• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • Tagged with
  • 11
  • 8
  • 8
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Undersökning av mätosäkerheten i det förtätade SWEPOS®-nätet i Stockholmsområdet : vid mätning med nätverks-RTK

Jansson, Jakob January 2011 (has links)
Positionsbestämning med hjälp av satelliter kan idag göras med olika metoder. En metod som i realtid ger en mätosäkerhet på centimeternivå heter nätverks-RTK. Det som gör att nätverks-RTK ger en låg mätosäkerhet är att de felkällor som påverkar GNSS-mätning reduceras eller elimineras med hjälp av en interpolerad korrektionsmodell vid mottagarens position. Korrektionsmodellen skapas med hjälp av data från de fasta referensstationer som finns i närheten av GNSS-mottagaren. SWEPOS® är ett nät av referensstationer som finns i hela Sverige och erbjuder en nätverks-RTK-tjänst där det kan förväntas en mätosäkerhet på omkring 15 mm (1s) i plan och omkring 25 mm (1s) i höjd (över ellipsoiden). Avståndet mellan referensstationerna i nätet är cirka 70 km och för att förbättra mätosäkerheten, tillgängligheten och tillförlitligheten för SWEPOS-användarna har en generell förtätning, av referensstationerna, påbörjats med start i storstadsregionerna. I olika tester och simuleringar har det visats sig att mätosäkerheten minskar i ett område där ett tätare nät har upprättats. Syftet med det här examensarbetet är undersöka vilken mätosäkerhet som kan förväntas i det förtätade nät som upprättats i och omkring Stockholmsområdet. Undersökningen gjordes genom mätning med nätverks-RTK i och i utkanten av Stockholmsområdet på punkter som var lokaliserade på platser med olika långt till de närmaste referensstationerna. Tre stycken punkter ligger i det mest förtätade nätet, en i utkanten och en i standardnätet med cirka 70 km mellan stationerna. Mätningar har även gjorts på ytterligare tre punkter i utkanten av det förtätade nätet eller i närheten till standardnätet. Studien visar att mätosäkerheten blev mindre i ett förtätat nät av referensstationer jämfört med det standardnät som finns i hela Sverige. På de punkter som låg i ett förtätat nät uppnåddes en mätosäkerhet på cirka 7 mm i plan och cirka 8 mm i höjd. Vid den punkt som låg i utkanten blev mätosäkerheten något högre, 8 mm i plan och 11 mm i höjd. Ytterligare något högre, 15 mm i plan och 13 mm i höjd, blev mätosäkerheten vid punkten som låg i standardnätet.
2

Kommunikationsalternativ för nätverks-RTK : <em>- virtuell referensstation kontra nätverksmeddelande</em>

Johansson, Daniel, Persson, Sören January 2008 (has links)
<p>Vid användning av nätverks-RTK behöver driftcentralen kommunicera med användarens GNSS-mottagare på ett effektivt sätt oberoende av fabrikat. Av den anledningen finns ett standardiserat format för överföring av data som är utvecklat av RTCM (The Radio Technical Commission for Maritime Services). 2006 publicerades version 3.1 som stödjer utsändning av s.k. nätverksmeddelande som innebär att komprimerade observationsdata skickas till mottagaren för beräkning av korrektioner. För att bestämma GNSS-mottagarens position används i dagsläget till största delen VRS-tekniken (Virtual Reference Station). Denna teknik används bland annat av SWEPOS som driver en nätverks-RTK-tjänst i Sverige. VRS-tekniken kräver att mottagarens position ska skickas till driftcentralen, där huvuddelen av beräkningarna sker. Nätverksmeddelande har inte funnits i tidigare versioner av RTCM-standarden, men införandet av dem innebär bland annat att korrektioner kan skickas med envägskommunikation och att större delen av beräkningarna kan göras i mottagaren.</p><p>Syftet med studien är att göra jämförelser mellan VRS och RTCM 3.1 nätverksmeddelande, med avseende på bland annat mätkvalitet och initialiseringstider. I studien ingick även att undersöka behovet av nätverksmeddelande och hur tekniken fungerar under förflyttning. I studien användes GNSS-mottagare från Leica och Trimble för att göra upprepade mätningar med dels VRS och dels RTCM 3.1 nätverksmeddelande med s.k. automatisk respektive statisk konfiguration. Statisk konfiguration användes i två olika nät, ett där SWEPOS-stationen Gävle och ett där SWEPOS-stationen Leksand användes som s.k. masterstation. Totalt 1200 mätningar utfördes på tre väl inmätta punkter under 12 dagar. Vid varje mätning registrerades tiden till fixlösning och mätt position. Resultaten bearbetades därefter och analyserades med statistiska metoder.</p><p>Resultaten visade bland annat att initialiseringstiden för nätverksmeddelande är något längre än för VRS och att det inte finns någon större skillnad i kvalitetstalen mellan VRS och nätverksmeddelande. Inte heller mellan det automatiska nätet och de statiska näten finns någon större skillnad. 95:e percentilens avvikelser var i plan 25 mm och i höjd 45 mm. De enda resultaten som skiljde sig nämnvärt från övriga var mätningarna med Leica i det statiska nätet med Leksand som masterstation, där Leica hade problem med att få fixlösning.</p> / <p>When using network RTK the control centre needs to communicate with the user's GNSS receivers in an efficient manner regardless of the brand of equipment. For this reason, a standardized format for transmission of data has been developed by RTCM (the Radio Technical Commission for Maritime Services). In 2006 the version 3.1 was released which supports broadcasting of network RTK messages which means that the compressed observation data are sent to the rover for calculation of corrections. Today the most used concept to determine the position of the rover is VRS (Virtual Reference Station). SWEPOS, which provides a network RTK service in Sweden, is based on the VRS concept. The concept requires that the position of the rover should be sent to the control centre, where most of the calculations are made. Network RTK messages have not been found in earlier versions of the RTCM standard, but their introduction means that corrections can be sent with one-way communication and that most of the calculations can be made in the rover.</p><p>The purpose of the study is to make comparisons between the VRS and RTCM 3.1 network RTK messages regarding the measurement quality and the time for initialization. The study also included to examine the need for network RTK messages and how the technology works while continuously moving the rover. The study used GNSS receivers from Leica and Trimble to make repeated measurements with VRS and with RTCM 3.1 with automatic and static configurations. Static configuration was used in two different networks, one in which the SWEPOS station Gävle and one in which the SWEPOS station Leksand was used as master station. Totally 1200 measurements were carried out on three known points in 12 days. At each measurement the time for initialization and the measured position was registered. The results were then processed and analysed using statistical methods.</p><p>The results showed that the times for initialization regarding network RTK messages are slightly longer than for VRS and that there is no obvious difference in quality between the VRS and network RTK messages. The difference between the automatic network and the static network is not noticeable either. 95th percentile discrepancies were 25 mm horizontally and 45 mm vertically. The only results that clearly differed from the rest of the measurements were those with Leica in the static network with Leksand as master station, where Leica had problems to resolve the ambiguities.</p>
3

Kommunikationsalternativ för nätverks-RTK : - virtuell referensstation kontra nätverksmeddelande

Johansson, Daniel, Persson, Sören January 2008 (has links)
Vid användning av nätverks-RTK behöver driftcentralen kommunicera med användarens GNSS-mottagare på ett effektivt sätt oberoende av fabrikat. Av den anledningen finns ett standardiserat format för överföring av data som är utvecklat av RTCM (The Radio Technical Commission for Maritime Services). 2006 publicerades version 3.1 som stödjer utsändning av s.k. nätverksmeddelande som innebär att komprimerade observationsdata skickas till mottagaren för beräkning av korrektioner. För att bestämma GNSS-mottagarens position används i dagsläget till största delen VRS-tekniken (Virtual Reference Station). Denna teknik används bland annat av SWEPOS som driver en nätverks-RTK-tjänst i Sverige. VRS-tekniken kräver att mottagarens position ska skickas till driftcentralen, där huvuddelen av beräkningarna sker. Nätverksmeddelande har inte funnits i tidigare versioner av RTCM-standarden, men införandet av dem innebär bland annat att korrektioner kan skickas med envägskommunikation och att större delen av beräkningarna kan göras i mottagaren. Syftet med studien är att göra jämförelser mellan VRS och RTCM 3.1 nätverksmeddelande, med avseende på bland annat mätkvalitet och initialiseringstider. I studien ingick även att undersöka behovet av nätverksmeddelande och hur tekniken fungerar under förflyttning. I studien användes GNSS-mottagare från Leica och Trimble för att göra upprepade mätningar med dels VRS och dels RTCM 3.1 nätverksmeddelande med s.k. automatisk respektive statisk konfiguration. Statisk konfiguration användes i två olika nät, ett där SWEPOS-stationen Gävle och ett där SWEPOS-stationen Leksand användes som s.k. masterstation. Totalt 1200 mätningar utfördes på tre väl inmätta punkter under 12 dagar. Vid varje mätning registrerades tiden till fixlösning och mätt position. Resultaten bearbetades därefter och analyserades med statistiska metoder. Resultaten visade bland annat att initialiseringstiden för nätverksmeddelande är något längre än för VRS och att det inte finns någon större skillnad i kvalitetstalen mellan VRS och nätverksmeddelande. Inte heller mellan det automatiska nätet och de statiska näten finns någon större skillnad. 95:e percentilens avvikelser var i plan 25 mm och i höjd 45 mm. De enda resultaten som skiljde sig nämnvärt från övriga var mätningarna med Leica i det statiska nätet med Leksand som masterstation, där Leica hade problem med att få fixlösning. / When using network RTK the control centre needs to communicate with the user's GNSS receivers in an efficient manner regardless of the brand of equipment. For this reason, a standardized format for transmission of data has been developed by RTCM (the Radio Technical Commission for Maritime Services). In 2006 the version 3.1 was released which supports broadcasting of network RTK messages which means that the compressed observation data are sent to the rover for calculation of corrections. Today the most used concept to determine the position of the rover is VRS (Virtual Reference Station). SWEPOS, which provides a network RTK service in Sweden, is based on the VRS concept. The concept requires that the position of the rover should be sent to the control centre, where most of the calculations are made. Network RTK messages have not been found in earlier versions of the RTCM standard, but their introduction means that corrections can be sent with one-way communication and that most of the calculations can be made in the rover. The purpose of the study is to make comparisons between the VRS and RTCM 3.1 network RTK messages regarding the measurement quality and the time for initialization. The study also included to examine the need for network RTK messages and how the technology works while continuously moving the rover. The study used GNSS receivers from Leica and Trimble to make repeated measurements with VRS and with RTCM 3.1 with automatic and static configurations. Static configuration was used in two different networks, one in which the SWEPOS station Gävle and one in which the SWEPOS station Leksand was used as master station. Totally 1200 measurements were carried out on three known points in 12 days. At each measurement the time for initialization and the measured position was registered. The results were then processed and analysed using statistical methods. The results showed that the times for initialization regarding network RTK messages are slightly longer than for VRS and that there is no obvious difference in quality between the VRS and network RTK messages. The difference between the automatic network and the static network is not noticeable either. 95th percentile discrepancies were 25 mm horizontally and 45 mm vertically. The only results that clearly differed from the rest of the measurements were those with Leica in the static network with Leksand as master station, where Leica had problems to resolve the ambiguities.
4

Studie av mätosäkerhet och tidskorrelationer vid mätning med nätverks-RTK i Swepos 35 km-nät / Uncertainty and time correlation analysis of network-RTK in the SWEPOS 35 km net.

Ohlsson, Kent January 2014 (has links)
GNSS-mätning med nätverks-RTK är en satellitbaserad geodetisk mätningsmetod som reducerar inverkande felkällor genom relativ mätning mot ett nät av fasta referensstationer.I Sverige har Lantmäteriet upprättat ett nät av fasta referensstationer kallat Swepos med ca 70 km mellan referensstationerna. En förtätning av Swepos-nätet till ca 35 km mellan referensstationerna pågår och beräknas vara klar 2015. Det finns tidigare studier (Emardson m fl (2009) och Odolinski (2010 a)) kring osäkerheten vid mätning i områden med ca 70 km mellan referensstationerna och vid ett projektanpassat nät med ca 10-20 km mellan referensstationerna. Studierna undersöker också hur lång tid som behöver gå mellan två mätningar för att de ska anses oberoende av varandra (korrelationstid). Detta arbete beräknar standardosäkerhet och korrelationstider vid mätning i det förtätade 35 km-nätet baserat på statiska GNSS-mätningar på olika avstånd från närmaste referensstation samt data från en permanent monitorstation belägen i Växjö.Standardosäkerheten (68% konfidensnivå) för mätningarna, vid förhållandena i denna studie, var vid mätning 0,1 km från närmaste referensstation 3,8 mm i plan och 6,9 mm i höjd (höjd över ellipsoiden). Vid mätning 8,8 km från närmaste referensstation var standardosäkerheten 6,3 mm i plan och 9,6 mm i höjd (höjd över ellipsoiden) och 15,8 km från närmaste referensstation var motsvarande värden 6,3 mm i plan och 10,5 mm i höjd (höjd över ellipsoiden). Detta tyder på att avståndet från närmaste referensstation troligtvis har viss betydelse för standardosäkerheten vid GNSS-mätning med nätverks-RTK. Under förhållandena för mätningarna inom denna studie ökar standardosäkerheten med avståndet till referensstationen. Ökningen av standardosäkerheten verkar dock avta vid längre avstånd till närmaste referensstation.Växjö-monitorn gav klart högre osäkerhetsvärden (11,5 mm i plan och 19,8 mm i höjd) trots liknande avstånd till referensstationen som punkten längst från referensstationen. Detta indikerar att det även finns andra faktorer än just avståndet till närmaste referensstation som påverkar mätosäkerheten.Korrelationstider skattades utifrån månadslånga perioder av monitordata till ca 22-23 minuter för mätning med nätverks-RTK i Swepos 35 km-nät. Detta gäller både plan och höjd men ska ses som en ungefärlig uppskattning av tiden som krävs för att en mätning, vid återbesök av en punkt, ska anses vara oberoende av en tidigare mätning. Tar vi inte hänsyn till tidskorrelationen kan osäkerheten i mätningar nära varandra i tiden underskattas. Mätningar under en kortare tidsperiod med en låg standardosäkerhet, kan i själva verket innehålla en systematisk avvikelse beroende på att mätningarna är korrelerade och därmed påverkade av ett liknande fel.Det ska dock nämnas att det finns en rad andra parametrar som inverkar vid GNSS-mätningar som inte har behandlats i detta arbete, t ex den lokalt omgivande miljön vid mätplatsen, väder-förhållanden och osäkerhet i de lokala referensstationerna. Eventuella användarrelaterade fel, t ex centrings- och horisonteringsfel av antennen liksom osäkerhet vid mätning av antennhöjden, är inte heller inkluderade i de beräknade standardosäkerhetsvärdena.
5

Undersökning av förhållanden mellan positionsvariationer och säsong respektive montering/placering av monument : i Swepos® B-klassade fasta referensstationer

Cederström, Tony, Lysén, Henrik January 2015 (has links)
En förtätning av Sveriges fasta referensnät SWEPOS® pågår för närvarande. De fasta referensstationerna i SWEPOS-nätet delas in i klass A och B med huvudsaklig skillnad i montering/placering av antenner och fästen. Under installationerna förankras klass Astationerna i berggrund medan klass B-stationerna monteras direkt på allmänna byggnader och anläggningar. Förtätningen sker primärt med B-stationer vilket innebär att SWEPOS-nätet består av dessa till ca 90 %. Förtätningen görs för att minska mätosäkerheten vid relativa mätningsmetoder som exempelvis NRTK (Network Real Time Kinematic). NRTK är den mest efterfrågade metoden idag och det finns ett behov från SWEPOS-användare att minska mätosäkerheten med NRTK. Eftersom förtätningen beräknas vara färdig under 2016 undersöks nu alternativa sätt att minska mätosäkerheten ytterligare med NRTK. Det här examensarbetet fungerar som en del i dessa undersökningar. Av den anledningen har det undersökts om positionsvariationer i B-klassade SWEPOS-stationer går att koppla till säsong (tid på året) eller montering/placering av antenn och fäste (monument). Med Fourier-analys av stationsobservationsdata (tidsserier) identifierades amplitudvärden hos periodiska funktioner som hade ett års våglängd. Värdena omberäknades i Excel vilket gav positionsvariationer i form av radiella amplituder (totala amplituder). Lantmäteriet förväntade att mellan 10-20 % av stationerna skulle ha höga totala amplituder, över 2 σ från stationsmedelvärden, i höjd eller plan. Därmed var en målsättning att undersöka denna förväntning. Ytterligare en målsättning var att undersöka om det fanns en tydlig “vintereffekt” inom SWEPOS.  Det vill säga om perioder med snö påverkar stationernas mätningar negativt eller inte.  Denna målsättning testades genom nollhypotesen: ”Det är högre total amplitud under snöperioden än under den snöfria perioden.”. Den tredje och sista målsättningen var att hitta ett förhållande mellan höga totala amplituder (höjd respektive plan) och monumentets montering/placering. Tidsserieanalys utfördes i programmet Tsview och dagliga koordinatobservationer från 217 B-klassade stationer analyserades. Efter bearbetning i Excel av utdatat från Tsview erhölls resultat. Totalt hade ca 18 % av stationerna höga positionsvariationer, i antingen höjd eller plan, vilket motsvarade förväntningen. Hypotesprövningen visade att det finns en signifikant “vintereffekt” men att den är begränsad till individuella stationer och vanligare i norra Sverige. Gällande positionsvariationer och montering/placering av antenn och fäste var det endast en klass som avvek nämnvärt. Denna var ”Taknock” och innebar att stationer som hade antennen och fästet placerade vid taknocken på en byggnad, hade högre positionsvariation (plan) i form av total amplitud.
6

Undersökning av nätverks-RTK-meddelande tillsammans med olika GNSS-mottagare : vid nätverks-RTK-mätning i SWEPOS®-nät av fasta referensstationer

Lundell, Rebecka January 2012 (has links)
Nätverks-RTK (Real-Time Kinematic) är en metod för positionsbestämning med Global Navigation Satellite System (GNSS) i realtid. Metoden kräver att en driftledningscentral kan kommunicera med de GNSS-mottagare som använder referensstationsnätet, för att bland annat skicka ut korrigerade GNSS-data. I Sverige erbjuder SWEPOS, ett nät av fasta referensstationer, en tjänst för nätverks-RTK-mätning, som förväntas ge en mätosäkerhet på mindre än 15 mm i plan och 25 mm i höjd (över ellipsoiden) (med täckningsfaktorn k = 1 i bägge fallen). Den teknik som idag används av SWEPOS för att utföra positionsbestämning av GNSS-mottagare är Virtuell Referensstation (VRS). VRS kräver tvåvägskommunikation eftersom mottagaren skickar in sin absoluta position till nätverks-RTK-programvaran hos driftledningscentralen, var beräkningarna av korrektionsdata sker, innan de skickas tillbaka till mottagaren. Det finns ett annat alternativ som möjliggör envägskommunikation, nämligen nätverks-RTK-meddelande. Då sänds observationsdata, i form av korrektioner, ut till mottagaren som utför positionsberäkningarna. Syftet med det här examensarbetet var att undersöka nätverks-RTK-meddelande för GNSS-mottagare av tre olika fabrikat med avseende på initialiseringstider, mätosäkerhet, avståndsberoende från närmaste masterstation, och GLONASS-satelliters deltagande i positionsbestämningen. I studien ingick även att utföra några jämförande mätningar med VRS. Undersökningarna gjordes genom upprepade nätverks-RTK-mätningar med GNSS-mottagare från Leica Geosystems, Trimble och Topcon, på tre kända punkter sydöst om Gävle. Tre mätmetoder användes, nätverks-RTK-meddelande med automatiskt nät (tvåvägskommunikation) och statiskt nät (envägskommunikation), samt VRS. De tre mätpunkterna valdes så att avståndet, till den referensstation som användes som en så kallad masterstation, varierade. Studien visade att initialiseringstiderna skiljde mellan de tre mottagarfabrikaten. En anledning till detta var att varje mottagare ominitialiserades från olika lösningslägen. Generellt var mätosäkerheten något högre för statiskt nät. Mätosäkerheten var omkring 11 mm i plan och 19 mm i höjd med det automatiska nätet, samt 13 mm respektive 22 mm i det statiska nätet. Fabrikaten emellan, låg Leica och Trimble på samma nivå, medan Topcon hade ett generellt problem för det statiska nätet, vilket det inte fanns möjlighet att närmare utreda orsaken till. Resultatet visade även att mätosäkerheten påverkas av avståndet till använd masterstation. I några fall var dessa förhållanden linjära. Vid några tillfällen användes inte GLONASS-satelliter i positionsbestämningen. / Network RTK (Real-Time Kinematic) is a method of positioning with Global Navigation Satellite System (GNSS) in real-time. The method requires that a control centre can communicate with the GNSS receiver, which is using the reference station network, for example to send out corrected GNSS data. In Sweden, SWEPOS, which is a network of permanent reference stations for GNSS, offers a service for Network RTK measurement. This is expected to give an uncertainty of less than 15 mm in plane and 25 mm in (ellipsoidal) height (with the coverage factor k = 1 in both cases). The technology currently used by SWEPOS, to perform positioning of a GNSS receiver, is Virtual Reference Station (VRS). VRS requires two-way communication because the receiver submits its navigated location to the control centre, where the calculations of correction data are made, before they are sent back to the receiver. Another alternative is Network RTK messages which make use of one-way communication. Then the observation data are transmitted to the receiver, which performs determination of its position. The purpose of this thesis was to investigate the network RTK messages with GNSS receivers from three different manufacturers with regard to time to fix ambiguities, measurement uncertainty and its dependence on the distance from the master station, and GLONASS satellites presence in the positioning. Also included in the study was the performance of comparative measurements with VRS. The investigations were conducted through repeated network RTK measurements with GNSS receivers from Leica Geosystems, Trimble and Topcon, at three known points south-east of Gävle. Three methods were used, network RTK message with automatic and static networks, and VRS. The three measurement points were chosen so that the distance to the reference station that was used as the so-called master station, varied. The study showed that the time to fix ambiguities differed between the three brands. One reason for this was that each receiver was reinitialized from different steps in the initialization process. In general, the uncertainty in the measurement was slightly higher for the static network. The uncertainty was about 11 mm in plane and 19 mm in height with the automated network, and 13 mm and 22 mm respectively in the static network. Leica and Trimble were at the same level, while Topcon had general problems for the static network, which there was no possibility to closer investigate the reason for. The results also showed that the uncertainty is influenced by the distance to used master station. In some cases, this relationship is linear. On some occasions, GLONASS satellites were not included in the positioning.
7

Jämförelse av metoder för anslutning av GNSS-mätning till referenssystemet SWEREF 99

Hanson, Erik, Öqvist, Joel January 2019 (has links)
GNSS är idag den vanligaste tekniken för positionering och för att ansluta punkter till det nationella referenssystemet SWEREF 99. Systemet realiseras av ett nätverk av permanenta referensstationer, SWEPOS. Nätet består av ett mindre antal stabilt förankrade klass A-stationer och ett större antal, men mindre stabila klass B-stationer. Lantmäteriet erbjuder idag tre tjänster för efterberäkning av GNSS-data som använder SWEPOS-nätet: 1) SWEPOS Beräkningstjänst, som beräknar positioner genom anslutning till klass A-stationer med långa baslinjer som följd, 2) nedladdning av RINEX-data från valfria SWEPOS-stationer, vilket möjliggör medellånga baslinjer och 3) skapande av virtuella referensstationer (VRS), där baslinjerna är mycket korta. Syftet med detta examensarbete är att, genom att använda dessa tjänster, jämföra olika metoder för anslutning av statisk efterberäknad GNSS-mätning till SWEREF 99 och un-dersöka hur mätosäkerheten beror av sessionstid och baslinjelängd. Dessutom undersöks påverkan av mätmiljö och om det finns någon systematisk skillnad mellan de olika metoderna. Fyra s.k. SWEREF-punkter användes som kontrollpunkter. Punkterna mättes i tre 8 h-sessioner. Insamlat mätdata delades in i fönster och skickades till SWEPOS Beräkningstjänst, beräknades i en kommersiell programvara mot klass A-, närmaste stationer och en VRS. För att jämföra de olika metoderna beräknades RMS och standardosäkerheter. Resultaten visar att vid kortare sessionstider har SWEPOS Beräkningstjänst ett högre RMS än övriga metoder, men vid lätt och normal mätmiljö sjunker RMS till samma nivå som övriga metoder redan efter 1 h sessionstid, vilket var 1 cm eller lägre i plan och 2 cm eller lägre i höjd. Vid svår mätmiljö fortsätter RMS att sjunka ända upp till 4 h sessionstid och ligger då något högre än vid lätt och normal mätmiljö. För övriga metoder sjunker RMS inte lika tydligt när sessionstiden ökar. Det framgår att mät-miljön påverkar mätresultatet. Både standardosäkerheter och RMS är högre vid svår mätmiljö jämfört med lätt och normal mätmiljö. Signifikanta skillnader mellan de olika metodernas medelavvikelser kunde påvisas, vilket innebär att det finns systema-tiska avvikelser mellan metoderna, som kan bero på olika troposfärsmodeller och att SWEPOS beräkningstjänst använder referenssystemet ITRF för att sedan göra en transformation till SWEREF 99. / GNSS is at present the most frequently used method for positioning, as well as connecting new points to the Swedish national reference frame, SWEREF 99. The reference frame is realized by a network of permanent reference stations, SWEPOS. The network consists of a small number of rigidly mounted class-A stations and a larger number of less stable class-B stations. Lantmäteriet, the mapping, cadastral and land registration authority of Sweden, cur-rently offers three services for post processing of GNSS data that utilizes the SWEPOS network: 1) SWEPOS Post Processing Service, which computes coordinates by connecting baselines to class-A stations leading to long baselines. 2) Downloading of RINEX data from any SWEPOS stations leading to medium baseline lengths, and 3) creation of virtual reference stations (VRS), leading to very short baselines. The aim of this thesis is, by using these services, to compare different methods for connecting new points to SWEREF 99, using post processing of static GNSS measurements and to investigate the impact of session duration and baseline length on the uncertainty of the measurements. The impact of different measurement environments and systematic effects between the methods are also investigated. Four SWEREF-points were used as test points. The points were measured in three 8 h sessions. The data were divided into windows and sent to SWEPOS post processing service, as well as processed with a commercial software, where baselines were pro-cessed against class-A, class-B stations and a VRS. To compare the different methods RMS and standard uncertainties were calculated. The results indicate that shorter session duration yields higher RMS for SWEPOS post processing service when compared with the other methods, but in easy measurement environments RMS decreases to the same level as the other methods after 1 h session duration, which is 1 cm or less horizontally and 2 cm or less vertically. However, in complex measurement environments RMS continues to decrease up to 4 h session duration and is higher than in easy environments. For the other methods the decrease of RMS is not as pronounced. It is clear that the measurement environment impacts the results. Both standard uncertainty and RMS are higher in complex environments compared with easy and moderate environments. Significant differences of the mean deviation for each method could be detected, which indicates systematic effects between the methods, that could depend on different troposphere models and that SWEPOS Post Processing Service uses the reference system ITRF and then make a transformation to SWEREF 99.
8

En nätverks-RTK-jämförelse mellan GPS och GPS/GLONASS

Wallerström, Mattias, Johnsson, Fredrik January 2007 (has links)
<p>Från den 1 april 2006 har SWEPOS kompletterat den befintliga nätverks-RTK-tjänsten, som dittills levererat RTK-data för GPS, med ett alternativ där RTK-data för GPS/GLONASS levereras. En del användare har rapporterat att de upplever att GPS/GLONASS inte tillför något och även att det ibland kan ta längre tid att få fixlösning. Andra användare hävdar att de nu kan använda nätverks-RTK på platser där de tidigare inte kunde mäta och är mycket positiva till GPS/GLONASS.</p><p>Syftet med detta examensarbete var att undersöka hur tillgängligheten för satellitmätning, positionsnoggrannheten och initialiseringstiden påverkades i öppna respektive störda miljöer med GPS/GLONASS jämfört med enbart GPS vid användandet av nätverks-RTK-tjänsten. Undersökningen har utförts med tre olika fabrikat av GNSS-mottagare (Leica, Topcon och Trimble), vilket även medger att en jämförelse mellan dessa till viss utsträckning kan göras.</p><p>I studien gjordes totalt 1 440 mätningar på sex punkter med kända positioner och med olika grad av sikthinder. Fixlösning uppnåddes inte inom 180 sekunder för 206 (77 för GPS/GLONASS och 129 för GPS) av de 1 440 mätningarna.</p><p>De extra GLONASS-satelliterna tillför en klar fördel när det gäller möjligheten att mäta i störda miljöer. När det gäller initialiseringstid så är dessa kortare för GPS/GLONASS. GLONASS-satelliterna ger ingen förbättring av positionsnoggrannheten. Det är till och med så att GPS får något bättre kvalitetstal i både plan och höjd i denna studie (1-3 mm bättre). För de olika fabrikaten kan det konstateras att precision och noggrannhet är likvärdiga i både plan och höjd för alla tre märken.</p> / <p>On the 1st of April 2006, SWEPOS complemented the existing network RTK service with corrections for the Russian satellite system GLONASS. The service had so far only provided corrections for GPS. Some users have claimed that GPS/GLONASS do not contribute at all and also that the time for initialization sometimes can be longer. However, other users insist on that they now can use network RTK in areas that earlier were impossible and they are very favourable of GPS/GLONASS.</p><p>The purposes of this diploma work were to study and examine measurements using GPS and GPS/GLONASS in areas with different degrees of visual obstacles. Corrections were provided by SWEPOS Network RTK service and availability of satellites, accuracy of position and time for initialization were evaluated. The study has been conducted with three different brands of GNSS receivers (Leica, Topcon and Trimble), which also to some extent makes a comparison between the three brands possible.</p><p>A total number of 1 440 field measurements were made on six well-known points with different degrees of visual obstacles. A fixed solution was not accomplished within 180 seconds for 206 (77 for GPS/GLONASS and 129 for GPS) of the 1 440 measurements.</p><p>The additional GLONASS satellites provide an apparent advantage regarding the possibility to measure in disturbed environments. The time for initialization is shorter for GPS/GLONASS. The GLONASS satellites do not give any improvement in accuracy of position. On the contrary, GPS receives slightly better accuracy numbers in quality for both horizontal and vertical readings (1-3 mm better). Regarding the different brands, it was found that the precision and accuracy were similar in both plane and height for all three brands.</p>
9

En nätverks-RTK-jämförelse mellan GPS och GPS/GLONASS

Wallerström, Mattias, Johnsson, Fredrik January 2007 (has links)
Från den 1 april 2006 har SWEPOS kompletterat den befintliga nätverks-RTK-tjänsten, som dittills levererat RTK-data för GPS, med ett alternativ där RTK-data för GPS/GLONASS levereras. En del användare har rapporterat att de upplever att GPS/GLONASS inte tillför något och även att det ibland kan ta längre tid att få fixlösning. Andra användare hävdar att de nu kan använda nätverks-RTK på platser där de tidigare inte kunde mäta och är mycket positiva till GPS/GLONASS. Syftet med detta examensarbete var att undersöka hur tillgängligheten för satellitmätning, positionsnoggrannheten och initialiseringstiden påverkades i öppna respektive störda miljöer med GPS/GLONASS jämfört med enbart GPS vid användandet av nätverks-RTK-tjänsten. Undersökningen har utförts med tre olika fabrikat av GNSS-mottagare (Leica, Topcon och Trimble), vilket även medger att en jämförelse mellan dessa till viss utsträckning kan göras. I studien gjordes totalt 1 440 mätningar på sex punkter med kända positioner och med olika grad av sikthinder. Fixlösning uppnåddes inte inom 180 sekunder för 206 (77 för GPS/GLONASS och 129 för GPS) av de 1 440 mätningarna. De extra GLONASS-satelliterna tillför en klar fördel när det gäller möjligheten att mäta i störda miljöer. När det gäller initialiseringstid så är dessa kortare för GPS/GLONASS. GLONASS-satelliterna ger ingen förbättring av positionsnoggrannheten. Det är till och med så att GPS får något bättre kvalitetstal i både plan och höjd i denna studie (1-3 mm bättre). För de olika fabrikaten kan det konstateras att precision och noggrannhet är likvärdiga i både plan och höjd för alla tre märken. / On the 1st of April 2006, SWEPOS complemented the existing network RTK service with corrections for the Russian satellite system GLONASS. The service had so far only provided corrections for GPS. Some users have claimed that GPS/GLONASS do not contribute at all and also that the time for initialization sometimes can be longer. However, other users insist on that they now can use network RTK in areas that earlier were impossible and they are very favourable of GPS/GLONASS. The purposes of this diploma work were to study and examine measurements using GPS and GPS/GLONASS in areas with different degrees of visual obstacles. Corrections were provided by SWEPOS Network RTK service and availability of satellites, accuracy of position and time for initialization were evaluated. The study has been conducted with three different brands of GNSS receivers (Leica, Topcon and Trimble), which also to some extent makes a comparison between the three brands possible. A total number of 1 440 field measurements were made on six well-known points with different degrees of visual obstacles. A fixed solution was not accomplished within 180 seconds for 206 (77 for GPS/GLONASS and 129 for GPS) of the 1 440 measurements. The additional GLONASS satellites provide an apparent advantage regarding the possibility to measure in disturbed environments. The time for initialization is shorter for GPS/GLONASS. The GLONASS satellites do not give any improvement in accuracy of position. On the contrary, GPS receives slightly better accuracy numbers in quality for both horizontal and vertical readings (1-3 mm better). Regarding the different brands, it was found that the precision and accuracy were similar in both plane and height for all three brands.
10

Jämförelse av höjdmätning med olika GNSS-mottagare i SWEPOS nätverks-RTK-tjänst

Fredriksson, Annika, Olsson, Madeleine January 2014 (has links)
Det finns i nuläget många olika fabrikat av utrustning för mätning med GNSS på den svenska marknaden och dessa instrument har olika egenskaper. För att kunna göra en positionsbestämning i höjd med GNSS och få låg mätosäkerhet används SWEPOS, Lantmäteriets stödsystem för satellitpositionering, och deras nätverks-RTK-tjänst. Syftet med detta examensarbete var att undersöka om SWEPOS nätverks-RTK-tjänst ger likvärdiga höjdvärden vid mätning med olika GNSS-mottagare och olika avstånd till närmaste fysiska referensstation, såväl som mätosäkerheten i mätningarna. Undersökningen har gjorts hos Lantmäteriet som arbetar kontinuerligt med att minska mätosäkerheten i höjd genom pågående förtätningar av det befintliga SWEPOS-nätet. Det är viktigt att kontrollera att roverutrustningarna på användarsidan arbetar på ett korrekt sätt så att en så låg mätosäkerhet som möjligt kan uppnås i det slutliga mätresultatet.   Fältarbetet med nätverks-RTK pågick under tre veckor i Gävle på Lantmäteriets antennkalibreringsfält. Fyra olika roverutrustningar användes för att utföra jämförelsen. Varje mätserie pågick i två timmar där en epok var en sekund. Närmaste fysiska referensstation varierades mellan två stationer på olika avstånd, 40 m respektive 30 km, för att kunna se hur mätosäkerheten påverkades. De data som erhölls sammanställdes och analyserades i Microsoft Excel.   Studien visar att en av GNSS-utrustningarna kontinuerligt gav sämre mät-osäkerhet än de övriga som höll en jämn nivå. Den visar även en markant skillnad i mätosäkerhet om baslinjen till den närmaste fysiska referensstationen ökar. För två–tre av utrustningarna sjunker höjdvärdet med cirka ett par centimeter, samtidigt som avvikelsen från känd höjd blir större, då den närmaste fysiska referensstationen byts från den närmast belägna till den som ligger belägen längre bort. Dessa utrustningar gav dock individuellt ett likvärdigt resultat så länge samma referensstation var den närmaste. / There are currently many different brands of equipment for measurements with GNSS on the Swedish market and these instruments have different properties. To be able to obtain a position in height with low measurement uncertainty Lantmäteriet’s, the Swedish mapping, cadastral and land registration authority, support system for satellite positioning called SWEPOS and their network RTK service is used. The aim of this thesis was to investigate whether SWEPOS network RTK service provides similarly height values when measuring with various GNSS receivers and different distances to the nearest physical reference station, as well as the measurement uncertainty in the measurements. It is important to verify that the equipment on the user side is working correctly so that such a low measurement uncertainty as possible can be achieved in the final result.   The field work with network RTK took place over three weeks in Gävle on Lantmäteriet’s antenna calibration field. Four different equipment were used to perform the comparison. Each series of measurements lasted for two hours where an epoch was one second. Nearest physical reference station was varied between two stations at different distances, 40 m and 30 km, to be able to see how the measurement uncertainty was affected. The data obtained was compiled and analysed in Microsoft Excel.   The study shows that one equipment continuously gave weaker measurement uncertainty than the others who kept a steady level. It also shows a significant difference in measurement uncertainty if the baseline between the receiver and nearest physical reference station is longer. For 2–3 of the equipment, the height value decreases with about a couple of centimetres and the deviance is getting larger when the nearest physical reference station is switched from the closest one to the one further away. These equipment gave however individually a similarly result as long as the same reference station was the nearest.

Page generated in 0.0187 seconds