  • 180
  • 175
  • 171
  • 169
  • 148
  • 81
  • 75
  • 71
  • 68
  • 67
  • 64
  • 64
  • 60
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Support Vector Machines na classificação de imagens hiperespectrais / Hyperspectral image classification with support vector machines

Andreola, Rafaela January 2009 (has links)
É de conhecimento geral que, em alguns casos, as classes são espectralmente muito similares e que não é possível separá-las usando dados convencionais em baixa dimensionalidade. Entretanto, estas classes podem ser separáveis com um alto grau de acurácia em espaço de alta dimensão. Por outro lado, classificação de dados em alta dimensionalidade pode se tornar um problema para classificadores paramétricos, como o Máxima Verossimilhança Gaussiana (MVG). Um grande número de variáveis que caracteriza as imagens hiperespectrais resulta em um grande número de parâmetros a serem estimados e, geralmente, tem-se um número limitado de amostras de treinamento disponíveis. Essa condição causa o fenômeno de Hughes que consiste na gradual degradação da acurácia com o aumento da dimensionalidade dos dados. Neste contexto, desperta o interesse a utilização de classificadores não-paramétricos, como é o caso de Support Vector Machines (SVM). Nesta dissertação é analisado o desempenho do classificador SVM quando aplicado a imagens hiperespectrais de sensoriamento remoto. Inicialmente os conceitos teóricos referentes à SVM são revisados e discutidos. Em seguida, uma série de experimentos usando dados AVIRIS são realizados usando diferentes configurações para o classificador. Os dados cobrem uma área de teste da Purdue University e apresenta classes de culturas agrícolas espectralmente muito similares. A acurácia produzida na classificação por diferentes kernels são investigadas em função da dimensionalidade dos dados e comparadas com as obtidas com o classificador MVG. Como SVM é aplicado a um par de classes por vez, desenvolveu-se um classificador multi-estágio estruturado em forma de árvore binária para lidar como problema multi-classe. Em cada nó, a seleção do par de classes mais separáveis é feita pelo critério distância de Bhattacharyya. Tais classes darão origem aos nós descendentes e serão responsáveis por definir a função de decisão SVM. Repete-se este procedimento em todos os nós da árvore, até que reste apenas uma classe por nó, nos chamados nós terminais. Os softwares necessários foram desenvolvidos em ambiente MATLAB e são apresentados na dissertação. Os resultados obtidos nos experimentos permitem concluir que SVM é uma abordagem alternativa válida e eficaz para classificação de imagens hiperespectrais de sensoriamento remoto. / This dissertation deals with the application of Support Vector Machines (SVM) to the classification of remote sensing high-dimensional image data. It is well known that in many cases classes that are spectrally very similar and thus not separable when using the more conventional low-dimensional data, can nevertheless be separated with an high degree of accuracy in high dimensional spaces. Classification of high-dimensional image data can, however, become a challenging problem for parametric classifiers such as the well-known Gaussian Maximum Likelihood. A large number of variables produce an also large number of parameters to be estimated from a generally limited number of training samples. This condition causes the Hughes phenomenon which consists in a gradual degradation of the accuracy as the data dimensionality increases beyond a certain value. Non-parametric classifiers present the advantage of being less sensitive to this dimensionality problem. SVM has been receiving a great deal of attention from the international community as an efficient classifier. In this dissertation it is analyzed the performance of SVM when applied to remote sensing hyper-spectral image data. Initially the more theoretical concepts related to SVM are reviewed and discussed. Next, a series of experiments using AVIRIS image data are performed, using different configurations for the classifier. The data covers a test area established by Purdue University and presents a number of classes (agricultural fields) which are spectrally very similar to each other. The classification accuracy produced by different kernels is investigated as a function of the data dimensionality and compared with the one yielded by the well-known Gaussian Maximum Likelihood classifier. As SVM apply to a pair of classes at a time, a multi-stage classifier structured as a binary tree was developed to deal with the multi-class problem. The tree classifier is initially defined by selecting at each node the most separable pair of classes by using the Bhattacharyya distance as a criterion. These two classes will then be used to define the two descending nodes and the corresponding SVM decision function. This operation is performed at every node across the tree, until the terminal nodes are reached. The required software was developed in MATLAB environment and is also presented in this dissertation.
322

Support Vector Machines na classificação de imagens hiperespectrais / Hyperspectral image classification with support vector machines

Andreola, Rafaela January 2009 (has links)
É de conhecimento geral que, em alguns casos, as classes são espectralmente muito similares e que não é possível separá-las usando dados convencionais em baixa dimensionalidade. Entretanto, estas classes podem ser separáveis com um alto grau de acurácia em espaço de alta dimensão. Por outro lado, classificação de dados em alta dimensionalidade pode se tornar um problema para classificadores paramétricos, como o Máxima Verossimilhança Gaussiana (MVG). Um grande número de variáveis que caracteriza as imagens hiperespectrais resulta em um grande número de parâmetros a serem estimados e, geralmente, tem-se um número limitado de amostras de treinamento disponíveis. Essa condição causa o fenômeno de Hughes que consiste na gradual degradação da acurácia com o aumento da dimensionalidade dos dados. Neste contexto, desperta o interesse a utilização de classificadores não-paramétricos, como é o caso de Support Vector Machines (SVM). Nesta dissertação é analisado o desempenho do classificador SVM quando aplicado a imagens hiperespectrais de sensoriamento remoto. Inicialmente os conceitos teóricos referentes à SVM são revisados e discutidos. Em seguida, uma série de experimentos usando dados AVIRIS são realizados usando diferentes configurações para o classificador. Os dados cobrem uma área de teste da Purdue University e apresenta classes de culturas agrícolas espectralmente muito similares. A acurácia produzida na classificação por diferentes kernels são investigadas em função da dimensionalidade dos dados e comparadas com as obtidas com o classificador MVG. Como SVM é aplicado a um par de classes por vez, desenvolveu-se um classificador multi-estágio estruturado em forma de árvore binária para lidar como problema multi-classe. Em cada nó, a seleção do par de classes mais separáveis é feita pelo critério distância de Bhattacharyya. Tais classes darão origem aos nós descendentes e serão responsáveis por definir a função de decisão SVM. Repete-se este procedimento em todos os nós da árvore, até que reste apenas uma classe por nó, nos chamados nós terminais. Os softwares necessários foram desenvolvidos em ambiente MATLAB e são apresentados na dissertação. Os resultados obtidos nos experimentos permitem concluir que SVM é uma abordagem alternativa válida e eficaz para classificação de imagens hiperespectrais de sensoriamento remoto. / This dissertation deals with the application of Support Vector Machines (SVM) to the classification of remote sensing high-dimensional image data. It is well known that in many cases classes that are spectrally very similar and thus not separable when using the more conventional low-dimensional data, can nevertheless be separated with an high degree of accuracy in high dimensional spaces. Classification of high-dimensional image data can, however, become a challenging problem for parametric classifiers such as the well-known Gaussian Maximum Likelihood. A large number of variables produce an also large number of parameters to be estimated from a generally limited number of training samples. This condition causes the Hughes phenomenon which consists in a gradual degradation of the accuracy as the data dimensionality increases beyond a certain value. Non-parametric classifiers present the advantage of being less sensitive to this dimensionality problem. SVM has been receiving a great deal of attention from the international community as an efficient classifier. In this dissertation it is analyzed the performance of SVM when applied to remote sensing hyper-spectral image data. Initially the more theoretical concepts related to SVM are reviewed and discussed. Next, a series of experiments using AVIRIS image data are performed, using different configurations for the classifier. The data covers a test area established by Purdue University and presents a number of classes (agricultural fields) which are spectrally very similar to each other. The classification accuracy produced by different kernels is investigated as a function of the data dimensionality and compared with the one yielded by the well-known Gaussian Maximum Likelihood classifier. As SVM apply to a pair of classes at a time, a multi-stage classifier structured as a binary tree was developed to deal with the multi-class problem. The tree classifier is initially defined by selecting at each node the most separable pair of classes by using the Bhattacharyya distance as a criterion. These two classes will then be used to define the two descending nodes and the corresponding SVM decision function. This operation is performed at every node across the tree, until the terminal nodes are reached. The required software was developed in MATLAB environment and is also presented in this dissertation.
323

Automated classification of bibliographic data using SVM and Naive Bayes

Nordström, Jesper January 2018 (has links)
Classification of scientific bibliographic data is an important and increasingly more time-consuming task in a “publish or perish” paradigm where the number of scientific publications is steadily growing. Apart from being a resource-intensive endeavor, manual classification has also been shown to be often performed with a quite high degree of inconsistency. Since many bibliographic databases contain a large number of already classified records supervised machine learning for automated classification might be a solution for handling the increasing volumes of published scientific articles. In this study automated classification of bibliographic data, based on two different machine learning methods; Naive Bayes and Support Vector Machine (SVM), were evaluated. The data used in the study were collected from the Swedish research database SwePub and the features used for training the classifiers were based on abstracts and titles in the bibliographic records. The accuracy achieved ranged between a lowest score of 0.54 and a highest score of 0.84. The classifiers based on Support Vector Machine did consistently receive higher scores than the classifiers based on Naive Bayes. Classification performed at the second level in the hierarchical classification system used clearly resulted in lower scores than classification performed at the first level. Using abstracts as the basis for feature extraction yielded overall better results than using titles, the differences were however very small.
324

Detection of deceptive reviews : using classification and natural language processing features

Fernquist, Johan January 2016 (has links)
With the great growth of open forums online where anyone can givetheir opinion on everything, the Internet has become a place wherepeople are trying to mislead others. By assuming that there is acorrelation between a deceptive text's purpose and the way to writethe text, our goal with this thesis was to develop a model fordetecting these fake texts by taking advantage of this correlation.Our approach was to use classification together with threedifferent feature types, term frequency-inverse document frequency,word2vec and probabilistic context-free grammar. We have managed todevelop a model which have improved all, to us known, results for twodifferent datasets.With machine translation, we have detected that there is apossibility to hide the stylometric footprints and thecharacteristics of deceptive texts, making it possible to slightlydecrease the accuracy of a classifier and still convey a message.Finally we investigated whether it was possible to train and test ourmodel on data from different sources and managed to achieve anaccuracy hardly better than chance. That indicated the resultingmodel is not versatile enough to be used on different kinds ofdeceptive texts than it has been trained on.
325

Support Vector Machines na classificação de imagens hiperespectrais / Hyperspectral image classification with support vector machines

Andreola, Rafaela January 2009 (has links)
É de conhecimento geral que, em alguns casos, as classes são espectralmente muito similares e que não é possível separá-las usando dados convencionais em baixa dimensionalidade. Entretanto, estas classes podem ser separáveis com um alto grau de acurácia em espaço de alta dimensão. Por outro lado, classificação de dados em alta dimensionalidade pode se tornar um problema para classificadores paramétricos, como o Máxima Verossimilhança Gaussiana (MVG). Um grande número de variáveis que caracteriza as imagens hiperespectrais resulta em um grande número de parâmetros a serem estimados e, geralmente, tem-se um número limitado de amostras de treinamento disponíveis. Essa condição causa o fenômeno de Hughes que consiste na gradual degradação da acurácia com o aumento da dimensionalidade dos dados. Neste contexto, desperta o interesse a utilização de classificadores não-paramétricos, como é o caso de Support Vector Machines (SVM). Nesta dissertação é analisado o desempenho do classificador SVM quando aplicado a imagens hiperespectrais de sensoriamento remoto. Inicialmente os conceitos teóricos referentes à SVM são revisados e discutidos. Em seguida, uma série de experimentos usando dados AVIRIS são realizados usando diferentes configurações para o classificador. Os dados cobrem uma área de teste da Purdue University e apresenta classes de culturas agrícolas espectralmente muito similares. A acurácia produzida na classificação por diferentes kernels são investigadas em função da dimensionalidade dos dados e comparadas com as obtidas com o classificador MVG. Como SVM é aplicado a um par de classes por vez, desenvolveu-se um classificador multi-estágio estruturado em forma de árvore binária para lidar como problema multi-classe. Em cada nó, a seleção do par de classes mais separáveis é feita pelo critério distância de Bhattacharyya. Tais classes darão origem aos nós descendentes e serão responsáveis por definir a função de decisão SVM. Repete-se este procedimento em todos os nós da árvore, até que reste apenas uma classe por nó, nos chamados nós terminais. Os softwares necessários foram desenvolvidos em ambiente MATLAB e são apresentados na dissertação. Os resultados obtidos nos experimentos permitem concluir que SVM é uma abordagem alternativa válida e eficaz para classificação de imagens hiperespectrais de sensoriamento remoto. / This dissertation deals with the application of Support Vector Machines (SVM) to the classification of remote sensing high-dimensional image data. It is well known that in many cases classes that are spectrally very similar and thus not separable when using the more conventional low-dimensional data, can nevertheless be separated with an high degree of accuracy in high dimensional spaces. Classification of high-dimensional image data can, however, become a challenging problem for parametric classifiers such as the well-known Gaussian Maximum Likelihood. A large number of variables produce an also large number of parameters to be estimated from a generally limited number of training samples. This condition causes the Hughes phenomenon which consists in a gradual degradation of the accuracy as the data dimensionality increases beyond a certain value. Non-parametric classifiers present the advantage of being less sensitive to this dimensionality problem. SVM has been receiving a great deal of attention from the international community as an efficient classifier. In this dissertation it is analyzed the performance of SVM when applied to remote sensing hyper-spectral image data. Initially the more theoretical concepts related to SVM are reviewed and discussed. Next, a series of experiments using AVIRIS image data are performed, using different configurations for the classifier. The data covers a test area established by Purdue University and presents a number of classes (agricultural fields) which are spectrally very similar to each other. The classification accuracy produced by different kernels is investigated as a function of the data dimensionality and compared with the one yielded by the well-known Gaussian Maximum Likelihood classifier. As SVM apply to a pair of classes at a time, a multi-stage classifier structured as a binary tree was developed to deal with the multi-class problem. The tree classifier is initially defined by selecting at each node the most separable pair of classes by using the Bhattacharyya distance as a criterion. These two classes will then be used to define the two descending nodes and the corresponding SVM decision function. This operation is performed at every node across the tree, until the terminal nodes are reached. The required software was developed in MATLAB environment and is also presented in this dissertation.
326

Make it Meaningful : Semantic Segmentation of Three-Dimensional Urban Scene Models

Lind, Johan January 2017 (has links)
Semantic segmentation of a scene aims to give meaning to the scene by dividing it into meaningful — semantic — parts. Understanding the scene is of great interest for all kinds of autonomous systems, but manual annotation is simply too time consuming, which is why there is a need for an alternative approach. This thesis investigates the possibility of automatically segmenting 3D-models of urban scenes, such as buildings, into a predetermined set of labels. The approach was to first acquire ground truth data by manually annotating five 3D-models of different urban scenes. The next step was to extract features from the 3D-models and evaluate which ones constitutes a suitable feature space. Finally, three supervised learners were implemented and evaluated: k-Nearest Neighbour (KNN), Support Vector Machine (SVM) and Random Classification Forest (RCF). The classifications were done point-wise, classifying each 3D-point in the dense point cloud belonging to the model being classified. The result showed that the best suitable feature space is not necessarily the one containing all features. The KNN classifier got the highest average accuracy overall models — classifying 42.5% of the 3D points correct. The RCF classifier managed to classify 66.7% points correct in one of the models, but had worse performance for the rest of the models and thus resulting in a lower average accuracy compared to KNN. In general, KNN, SVM, and RCF seemed to have different benefits and drawbacks. KNN is simple and intuitive but by far the slowest classifier when dealing with a large set of training data. SVM and RCF are both fast but difficult to tune as there are more parameters to adjust. Whether the reason for obtaining the relatively low highest accuracy was due to the lack of ground truth training data, unbalanced validation models, or the capacity of the learners, was never investigated due to a limited time span. However, this ought to be investigated in future studies.
327

Segmentation of Clouds in Satellite Images / Klassificering av Moln i Satellitbilder

Gasslander, Maja January 2016 (has links)
The usage of 3D modelling is increasing fast, both for civilian and military areas, such as navigation, targeting and urban planning. When creating a 3D model from satellite images, clouds canbe problematic. Thus, automatic detection ofclouds inthe imagesis ofgreat use. This master thesis was carried out at Vricon, who produces 3D models of the earth from satellite images.This thesis aimed to investigate if Support Vector Machines could classify pixels into cloud or non-cloud, with a combination of texture and color as features. To solve the stated goal, the task was divided into several subproblems, where the first part was to extract features from the images. Then the images were preprocessed before fed to the classifier. After that, the classifier was trained, and finally evaluated.The two methods that gave the best results in this thesis had approximately 95 % correctly classified pixels. This result is better than the existing cloud segmentation method at Vricon, for the tested terrain and cloud types.
328

Low Complex Blind Video Quality Predictor based on Support Vector Machines

Pashike, Amitesh Kumar Singam and Venkat Raj Reddy January 2012 (has links)
Objective Video Quality Assessment plays a vital role in visual processing systems and especially in the mobile communication field, some of the video applications boosted the interest of robust methods for quality assessment. Out of all existing methods for Video Quality Analysis, No-Reference (NR) Video Quality Assessment is the one which is most needed in situations where the handiness of reference video is not available. Our challenge lies in formulating and melding effective features into one model based on human visualizing characteristics. Our research work explores the tradeoffs between quality prediction and complexity of a system. Therefore, we implemented support vector regression algorithm as NR-based Video Quality Metric(VQM) for quality estimation with simplified input features. The features are obtained from extraction of H.264 bitstream data at the decoder side of the network. Our metric predicted with Pearson correlation coefficient of 0.99 for SSIM, 0.98 for PEVQ, 0.96 for subjective score and 0.94 for PSNR metric. Therefore in terms of prediction accuracy, the proposed model has good correlation with all deployed metrics and the obtained results demonstrates the robustness of our approach. In our research work, the proposed metric has a good correlation with subjective scores which concludes that proposed metric can be employed for real time use, since subjective scores are considered as true or standard values of video quality.
329

Developing global dataset of salt pans and salt playas using Landsat-8 imagery: a case study of western North America

Safaee, Samira January 1900 (has links)
Master of Arts / Department of Geography / Jida Wang / Monitoring salt pans is important especially for agricultural management in arid or semi-arid regions because salt pans can negatively affect human life, wildlife, and ecology. Some of the harmful impacts of salt pans are accelerated desertification, cropland loss, economic downturn, wildlife loss, and forced migration of humans and animals due to salt storms. Spectral salt pan indices based upon remotely sensed data (using spectral properties of Landsat-8 imagery) suggested in previous studies vary by location. In other words, the spectral configuration of a salt index for a given location may not be readily applicable to another location due to spatial heterogeneity of salt components across the continental surface. Using Landsat-8 OLI imagery and climate data sets, this study aims to develop a mapping framework which can effectively extract salt pans and salt playas under various spectral conditions in different geographic locations. Based on training samples selected in eight major salt pans/playas in North America, Central Asia, Africa, and Australia, the mapping framework was designed to include the following steps: i) a conservative salt index to highlight potential salt-covered regions, ii) a calibrated support vector machine (SVM) to extract high-salinity areas in the mask regions, and iii) a posterior quality assurance/ quality control (QA/QC) with assistance of auxiliary datasets (e.g., surface slope and land covers) to eliminate commission errors and refine the extracted saltpan areas. The developed mapping framework was validated in the arid endorheic regions across the western United States, with a total area of 699 thousand square kilometers. Both qualitative and quantitative assessments of the results show reliability of the developed framework. The overall accuracy of the extracted salt pans prior to QA/QC is 97%. The final product after QA/QC achieves an overall accuracy of 99.95% and a Kappa statistic of 0.99.According to the results of salt pans areas and endorheic basins areas, it can be concluded that two aforementioned variables of this study are positively correlated to each other, and 1.10 percent of the entire case study area is covered by salt pans. The accuracy of the results suggests a potential that the mapping framework, together with the collected training sample and algorithms, may be applicable to identify salt pan and salt playa regions across the Earth’s land surface.
330

Classification de spectres et recherche de biomarqueurs en spectroscopie par résonance magnétique nucléaire du proton dans les tumeurs prostatiques / Classification of spectra and search for biomarkers in prostate tumours from proton nuclear magnetic resonance spectroscopy

Parfait, Sébastien 06 December 2010 (has links)
Le cancer de la prostate est le cancer le plus fréquent chez l'homme de plus de 50 ans. Actuellement, les méthodes de dépistage manquent soit de sensibilité, soit de spécificité ou sont désagréables pour le patient. La spectroscopie de résonance magnétique permet l'étude du métabolisme in vivo. L'utilisation d'appareil haut champ (≥3T) permet dorénavant d'analyser la prostate sans antenne endorectale. L’objectif de cette thèse est de créer un système automatique de dépistage de ce cancer en mettant au point une méthode de classification automatique permettant de traiter les données obtenues grâce à la spectroscopie de résonance magnétique. La spectroscopie de résonance magnétique est un phénomène complexe, très sensible aux conditions d'acquisition. Nous avons donc étudié comment améliorer l’acquisition de ce signal. Cependant, même avec une acquisition de très bonne qualité, le signal de résonance magnétique doit subir quelques traitements pour être analysable automatiquement par une méthode de classification. La suite du travail a donc consisté à rechercher les traitements à appliquer pour optimiser les spectres en vue d'une classification. Nous avons alors recherché la méthode de classification optimale pour ce problème. Cet ensemble d’étapes (acquisition du signal, traitement des spectres puis classification des données obtenues) nous permet de mettre en évidence la présence de tumeurs de la prostate avec un taux d'erreur global de moins de 12%. Dans un second temps, nous avons cherché de nouveaux biomarqueurs dans les spectres. Ces biomarqueurs pouvaient être un métabolite précis ou une plage de fréquence correspondant à plusieurs métabolites. Nous n'avons pas trouvé d'attributs plus significatifs que la choline ou le citrate, cependant quelques bandes de fréquence semblent participer à l'amélioration des taux d'erreurs. Enfin, nous avons élargi notre champ d’investigation en tentant d’appliquer ces techniques chez le rat. Des contraintes liées à l'acquisition ne nous ont pas permis d'obtenir suffisamment de spectres dans le cas pré-clinique. Nous avons cependant pu valider la faisabilité de la SRM chez le rongeur et sa pertinence dans le cerveau. La technique doit cependant être améliorée pour pouvoir être validée dans le cas du cancer de la prostate chez le rat. / Prostate cancer is the most common cancer in men over 50 years. Current detection methods either lack sensitivity or specificity or are unpleasant for the patient. Magnetic resonance spectroscopy allows the study of metabolism in vivo. The use of a high field machine (≥3T) has allowed us to dispense with the use of an endorectal coil, which is particularly uncomfortable for the patient. The objective of this thesis is to create an automatic method to detect cancer by processing data obtained through magnetic resonance spectroscopy MRS is a complex phenomenon, very sensitive to acquisition conditions. Firstly, we have studied how to improve and optimise signal acquisition. However, even with a very good quality signal, it must still undergo further post-processing to be analysed automatically by a classification method. Further work was therefore needed to investigate which postprocessing steps were required in order to optimize the spectra for classification. We then investigated the optimal classification method for this problem. A particular set of steps (signal acquisition, processing and spectral classification data) allows us to highlight the presence of prostate tumors with an overall error rate of less than 12%. In a second step, we searched for new biomarkers within the spectra. These biomarkers could be a metabolite or a specific frequency range corresponding to several metabolites. We did not find any additional significant attributes other than choline and citrate, however, some frequency bands seem to participate in improving the error rate. Finally, we expanded our investigation by attempting to apply these techniques to the rat. Technical constraints related to acquisition did not allow us to obtain a sufficient number of spectra in the pre-clinical cases. Nonetheless, we have validated the feasibility of MRS in rodents and its relevance in the brain. The technique, however, must be improved in order to be validated in the case of prostate cancer in rats.

Page generated in 0.0168 seconds