Spelling suggestions: "subject:"sapovirus."" "subject:"papovirus.""
1 |
Untersuchung zur Replikationsstrategie des humanpathogenen Sapovirus / Investigation of the replication stratety of the human pathogenic sapovirusGebhardt, Julia 19 November 2009 (has links)
Humanpathogene Sapoviren gehören zur Familie der Caliciviridae und verursachen vor allem bei Klein¬kindern und Senioren Gastroenteritiden. Die Replikationsstrategie von humanpathogenen Sapoviren ist bislang ungeklärt, da weder ein geeignetes Tiermodell noch ein etabliertes Zellkulturmodell zur Verfügung stehen. Aus diesem Grund sollte die Replikation in einem Säugerzellsystem etabliert werden. Die Ergebnisse der Untersuchungen sollen zu einem besseren Verständnis der Replikationsstrategie der humanpathogenen Sapoviren beitragen und können die Grundlage für weitere Unter¬suchungen der Replikationsstrategie der Caliciviren bilden sowie zur Entwicklung geeigneter antiviraler Maßnahmen und Medikamente beitragen. Für die Untersuchung der Replikationsstrategie des humanpathogenen Sapovirus wurde ein Sapovirus-Volle-Länge-Klon aus Patientenmaterial (Stuhlgang-Probe) generiert. Nach der molekularen Charakterisierung konnte der Stamm Hu/SaV/Dresden/pJG-SapI/2004/DE (GenBank-Zugangsnummer AY694184) der Genogruppe I Genotyp 1 der Sapo¬viren zugeordnet werden. Für die Untersuchung der Translation des humanpathogenen Sapovirus in Säugerzellen wurden polyklonale Antikörper in Kaninchen gegen die nichtstrukturellen und strukturellen Sapovirus-Proteine generiert. Im zellfreien System konnte die Sensitivität und Spezifität dieser Antikörper validiert werden. Außerdem wurde die Translation im zellfreien System mit bereits bestehenden Ergebnissen verglichen. Die Prozessierung des ORF1-Polyproteins erfolgte in die nichtstrukturellen Proteine NS1, NS2, NS3NTPase, NS4, NS5VPg, die Fusionsproteine NS1-3, NS2-3, NS4-5, NS4-7, NS5-7 und NS6 7Pro-Pol sowie das strukturelle Protein VP1. Für die Charakterisierung der Replikation des humanpathogenen Sapovirus in Säugerzellen wurden verschiedene Sapovirus-Volle-Länge-cDNA-Klone generiert. Für das Sapovirus-Volle-Länge-RNA-Genom pJG-SapI-T7 konnte eine Translation der Sapovirus-Proteine nach¬gewiesen werden. Die Transfektion von 293T-Zellen erfolgte mit in vitro transkribierter RNA, die ein Cap-Analogon und einen Poly(A)-Schwanz besaß. Durch die dem Sapovirus-Genom vorangestellte Kozak-Sequenz, welche als Ribosomenbindungsstelle dient, konnte auch nach Mutation des aktiven Zentrums des nichtstrukturellen Proteins NS7Pol (RNA-abhängige RNA-Polymerase) eine Translation des Sapovirus-ORF1-Polyproteins nachgewiesen werden. Somit erwies sich dieses Konstrukt als ungeeignet für die Untersuchung der Replikation des humanpathogenen Sapovirus in Säugerzellen. Nach Klonierung des Sapovirus-Volle-Länge-cDNA-Genoms in den pACYC-MCSII-Vektor (pJG-SapI-T7) konnte nach in vitro Transkription ein gekapptes Sapovirus-Volle-Länge-RNA-Genom mit einem Poly(A)-Schwanz generiert werden, welches vermutlich die richtigen 5’- und 3’-Sapovirus-Enden enthält. Nach Transfektion von 293T-Zellen konnten die nichtstrukturellen Fusionsproteine NS2-3, NS4-5, NS4-7 und NS6-7Pro-Pol sowie das strukturelle Protein VP1 im Western Blot nachgewiesen werden. Nach Mutation des aktiven Zentrums des nichtstrukturellen Proteins NS6Pro (Protease) wurde die Prozessierung des ORF1-Polyproteins in Säugerzellen unter¬bunden. Die Replikation der generierten Sapovirus-Volle-Länge-RNA-Genome in Säugerzellen konnte mit Hilfe der quantitativen PCR nicht nachgewiesen werden. Eine Passagierung in verschiedenen Säugerzelllinien war ebenfalls nicht möglich. Weiter wurden verschiedene Sapovirus-Volle-Länge-RNA-Genome direkt aus Patientenmaterial durch RT-PCR generiert und nach in vitro Transkription damit Säugerzellen transfiziert. Bei Sapovirus-Volle-Länge-RNA-Genomen aus drei Patientenproben konnte die Translation und Prozessierung des Sapovirus-ORF1-Polyproteins nachgewiesen werden. Die Replikation konnte mit Hilfe der quantitativen PCR nicht nachgewiesen werden. In einem letzten Schritt wurde aus Patientenmaterial gewonnene RNA direkt für die Transfektion eingesetzt. Hierfür wurden die Patientenproben verwendet, bei denen eine Translation und Prozessierung des Sapovirus-ORF1-Polyproteines nachgewiesen werden konnte. Auch hier konnte keine Replikation mit Hilfe der quantitativen PCR nachgewiesen werden. In der vorliegenden Arbeit konnte erstmals die erfolgreiche Translation und Prozessierung des ORF1-Polyproteins des humanpathogenen Sapovirus (Dresdner Stamm pJG-SapI, GenBank-Zugangsnummer AY694184) in Säugerzellen gezeigt werden. Weitergehende Untersuchungen zur Replikation des humanpathogenen Sapovirus in Säugerzellen könnten mit Hilfe des vorliegenden Dresdner Sapovirus-Stamm pJG-SapI erfolgen, indem weitere rekombinante Systeme etabliert werden. / The human pathogenic sapovirus belongs to the family of the Caliciviridae and is an important agent of gastroenteritis in infants and the elderly. The replication strategy of the human pathogenic sapovirus remains so far unclear, since neither a suitable animal model nor a permissive cell line to cultivate the virus are available. Elucidating the replication strategy of the human pathogenic sapovirus may contribute to a better understanding of its pathogenicity, being also an important pre-requisite for the development of new antiviral strategies against this relevant medical pathogen. In order to investigate the replication strategy of the human pathogenic sapovirus, a cDNA-clone encompassing the entire sapovirus genome was generated from a clinical sample. Based on phylogenetic analysis, the full-length genome of the sapovirus strain Hu/SaV/Dresden/pJG-SapI/2004/DE (GenBank accession number AY694184) was assigned to the Genogruppe I/ Genotype 1. For the investigation of the translation of the human pathogenic sapovirus in mammalian cells, polyclonal antibodies were generated against the nonstructural and structural sapovirus proteins. The sensitivity and specificity of the antibodies were validated using a transcription-translation driven cell free system. Translation of the sapovirus full-length-cDNA clone in the cell free system generated structural and nonstructural sapovirus proteins, in accordance with previously published reports. After translation, the sapovirus ORF1 polyprotein was processed in the nonstructural proteins NS1, NS2, NS3NTPase, NS4, NS5VPg, the fusion proteins NS1-3, NS2-3, NS4-5, NS4-7, NS5-7 and NS6-7Pro-Pol as well as the structural protein VP1. For the characterisation of the replication of the human pathogenic sapovirus in mammalian cells, different sapovirus cDNA-full length clones were generated. Upon transfection in 293-T cells, a translation of the sapovirus proteins was evidenced. However, this translation was not sapovirus-specific, as cDNA clones bearing a mutation in the active site of the sapovirus polymerase NS7Pol were also able to generate viral proteins. In order to further investigate the translation and replication of the sapovirus, the full length cDNA Genome was cloned into the pACYC-MCSII-Vector. Subsequently, a capped sapovirus full length RNA genome with a correct 5’-end and a 3’-end with a poly(A) tail was generated by in vitro transcription. Upon transfection in 293T-cells, the nonstructural fusion proteins NS2-3, NS4-5, NS4-7 and NS6-7Pro-Pol as well as the structural protein VP1 were translated. As a control, mutation of the active site of the nonstructural protein NS6Pro did not lead to processing of the viral enzymes, indicating that the processing of the ORF1-polyprotein in mammalian cells is strictly dependent on the activity of the sapovirus protease NS6Pro. Furthermore, replication of the sapovirus genomic RNA was investigated in mammalian cells. Upon transfection of the sapovirus full-length genomic RNA, replication of the sapovirus full-length RNA genomes was not evidenced in mammalian cells using quantitative real time RT-PCR. In order to exclude a possible flaw in the primary sequence of the viral genome hampering its replication, additional sapovirus full-length genomes were generated by direct amplification of the RNA from stool samples followed by in vitro transcription. Upon transfection in mammalian cells, the translation of sapovirus ORF1-polyprotein was evidenced in three clinical samples. However, replication of the viral genome did not occur. A similar observation was made when the total RNA from the clinical sample was used for transfection of mammalian cells, indicating that the lack of replication of the viral genome may be caused primarily by the cell line used, rather than the viral genome. In conclusion, the present work describes for the first time the successful processing of the ORF1-Polyprotein of the human pathogenic Sapovirus (strain Dresden pJG-SapI, GenBank accession number AY694184) in mammalian cells. This work may be a first step towards understanding the replication strategy of the human pathogenic and non-human pathogenic sapovirus (i.e. the porcine enteric calicivirus), being both important medical pathogens.
|
2 |
Untersuchung zur Replikationsstrategie des humanpathogenen SapovirusGebhardt, Julia 02 March 2011 (has links) (PDF)
Humanpathogene Sapoviren gehören zur Familie der Caliciviridae und verursachen vor allem bei Klein¬kindern und Senioren Gastroenteritiden. Die Replikationsstrategie von humanpathogenen Sapoviren ist bislang ungeklärt, da weder ein geeignetes Tiermodell noch ein etabliertes Zellkulturmodell zur Verfügung stehen. Aus diesem Grund sollte die Replikation in einem Säugerzellsystem etabliert werden. Die Ergebnisse der Untersuchungen sollen zu einem besseren Verständnis der Replikationsstrategie der humanpathogenen Sapoviren beitragen und können die Grundlage für weitere Unter¬suchungen der Replikationsstrategie der Caliciviren bilden sowie zur Entwicklung geeigneter antiviraler Maßnahmen und Medikamente beitragen. Für die Untersuchung der Replikationsstrategie des humanpathogenen Sapovirus wurde ein Sapovirus-Volle-Länge-Klon aus Patientenmaterial (Stuhlgang-Probe) generiert. Nach der molekularen Charakterisierung konnte der Stamm Hu/SaV/Dresden/pJG-SapI/2004/DE (GenBank-Zugangsnummer AY694184) der Genogruppe I Genotyp 1 der Sapo¬viren zugeordnet werden. Für die Untersuchung der Translation des humanpathogenen Sapovirus in Säugerzellen wurden polyklonale Antikörper in Kaninchen gegen die nichtstrukturellen und strukturellen Sapovirus-Proteine generiert. Im zellfreien System konnte die Sensitivität und Spezifität dieser Antikörper validiert werden. Außerdem wurde die Translation im zellfreien System mit bereits bestehenden Ergebnissen verglichen. Die Prozessierung des ORF1-Polyproteins erfolgte in die nichtstrukturellen Proteine NS1, NS2, NS3NTPase, NS4, NS5VPg, die Fusionsproteine NS1-3, NS2-3, NS4-5, NS4-7, NS5-7 und NS6 7Pro-Pol sowie das strukturelle Protein VP1. Für die Charakterisierung der Replikation des humanpathogenen Sapovirus in Säugerzellen wurden verschiedene Sapovirus-Volle-Länge-cDNA-Klone generiert. Für das Sapovirus-Volle-Länge-RNA-Genom pJG-SapI-T7 konnte eine Translation der Sapovirus-Proteine nach¬gewiesen werden. Die Transfektion von 293T-Zellen erfolgte mit in vitro transkribierter RNA, die ein Cap-Analogon und einen Poly(A)-Schwanz besaß. Durch die dem Sapovirus-Genom vorangestellte Kozak-Sequenz, welche als Ribosomenbindungsstelle dient, konnte auch nach Mutation des aktiven Zentrums des nichtstrukturellen Proteins NS7Pol (RNA-abhängige RNA-Polymerase) eine Translation des Sapovirus-ORF1-Polyproteins nachgewiesen werden. Somit erwies sich dieses Konstrukt als ungeeignet für die Untersuchung der Replikation des humanpathogenen Sapovirus in Säugerzellen. Nach Klonierung des Sapovirus-Volle-Länge-cDNA-Genoms in den pACYC-MCSII-Vektor (pJG-SapI-T7) konnte nach in vitro Transkription ein gekapptes Sapovirus-Volle-Länge-RNA-Genom mit einem Poly(A)-Schwanz generiert werden, welches vermutlich die richtigen 5’- und 3’-Sapovirus-Enden enthält. Nach Transfektion von 293T-Zellen konnten die nichtstrukturellen Fusionsproteine NS2-3, NS4-5, NS4-7 und NS6-7Pro-Pol sowie das strukturelle Protein VP1 im Western Blot nachgewiesen werden. Nach Mutation des aktiven Zentrums des nichtstrukturellen Proteins NS6Pro (Protease) wurde die Prozessierung des ORF1-Polyproteins in Säugerzellen unter¬bunden. Die Replikation der generierten Sapovirus-Volle-Länge-RNA-Genome in Säugerzellen konnte mit Hilfe der quantitativen PCR nicht nachgewiesen werden. Eine Passagierung in verschiedenen Säugerzelllinien war ebenfalls nicht möglich. Weiter wurden verschiedene Sapovirus-Volle-Länge-RNA-Genome direkt aus Patientenmaterial durch RT-PCR generiert und nach in vitro Transkription damit Säugerzellen transfiziert. Bei Sapovirus-Volle-Länge-RNA-Genomen aus drei Patientenproben konnte die Translation und Prozessierung des Sapovirus-ORF1-Polyproteins nachgewiesen werden. Die Replikation konnte mit Hilfe der quantitativen PCR nicht nachgewiesen werden. In einem letzten Schritt wurde aus Patientenmaterial gewonnene RNA direkt für die Transfektion eingesetzt. Hierfür wurden die Patientenproben verwendet, bei denen eine Translation und Prozessierung des Sapovirus-ORF1-Polyproteines nachgewiesen werden konnte. Auch hier konnte keine Replikation mit Hilfe der quantitativen PCR nachgewiesen werden. In der vorliegenden Arbeit konnte erstmals die erfolgreiche Translation und Prozessierung des ORF1-Polyproteins des humanpathogenen Sapovirus (Dresdner Stamm pJG-SapI, GenBank-Zugangsnummer AY694184) in Säugerzellen gezeigt werden. Weitergehende Untersuchungen zur Replikation des humanpathogenen Sapovirus in Säugerzellen könnten mit Hilfe des vorliegenden Dresdner Sapovirus-Stamm pJG-SapI erfolgen, indem weitere rekombinante Systeme etabliert werden.
|
3 |
Untersuchung zur Replikationsstrategie des humanpathogenen SapovirusGebhardt, Julia 23 June 2009 (has links)
Humanpathogene Sapoviren gehören zur Familie der Caliciviridae und verursachen vor allem bei Klein¬kindern und Senioren Gastroenteritiden. Die Replikationsstrategie von humanpathogenen Sapoviren ist bislang ungeklärt, da weder ein geeignetes Tiermodell noch ein etabliertes Zellkulturmodell zur Verfügung stehen. Aus diesem Grund sollte die Replikation in einem Säugerzellsystem etabliert werden. Die Ergebnisse der Untersuchungen sollen zu einem besseren Verständnis der Replikationsstrategie der humanpathogenen Sapoviren beitragen und können die Grundlage für weitere Unter¬suchungen der Replikationsstrategie der Caliciviren bilden sowie zur Entwicklung geeigneter antiviraler Maßnahmen und Medikamente beitragen. Für die Untersuchung der Replikationsstrategie des humanpathogenen Sapovirus wurde ein Sapovirus-Volle-Länge-Klon aus Patientenmaterial (Stuhlgang-Probe) generiert. Nach der molekularen Charakterisierung konnte der Stamm Hu/SaV/Dresden/pJG-SapI/2004/DE (GenBank-Zugangsnummer AY694184) der Genogruppe I Genotyp 1 der Sapo¬viren zugeordnet werden. Für die Untersuchung der Translation des humanpathogenen Sapovirus in Säugerzellen wurden polyklonale Antikörper in Kaninchen gegen die nichtstrukturellen und strukturellen Sapovirus-Proteine generiert. Im zellfreien System konnte die Sensitivität und Spezifität dieser Antikörper validiert werden. Außerdem wurde die Translation im zellfreien System mit bereits bestehenden Ergebnissen verglichen. Die Prozessierung des ORF1-Polyproteins erfolgte in die nichtstrukturellen Proteine NS1, NS2, NS3NTPase, NS4, NS5VPg, die Fusionsproteine NS1-3, NS2-3, NS4-5, NS4-7, NS5-7 und NS6 7Pro-Pol sowie das strukturelle Protein VP1. Für die Charakterisierung der Replikation des humanpathogenen Sapovirus in Säugerzellen wurden verschiedene Sapovirus-Volle-Länge-cDNA-Klone generiert. Für das Sapovirus-Volle-Länge-RNA-Genom pJG-SapI-T7 konnte eine Translation der Sapovirus-Proteine nach¬gewiesen werden. Die Transfektion von 293T-Zellen erfolgte mit in vitro transkribierter RNA, die ein Cap-Analogon und einen Poly(A)-Schwanz besaß. Durch die dem Sapovirus-Genom vorangestellte Kozak-Sequenz, welche als Ribosomenbindungsstelle dient, konnte auch nach Mutation des aktiven Zentrums des nichtstrukturellen Proteins NS7Pol (RNA-abhängige RNA-Polymerase) eine Translation des Sapovirus-ORF1-Polyproteins nachgewiesen werden. Somit erwies sich dieses Konstrukt als ungeeignet für die Untersuchung der Replikation des humanpathogenen Sapovirus in Säugerzellen. Nach Klonierung des Sapovirus-Volle-Länge-cDNA-Genoms in den pACYC-MCSII-Vektor (pJG-SapI-T7) konnte nach in vitro Transkription ein gekapptes Sapovirus-Volle-Länge-RNA-Genom mit einem Poly(A)-Schwanz generiert werden, welches vermutlich die richtigen 5’- und 3’-Sapovirus-Enden enthält. Nach Transfektion von 293T-Zellen konnten die nichtstrukturellen Fusionsproteine NS2-3, NS4-5, NS4-7 und NS6-7Pro-Pol sowie das strukturelle Protein VP1 im Western Blot nachgewiesen werden. Nach Mutation des aktiven Zentrums des nichtstrukturellen Proteins NS6Pro (Protease) wurde die Prozessierung des ORF1-Polyproteins in Säugerzellen unter¬bunden. Die Replikation der generierten Sapovirus-Volle-Länge-RNA-Genome in Säugerzellen konnte mit Hilfe der quantitativen PCR nicht nachgewiesen werden. Eine Passagierung in verschiedenen Säugerzelllinien war ebenfalls nicht möglich. Weiter wurden verschiedene Sapovirus-Volle-Länge-RNA-Genome direkt aus Patientenmaterial durch RT-PCR generiert und nach in vitro Transkription damit Säugerzellen transfiziert. Bei Sapovirus-Volle-Länge-RNA-Genomen aus drei Patientenproben konnte die Translation und Prozessierung des Sapovirus-ORF1-Polyproteins nachgewiesen werden. Die Replikation konnte mit Hilfe der quantitativen PCR nicht nachgewiesen werden. In einem letzten Schritt wurde aus Patientenmaterial gewonnene RNA direkt für die Transfektion eingesetzt. Hierfür wurden die Patientenproben verwendet, bei denen eine Translation und Prozessierung des Sapovirus-ORF1-Polyproteines nachgewiesen werden konnte. Auch hier konnte keine Replikation mit Hilfe der quantitativen PCR nachgewiesen werden. In der vorliegenden Arbeit konnte erstmals die erfolgreiche Translation und Prozessierung des ORF1-Polyproteins des humanpathogenen Sapovirus (Dresdner Stamm pJG-SapI, GenBank-Zugangsnummer AY694184) in Säugerzellen gezeigt werden. Weitergehende Untersuchungen zur Replikation des humanpathogenen Sapovirus in Säugerzellen könnten mit Hilfe des vorliegenden Dresdner Sapovirus-Stamm pJG-SapI erfolgen, indem weitere rekombinante Systeme etabliert werden. / The human pathogenic sapovirus belongs to the family of the Caliciviridae and is an important agent of gastroenteritis in infants and the elderly. The replication strategy of the human pathogenic sapovirus remains so far unclear, since neither a suitable animal model nor a permissive cell line to cultivate the virus are available. Elucidating the replication strategy of the human pathogenic sapovirus may contribute to a better understanding of its pathogenicity, being also an important pre-requisite for the development of new antiviral strategies against this relevant medical pathogen. In order to investigate the replication strategy of the human pathogenic sapovirus, a cDNA-clone encompassing the entire sapovirus genome was generated from a clinical sample. Based on phylogenetic analysis, the full-length genome of the sapovirus strain Hu/SaV/Dresden/pJG-SapI/2004/DE (GenBank accession number AY694184) was assigned to the Genogruppe I/ Genotype 1. For the investigation of the translation of the human pathogenic sapovirus in mammalian cells, polyclonal antibodies were generated against the nonstructural and structural sapovirus proteins. The sensitivity and specificity of the antibodies were validated using a transcription-translation driven cell free system. Translation of the sapovirus full-length-cDNA clone in the cell free system generated structural and nonstructural sapovirus proteins, in accordance with previously published reports. After translation, the sapovirus ORF1 polyprotein was processed in the nonstructural proteins NS1, NS2, NS3NTPase, NS4, NS5VPg, the fusion proteins NS1-3, NS2-3, NS4-5, NS4-7, NS5-7 and NS6-7Pro-Pol as well as the structural protein VP1. For the characterisation of the replication of the human pathogenic sapovirus in mammalian cells, different sapovirus cDNA-full length clones were generated. Upon transfection in 293-T cells, a translation of the sapovirus proteins was evidenced. However, this translation was not sapovirus-specific, as cDNA clones bearing a mutation in the active site of the sapovirus polymerase NS7Pol were also able to generate viral proteins. In order to further investigate the translation and replication of the sapovirus, the full length cDNA Genome was cloned into the pACYC-MCSII-Vector. Subsequently, a capped sapovirus full length RNA genome with a correct 5’-end and a 3’-end with a poly(A) tail was generated by in vitro transcription. Upon transfection in 293T-cells, the nonstructural fusion proteins NS2-3, NS4-5, NS4-7 and NS6-7Pro-Pol as well as the structural protein VP1 were translated. As a control, mutation of the active site of the nonstructural protein NS6Pro did not lead to processing of the viral enzymes, indicating that the processing of the ORF1-polyprotein in mammalian cells is strictly dependent on the activity of the sapovirus protease NS6Pro. Furthermore, replication of the sapovirus genomic RNA was investigated in mammalian cells. Upon transfection of the sapovirus full-length genomic RNA, replication of the sapovirus full-length RNA genomes was not evidenced in mammalian cells using quantitative real time RT-PCR. In order to exclude a possible flaw in the primary sequence of the viral genome hampering its replication, additional sapovirus full-length genomes were generated by direct amplification of the RNA from stool samples followed by in vitro transcription. Upon transfection in mammalian cells, the translation of sapovirus ORF1-polyprotein was evidenced in three clinical samples. However, replication of the viral genome did not occur. A similar observation was made when the total RNA from the clinical sample was used for transfection of mammalian cells, indicating that the lack of replication of the viral genome may be caused primarily by the cell line used, rather than the viral genome. In conclusion, the present work describes for the first time the successful processing of the ORF1-Polyprotein of the human pathogenic Sapovirus (strain Dresden pJG-SapI, GenBank accession number AY694184) in mammalian cells. This work may be a first step towards understanding the replication strategy of the human pathogenic and non-human pathogenic sapovirus (i.e. the porcine enteric calicivirus), being both important medical pathogens.
|
4 |
Untersuchung zur Replikationsstrategie des humanpathogenen SapovirusGebhardt, Julia 23 June 2009 (has links)
Humanpathogene Sapoviren gehören zur Familie der Caliciviridae und verursachen vor allem bei Klein¬kindern und Senioren Gastroenteritiden. Die Replikationsstrategie von humanpathogenen Sapoviren ist bislang ungeklärt, da weder ein geeignetes Tiermodell noch ein etabliertes Zellkulturmodell zur Verfügung stehen. Aus diesem Grund sollte die Replikation in einem Säugerzellsystem etabliert werden. Die Ergebnisse der Untersuchungen sollen zu einem besseren Verständnis der Replikationsstrategie der humanpathogenen Sapoviren beitragen und können die Grundlage für weitere Unter¬suchungen der Replikationsstrategie der Caliciviren bilden sowie zur Entwicklung geeigneter antiviraler Maßnahmen und Medikamente beitragen. Für die Untersuchung der Replikationsstrategie des humanpathogenen Sapovirus wurde ein Sapovirus-Volle-Länge-Klon aus Patientenmaterial (Stuhlgang-Probe) generiert. Nach der molekularen Charakterisierung konnte der Stamm Hu/SaV/Dresden/pJG-SapI/2004/DE (GenBank-Zugangsnummer AY694184) der Genogruppe I Genotyp 1 der Sapo¬viren zugeordnet werden. Für die Untersuchung der Translation des humanpathogenen Sapovirus in Säugerzellen wurden polyklonale Antikörper in Kaninchen gegen die nichtstrukturellen und strukturellen Sapovirus-Proteine generiert. Im zellfreien System konnte die Sensitivität und Spezifität dieser Antikörper validiert werden. Außerdem wurde die Translation im zellfreien System mit bereits bestehenden Ergebnissen verglichen. Die Prozessierung des ORF1-Polyproteins erfolgte in die nichtstrukturellen Proteine NS1, NS2, NS3NTPase, NS4, NS5VPg, die Fusionsproteine NS1-3, NS2-3, NS4-5, NS4-7, NS5-7 und NS6 7Pro-Pol sowie das strukturelle Protein VP1. Für die Charakterisierung der Replikation des humanpathogenen Sapovirus in Säugerzellen wurden verschiedene Sapovirus-Volle-Länge-cDNA-Klone generiert. Für das Sapovirus-Volle-Länge-RNA-Genom pJG-SapI-T7 konnte eine Translation der Sapovirus-Proteine nach¬gewiesen werden. Die Transfektion von 293T-Zellen erfolgte mit in vitro transkribierter RNA, die ein Cap-Analogon und einen Poly(A)-Schwanz besaß. Durch die dem Sapovirus-Genom vorangestellte Kozak-Sequenz, welche als Ribosomenbindungsstelle dient, konnte auch nach Mutation des aktiven Zentrums des nichtstrukturellen Proteins NS7Pol (RNA-abhängige RNA-Polymerase) eine Translation des Sapovirus-ORF1-Polyproteins nachgewiesen werden. Somit erwies sich dieses Konstrukt als ungeeignet für die Untersuchung der Replikation des humanpathogenen Sapovirus in Säugerzellen. Nach Klonierung des Sapovirus-Volle-Länge-cDNA-Genoms in den pACYC-MCSII-Vektor (pJG-SapI-T7) konnte nach in vitro Transkription ein gekapptes Sapovirus-Volle-Länge-RNA-Genom mit einem Poly(A)-Schwanz generiert werden, welches vermutlich die richtigen 5’- und 3’-Sapovirus-Enden enthält. Nach Transfektion von 293T-Zellen konnten die nichtstrukturellen Fusionsproteine NS2-3, NS4-5, NS4-7 und NS6-7Pro-Pol sowie das strukturelle Protein VP1 im Western Blot nachgewiesen werden. Nach Mutation des aktiven Zentrums des nichtstrukturellen Proteins NS6Pro (Protease) wurde die Prozessierung des ORF1-Polyproteins in Säugerzellen unter¬bunden. Die Replikation der generierten Sapovirus-Volle-Länge-RNA-Genome in Säugerzellen konnte mit Hilfe der quantitativen PCR nicht nachgewiesen werden. Eine Passagierung in verschiedenen Säugerzelllinien war ebenfalls nicht möglich. Weiter wurden verschiedene Sapovirus-Volle-Länge-RNA-Genome direkt aus Patientenmaterial durch RT-PCR generiert und nach in vitro Transkription damit Säugerzellen transfiziert. Bei Sapovirus-Volle-Länge-RNA-Genomen aus drei Patientenproben konnte die Translation und Prozessierung des Sapovirus-ORF1-Polyproteins nachgewiesen werden. Die Replikation konnte mit Hilfe der quantitativen PCR nicht nachgewiesen werden. In einem letzten Schritt wurde aus Patientenmaterial gewonnene RNA direkt für die Transfektion eingesetzt. Hierfür wurden die Patientenproben verwendet, bei denen eine Translation und Prozessierung des Sapovirus-ORF1-Polyproteines nachgewiesen werden konnte. Auch hier konnte keine Replikation mit Hilfe der quantitativen PCR nachgewiesen werden. In der vorliegenden Arbeit konnte erstmals die erfolgreiche Translation und Prozessierung des ORF1-Polyproteins des humanpathogenen Sapovirus (Dresdner Stamm pJG-SapI, GenBank-Zugangsnummer AY694184) in Säugerzellen gezeigt werden. Weitergehende Untersuchungen zur Replikation des humanpathogenen Sapovirus in Säugerzellen könnten mit Hilfe des vorliegenden Dresdner Sapovirus-Stamm pJG-SapI erfolgen, indem weitere rekombinante Systeme etabliert werden.
|
5 |
Detection and molecular characterization of porcine noroviruses and sapovirusesWang, Qiuhong 14 July 2005 (has links)
No description available.
|
6 |
Investigação de sapovírus em amostras de swab nasofaringeano e fezes de crianças hospitalizadas de Goiânia, Goiás / Investigation of sapovirus in nasopharyngeal swab samples and feces of hospitalized children from Goiânia, GoiásSilva, Thairiny Neres 03 October 2017 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-11-13T10:36:11Z
No. of bitstreams: 2
Dissertação - Thairiny Neres Silva - 2017.pdf: 2022674 bytes, checksum: a9ff46169fe46df4f2909e2719e18791 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-11-13T10:36:47Z (GMT) No. of bitstreams: 2
Dissertação - Thairiny Neres Silva - 2017.pdf: 2022674 bytes, checksum: a9ff46169fe46df4f2909e2719e18791 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-11-13T10:36:47Z (GMT). No. of bitstreams: 2
Dissertação - Thairiny Neres Silva - 2017.pdf: 2022674 bytes, checksum: a9ff46169fe46df4f2909e2719e18791 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-10-03 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / Sapoviruses are important agents causing acute gastroenteritis worldwide, and are most often
detected in children under five years of age. The present study aimed to evaluate the
positivity and viral load index of sapovirus in faecal samples and nasopharyngeal swab of
children, in association with the symptoms presented by these children. The study included
102 children hospitalized at the Hospital Materno Infantil, presenting symptoms of
gastroenteritis, attended between May 2014 and May 2015, with a sample of faeces and a
nasopharyngeal swab sample from each of them. Samples of faeces and nasopharyngeal
swabs from all children were submitted to extraction of the genetic material from a
commercial kit and screened for sapovirus by RT-qPCR. The viral load was determined by
constructing a standard curve from recombinant plasmid. A faecal sample and a
nasopharyngeal swab sample were obtained and 47% of the children were positive for
sapovirus in at least one of the samples collected, being 10.7% positive only in faecal samples
and 28.4% positive only in the samples of nasopharyngeal swab. Regarding viral load, a
median of 7.77 x 108 CG / mL was found for stool samples. Regarding the viral load of the
nasopharyngeal swab samples, a median 1.54 x 108 CG / mL was observed and a statistically
significant result was observed (13/14 p = 0.01), for the samples with viral load above the
median obtained in the rainy season. The median viral load of samples from positive children
in both clinical specimens was 2.33 x 108 CG / mL in the faeces and 2.67 x 108 CG / mL in
the nasopharyngeal swab. Two of these children presented a considerably higher viral load
when compared to the others. It is hoped that the data obtained may contribute to a better
understanding of the molecular epidemiology of sapoviruses, as well as to the development of
better preventive measures, in order to limit the risk of transmission of sapoviruses,
especially in a hospital environment. This is the first study to carry out the research and
detection of sapovirus in a respiratory tract sample, which could suggest a possible alternative
route of viral transmission. / Sapovírus são importantes agentes causadores de gastroenterite aguda no mundo todo,
sendo mais frequentemente detectados em crianças menores de cinco anos. O presente
estudo teve como objetivo, avaliar o índice de positividade e carga viral de sapovírus em
amostras de fezes e swab nasofaringeano de crianças, em associação com os sintomas
apresentados por essas crianças. Participaram do estudo 102 crianças hospitalizadas no
Hospital Materno Infantil, apresentando sintomas de gastroenteríte, atendidas entre o período
de maio de 2014 a maio de 2015, sendo obtidas uma amostra de fezes e uma amostra de
swab nasofaringeano de cada uma delas. As amostras de fezes e de swab nasofaringeano de
todas as crianças, foram submetidas a extração do material genético a partir de kit comerciale triadas para sapovírus por RT-qPCR. A carga viral foi determinada através da construção de
uma curva padrão, a partir de plasmídeo recombinante. Foram obtidas uma amostra de fezes
e uma de amostra de swab nasofaringeano sendo 47% das crianças foram positivas para
sapovírus em pelo menos uma das amostras coletadas, sendo 10,7% positivas apenas nas
amostras de fezes e 28,4% positivas apenas nas amostras de swab nasofaringeano. Em
relação a carga viral constatou-se uma mediana 7,77 x 10 8 CG/mL para as amostras de fezes.
Em relação a carga viral das amostras de swab nasofaringeano, foi observada uma mediana
1,54 x 10 8 CG/mL e um resultado estatisticamente significativo foi observado (13/14 p=
0,01), para as amostras com carga viral acima da mediana obtidas no período chuvoso. A
mediana da carga viral das amostras proveniente das crianças com positividade em ambos
espécimes clínicos foi de 2,33 x 10 8 CG/mL nas fezes e de 2,67 x 10 8 CG/mL nos swab
nasofaringeano. Duas dessas crianças apresentaram carga viral consideravelmente mais
elevada, quando comparada com as demais. Espera-se que os dados obtidos possam
contribuir para um melhor entendimento da epidemiologia molecular dos sapovírus, bem
como para que melhores medidas preventivas sejam desenvolvidas, a fim de limitar os riscos
de transmissão dos sapovírus, especialmente em ambiente hospitalar. Este é o primeiro
estudo a realizar a pesquisa e detecção de sapovírus em amostra do trato respiratório, o que
poderia sugerir uma possível rota alternativa de transmissão viral.
|
7 |
Genetic Mechanisms of Porcine Sapovirus Adaptation to Cell CultureLu, Zhongyan January 2015 (has links)
No description available.
|
8 |
Estudo prospectivo de infecção por calicivírus (norovírus e sapovírus) em pacientes submetidos a transplante alogênico de células progenitoras hematopoiéticas / Prospective study of calicivirus infection (norovirus and sapovirus) in patients undergoing allogeneic hematopoietic stem cell transplantationLemes, Lucianna Gonçalves Nepomuceno 20 December 2013 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-25T17:34:38Z
No. of bitstreams: 2
Dissertação_Lucianna G. N. Lemes.pdf: 2661301 bytes, checksum: c0238e41dfbe2adbd10e5ddcff7a139e (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-26T11:31:18Z (GMT) No. of bitstreams: 2
Dissertação_Lucianna G. N. Lemes.pdf: 2661301 bytes, checksum: c0238e41dfbe2adbd10e5ddcff7a139e (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-26T11:31:18Z (GMT). No. of bitstreams: 2
Dissertação_Lucianna G. N. Lemes.pdf: 2661301 bytes, checksum: c0238e41dfbe2adbd10e5ddcff7a139e (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-12-20 / The calicivirus (norovirus and sapovirus) are important etiologic agents of acute gastroenteritis. Recent studies show that in immunocompromised patients such as those undergoing allogeneic hematopoietic stem cell transplantation (HSCT), norovirus infection can lead to worsening of symptoms and be confused with clinical symptoms of graft versus host disease (GVHD). However, calicivirus screening is not performed, routinely, as part of the patients’ follow-up laboratory exams. The main objective of this study was to evaluate the occurrence of norovirus (NoV) and sapovirus (SaV) in patients who underwent HSCT, and to conduct the molecular characterization of the samples positive for these viruses. Fecal samples were collected weekly, and serum samples were obtained every two weeks of ten patients who underwent HSCT, for a minimum period of five months and a maximum of one year. The secretor status was determined by an enzyme immunoassay and the detection of calicivirus was performed by RT-PCR using primers specific for a partial region of the gene encoding the NoV genogroup I and II (GI and GII) and SaV capsid protein. The genomic sequencing was performed for positive samples. The results showed that from ten patients participating in the study, eight had diarrhea. Among these, six (60%) had positive samples for NoV, and all of them had a secretor phenotype. The duration of NoV excretion in feces ranged from five to 143 days. Viral RNA was also detected in serum specimens, ranging from 29 to 36 days in the five patients infected with NoV. Three of the six patients had acute intestinal GVHD. Through genomic sequencing and phylogenetic analysis all NoV-positive samples were characterized as genotype GI.3, and because they had a high nucleotide identity, they were all characterized as a single haplotype. The data highlight the urgent need of the inclusion of calicivirus screening in the routine testing performed before transplantation and during follow-up of these patients. This is the first report of the occurrence of NoV in patients undergoing HSCT in Brazil. / Os calicivírus (norovírus e sapovírus) são importantes agentes etiológicos da gastroenterite aguda. Estudos recentes mostram que em pacientes imunocomprometidos, como os submetidos a transplante alogênico de células progenitoras hematopoiéticas (TACPH), a infecção por norovírus pode levar ao agravamento dos sintomas e ser confundida com quadro clínico da doença do enxerto contra o hospedeiro (DECH). Entretanto, a triagem para calicivírus não é realizada, rotineiramente, como parte dos exames laboratoriais de acompanhamento destes pacientes. O principal objetivo deste estudo foi avaliar a ocorrência de norovírus (NoV) e sapovírus (SaV) em pacientes que foram submetidos ao TACPH e proceder à caracterização molecular das amostras positivas para estes vírus. Foram obtidas amostras de fezes, coletadas semanalmente, e de soro, a cada quinze dias, de dez pacientes que realizaram o TACPH, por um período mínimo de cinco meses e máximo de um ano. O fenótipo secretor dos pacientes foi determinado utilizando um teste imunoenzimático e a pesquisa de calicivírus foi realizada pela RT-PCR, utilizando-se iniciadores específicos para uma região parcial do gene codificante para a proteína dos capsídeos dos NoV do genogrupo I e II (GI e GII) e dos SaV. Os amplicons das amostras positivas foram submetidos ao sequenciamento genômico e análise filogenética. Os resultados obtidos revelaram que de dez pacientes participantes do estudo, oito apresentaram diarreia e vômito. Dentre esses, seis (60%) apresentaram amostras positivas para NoV, sendo que todos foram identificados como secretores. O período de excreção de NoV nas fezes variou de cinco a 143 dias. Foi também detectado RNA viral nas amostras de soro, variando de 29 a 36 dias, em cinco pacientes infectados por NoV. Três, dos seis pacientes, apresentaram DECH aguda intestinal. Através do sequenciamento genômico e análise filogenética, todas as amostras positivas para NoV, de todos os pacientes, foram caracterizadas como genótipo GI.3 dos NoV, e como foi comprovada elevada identidade nucleotídica entre elas, foram caracterizadas como um único haplótipo. Os dados obtidos ressaltam a urgente necessidade da inclusão da pesquisa de calicivírus na rotina de exames realizados antes do transplante, bem como durante o acompanhamento destes pacientes. Este é o primeiro relato da ocorrência de NoV em pacientes submetidos ao TACPH no Brasil.
|
9 |
Evaluation and performance comparison between two commercial multiplex gastroenteritis diagnostic systems in a routine laboratory settingRabe, Nasim Estelle January 2021 (has links)
Abstract Background: Gastroenteritis is a common infection and the leading cause of morbidity worldwide and is mostly caused by viruses. Outbreaks appear in both developed and developing countries and result in large economic costs. Rapid detection is important for appropriate treatment, control and to prevent the spread of infection. Objective: Evaluation and performance comparison between the BioFire®FilmArray® Torch System gastrointestinal panel and the Molecular BD MAXTMenteric viral panel to indicate a multiplex method for viral gastroenteritis diagnostic in a routine laboratory setting. Material and methods: In this study, 58 different samples were used which consisted of selected stool specimens from patients who were tested and treated for gastroenteritis infection at Uppsala Academic Hospital and Norrlands University Hospital in Umeå during 2018-2021, samples from Quality control for molecular diagnostics viral gastroenteritis EQA pilot study during 2018-2019 and cultivated strains of different adenovirus species from 2018. All samples were analyzed with both systems for comparison of detected pathogens. Results: Sensitivity and specificity values were 95% and 100% respectively for the BioFire®FilmArray®Torch System and 100% and 93.3% for the BD MAXTMSystem. Conclusions: Bothsystems are rapid and adequate diagnostic tools. The BioFire®FilmArray®Torch System with greater coverage has the ability of detecting more pathogens and is more promising particularly in the occasional infection circumstance. The BD MAXTMSystem demonstrated almost the same results and seems to be a better option in times of an outbreak when the numbers of patients are significantly higher.
|
10 |
Fever and Diarrhea Incidence in a Daycare SettingCox, Jeremiah L. 27 October 2022 (has links)
No description available.
|
Page generated in 0.0537 seconds