Spelling suggestions: "subject:"acalar curvature"" "subject:"acalar urvature""
21 |
H-Quase Sóliton de RicciPimentel, Soraya Bianca Souza, 92-98450-7876 01 December 2016 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-05-22T14:42:33Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
h-Quase Sóliton de Ricci.pdf: 40561599 bytes, checksum: 88a9a69eec01fab6046ed43b9b7d63b9 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-05-22T14:42:51Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
h-Quase Sóliton de Ricci.pdf: 40561599 bytes, checksum: 88a9a69eec01fab6046ed43b9b7d63b9 (MD5) / Made available in DSpace on 2018-05-22T14:42:51Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
h-Quase Sóliton de Ricci.pdf: 40561599 bytes, checksum: 88a9a69eec01fab6046ed43b9b7d63b9 (MD5)
Previous issue date: 2016-12-01 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we study the concept h-almost Ricci soliton introduced by Gomes-Wang-Xia which extends naturally the almost Ricci soliton studied by Pigola et al. In this setting, we show that a compact nontrivial h-almost Ricci soliton of dimension no less than three with h positive (or negative) and constant scalar curvature is isometric to a standard sphere with well defined potential function. Latter on, we also consider h-Ricci soliton which is a particular case of the h-almost Ricci soliton and a generalization of the traditional Ricci soliton. We prove that a particular case of compact gra-dient h-Ricci soliton steady or expanding, is trivial. Moreover, we give a characterization for a special class of gradient h-Ricci solitons. / Neste trabalho vamos estudar o conceito de h-quase sólitons de Ricci introduzido por Gomes-Wang-Xia o qual é uma extensão natural dos quase sólitons de Ricci estudados por Pigola et al. Com esta configuração, vamos mostrar que um h-quase sóliton de Ricci compacto de curvatura escalar constante não-trivial de dimensão maior ou igual a três e li possuindo sinal definido é isométrico a uma esfera euclidiana com função potencial explicita-mente definida. Logo após, também vamos considerar h-sólitons de Ricci os quais são casos particulares dos h-quase sólitons de Ricci e uma generalização dos tradicionais sólitons de Ricci. Vamos provar que um caso particular de h-sóliton de Ricci gradiente compacto estacionário ou expansivo, é trivial. Além disso, exibiremos uma caracterização para uma classe especial de h-sólitons de Ricci gradiente.
|
22 |
New topological and index theoretical methods to study the geometry of manifoldsNitsche, Martin 06 February 2018 (has links)
No description available.
|
23 |
Équations de Hardy-Sobolev sur les variétés Riemanniennes compactes : influence de la géométrie / Hardy-Sobolev equations on the compact Riemannian manifolds : Influence of geometryJaber, Hassan 24 June 2014 (has links)
Dans ce Manuscrit, nous étudions l'influence de la géométrie sur les équations de Hardy-Sobolev perturbées ou non sur toute variété Riemannienne compacte sans bord de dimension supérieure ou égale à 3. Plus précisément, dans le cas non perturbé nous démontrons que pour toute dimension de la variété strictement supérieure à, l'existence d'une solution (ou plutôt une condition suffisante d'existence) dépendra de la géométrie locale autour de la singularité. En revanche, dans le cas où la dimension est égale à 3, c'est la géométrie globale (particulièrement, la masse de la fonction de Green) de la variété qui comptera. Dans le cas d'une équation à terme perturbatif sous-critique, nous démontrons que l'existence d'une solution dépendra uniquement de la perturbation pour les grandes dimensions et qu'une interaction entre la géométrie globale de la variété et la perturbation apparaîtra en dimension 3. Enfin, nous établissons une inégalité optimale de Hardy-Sobolev Riemannienne, la variété étant avec ou sans bord, où nous démontrons que la première meilleure constante est celle des inégalités Euclidiennes et est atteinte / In this Manuscript, we investigate the influence of geometry on the Hardy-Sobolev equations on the compact Riemannian manifolds without boundary of dimension greateror equal to 3. More precisely, we prove in the non perturbative case that the existence of solutions depends only on the local geometry around the singularity when the dimension is greater or equal to 4 while it is the global geometry of the manifold when the dimension is equal to 3 that matters. In the presence of a perturbative subcritical term, we prove that the existence of solutions depends only on the perturbation when the dimension is greater or equal to 4 while an interaction between the perturbation and the global geometry appears in dimension 3. Finally, we establish an Optimal Hardy-Sobolev inequality for all compact Riemannian manifolds, with or without boundary, where we prove that the Riemannian sharp constant is the one for the Euclidean inequality and is achieved
|
24 |
A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energy / A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energyFrancisco de Assiss Benjamim Filho 25 June 2015 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Esta tese està dividida em quatro partes. Na primeira delas estudaremos pontos crÃticos do funcional curvatura escalar total restrito ao espaÃo das mÃtricas de curvatura escalar constante e volume unitÃrio. Provaremos que sob certas condiÃÃes integrais convenientes os pontos crÃticos de tal funcional sÃo variedades de Einstein provando assim a conjectura dos pontos crÃticos neste caso. Na segunda parte, veremos duas estimativas para o primeiro autovalor do Laplaciano de uma variedade compacta com curvatura de Ricci limitada por baixo por uma constante. As estimativas que obtemos melhoram a estimativa correspondente provada por Li e Yau (1980). Na terceira parte, estamos interessados em estimar o diÃmetro de hipersuperfÃcies mÃnimas da esfera. A estimativa que encontramos depende apenas do primeiro autovalor do Laplaciano da hipersuperfÃcie considerada. Para superfÃcies imersas na esfera de dimensÃo trÃs, obtemos uma estimativa ligeiramente melhor do que a obtida no caso de dimensÃo alta. Na Ãltima parte, introduzimos o conceito de variedade de energia constante e provamos que a esfera e o toro sÃo as Ãnicas superfÃcies que tÃm energia constante. Em dimensÃo mais alta a situaÃÃo à bem diferente uma vez que o produto de uma esfera por qualquer variedade compacta tem energia constante. Entretanto, se impusermos uma condiÃÃo sobre a curvatura de Ricci, à possÃvel caracterizar a esfera tambÃm neste caso. Em seguida, aplicamos as informa-ÃÃes obtidas ao estudo de hipersuperfÃcies da esfera provando alguns resultados de rigidez desde que a hipersuperfÃcie tenha energia constante. / This thesis is divided into four parts. In the first one we study the critical points of the total scalar curvature functional restricted to the space of metrics with constant scalar curvature and volume one. We shall prove that under certain suitable integral conditions the critical points of such functional are Einstein manifolds proving this way the critical point equation conjecture in this case. In the second part, we will provide an estimate for the first eigenvalue of the Laplacian of a compact manifolds with Ricci curvature bounded from below by a constant. The estimate we obtain improves the corresponding estimate proved by Li and Yau (1980). In the third part, we are interested in to estimate the diameter of minimal hypersurfaces of the sphere. The estimate we get depends only on the first eigenvalue of the Laplacian of the considered hypersurface. For immersed surfaces on the three dimensional sphere, we obtain an estimate slightly better than the one obtained in the case of higher dimension. In the last part, we introduce the concept of manifolds with constant energy and prove that the sphere and the torus are the only compact surfaces that have constant energy. For higher dimension, the situation is very different sine the product of the sphere with any compact manifold has constant energy. Nevertheless, if we impose a condition over the Ricci curvature it is possible to characterize the sphere also in this case. After that, we apply the informations obtained to the study of hypersurfaces of the sphere proving some rigidity results provided that the hypersurfaces has constant energy.
|
25 |
Index Theory and Positive Scalar Curvature / Index-Theorie und positive SkalarkrümmungPape, Daniel 23 September 2011 (has links)
No description available.
|
26 |
Hipersuperfícies com curvatura média constante e hipersuperfícies com curvatura escalar constante na esfera. / Hypersurfaces with constant mean curvature and hypersurfaces with constant scalar in curvature sphere.Jesus, Isadora Maria de 04 August 2009 (has links)
In this work we prove two theorems that characterize the hypersurfaces in the unitary sphere of dimension n+1. The first result, obtained by H. Alencar and M. do Carmo, classifies hypersurfaces with constant mean curvature in the sphere. This result was published in April 1994 in Proceedings of The American Mathematical Society, volume 120, number 4 with the title Hypersurfaces with Constant Mean Curvature. The second result was obtained by Li Haizhong in the article Hypersurfaces with Constant Scalar Curvature in Space Forms, published in 1996 in the journal Mathematisch Annalen, volume 305. The theorem of Li Haizhong characterizes hypersurfaces with constant scalar curvature in the sphere. We prove the theorem of Li Haizhong using the results obtained by H. Alencar and M. do Carmo. / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Nesta dissertação apresentamos dois teoremas que caracterizam as hipersuperfícies na esfera unitária de dimensão n+1. O primeiro resultado, obtido por H. Alencar e M. do Carmo, classifica as hipersuperfícies com curvatura média constante na esfera. Este resultado foi publicado em abril de 1994 no Proceedings of The American Mathematical Society, volume 120, número 4 com o título Hypersurfaces With Constant Mean Curvature.O segundo resultado provado nesta dissertação foi obtido por Li Haizhong no artigo Hypersurfaces With Constant Scalar Curvature in Spaces Forms, publicado em 1996 no Mathematische Annalen, volume 305. O Teorema de Li Haizhong caracteriza as hipersuperfícies com curvatura escalar constante na esfera. Demonstraremos o Teorema de Li Haizhong utilizando os resultados obtidos por H. Alencar e M. do Carmo.
|
27 |
Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial / Rigidity of the contact surfaces and characterization of Riemannian manifolds carrying a conformal vector fields or some special metricJosà Nazareno Vieira Gomes 29 June 2012 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / FundaÃÃo de Amparo à Pesquisa do Estado do Amazonas / Esta tese està composta de quatro partes distintas. Na primeira parte, vamos dar uma nova caracterizaÃÃo da esfera euclidiana como a Ãnica variedade Riemanniana compacta com curvatura escalar constante e admitindo um campo de vetores conforme nÃo trivial que à tambÃm Ricci conforme.
Na segunda parte, provaremos algumas propriedades dos quase sÃlitons de Ricci, as quais permitem estabelecer condiÃÃes de rigidez desses objetos, bem como caracterizar as estruturas de quase sÃlitons de Ricci gradiente na
esfera euclidiana. ImersÃes isomÃtricas tambÃm serÃo consideradas; classificaremos os quase sÃlitons de Ricci imersos em formas espaciais, atravÃs de uma condiÃÃo algÃbrica sobre a funÃÃo sÃliton. AlÃm disso, vamos caracterizar, atravÃs de uma condiÃÃo sobre o operador de umbilicidade, as hipersuperfÃcies n-dimensionais de uma forma espacial, com curvatura mÃdia constante, tendo duas curvaturas principais distintas e com multiplicidades p e n - p. Na terceira parte, provaremos um resultado de rigidez e algumas fÃrmulas integrais para uma mÃtrica m-quasi-Einstein generalizada compacta.
Na Ãltima parte, vamos apresentar uma relaÃÃo entre a curvatura gaussiana e o Ãngulo de contato de superfÃcies imersas na esfera euclidiana tridimensional,a qual permite concluir que a superfÃcie à plana, se o Ãngulo de contato for
constante. AlÃm disso, deduziremos que o toro de Clifford à a Ãnica superfÃcie compacta com curvatura mÃdia constante tendo tal propriedade. / This thesis is composed of four distinct parts. In the first part, we shall give a new characterization of the Euclidean sphere as the only compact Riemannian manifold with constant scalar curvature carrying a conformal vector
eld non-trivial which is also Ricci conformal.
In the second part, we shall prove some properties of almost Ricci solitons, which allow us to establish conditions for rigidity of these objects, as well
as characterize the structures of gradient almost Ricci soliton in Euclidean sphere. Isometric immersions also will be considered, we shall classify almost Ricci solitons immersed in space forms, through algebraic condition on soliton function. Furthermore, we characterize under a condition of the umbilicity
operator, n-dimensional hypersurfaces in a space form with constant mean curvature, admitting two distinct principal curvatures with multiplicities p and n - p. In the third part, we prove a result of rigidity and some integral
formulae for a compact generalized m-quasi-Einstein metric.
In the last part, we present a relation between the Gaussian curvature and the contact angle of surfaces immersed in Euclidean three-dimensional sphere,
which allows us to conclude that such a surface is
at provided its contact angle is constant. Moreover, we deduce that Clifford tori are the unique compact
surfaces with constant mean curvature having such property.
|
28 |
K-stabilité et variétés kähleriennes avec classe transcendante / K-stability and Kähler manifolds with transcendental cohomology classSjöström Dyrefelt, Zakarias 15 September 2017 (has links)
Dans cette thèse nous étudions des questions de stabilité géométrique pour des variétés kähleriennes à courbure scalaire constante (cscK) avec classe de cohomologie transcendante. En tant que point de départ, nous introduisons des notions généralisées de K-stabilité, étendant une image classique introduite par G. Tian et S. Donaldson dans le cadre des variétés polarisées. Contrairement à la théorie classique, ce formalisme nous permet de traiter des questions de stabilité pour des variétés kähleriennes compactes non projectives ainsi que des variétés projectives munis de polarisations non rationnelles. Dans une première partie, nous étudions les rayons sous-géodésiques associés aux configurations tests dites cohomologiques, objets introduitent dans cette thèse. Nous établissons ainsi des formules fondamentales pour la pente asymptotique d'une famille de fonctionnelles d'énergie, le long de ces rayons géodésiques. Ceci est lié au couplage de Deligne en géométrie algébrique, et ce formalise permet en particulier de comprendre le comportement asymptotique d'un grand nombre de fonctionnelles d'énergie classiques en géométrie kählerienne, y compris la fonctionnelle d'Aubin-Mabuchi et la K-énergie. En particulier, ceci fournit une approche pluripotentielle naturelle pour étudier le comportement asymptotique des fonctionnelles d'énergie dans la théorie de K-stabilité. En s'appuyant sur cette première partie, nous démontrons ensuite un certain nombre de résultats de stabilité pour les variétés cscK. Tout d'abord, nous prouvons que les variétés cscK sont K-semistables dans notre sens généralisé, prolongeant ainsi un résultat dû à Donaldson dans le cadre projectif. En supposant que le groupe d'automorphisme est discret, nous montrons en outre que la K-stabilité est une condition nécessaire pour l'existence des métriques cscK sur des variétés kähleriennes compactes. Plus précisément, nous prouvons que la coercivité de la K-énergie implique la K-stabilité uniforme, ainsi généralisant des résultats de Mabuchi, Stoppa, Berman, Dervan et Boucksom-Hisamoto-Jonsson pour des variétés polarisées. Cela donne une preuve nouvelle et plus générale d'une direction de la conjecture Yau-Tian-Donaldson dans ce contexte. L'autre direction (suffisance de K-stabilité) est considérée comme l'un des problèmes ouverts les plus importants en géométrie kählerienne. Nous donnons enfin des résultats partiels dans le cas des variétés kähleriennes compactes qui admettent des champs de vecteurs holomorphes non triviaux. Nous discutons également autour des perspectives et applications de notre théorie de K-stabilité pour les variétés kähleriennes avec classe transcendante, notamment à l'étude des lieux de stabilité dans le cône de Kähler. / In this thesis we are interested in questions of geometric stability for constant scalar curvature Kähler (cscK) manifolds with transcendental cohomology class. As a starting point we develop generalized notions of K-stability, extending a classical picture for polarized manifolds due to G. Tian, S. Donaldson, and others, to the setting of arbitrary compact Kähler manifolds. We refer to these notions as cohomological K-stability. By contrast to the classical theory, this formalism allows us to treat stability questions for non-projective compact Kähler manifolds as well as projective manifolds endowed with non-rational polarizations. As a first main result and a fundamental tool in this thesis, we study subgeodesic rays associated to test configurations in our generalized sense, and establish formulas for the asymptotic slope of a certain family of energy functionals along these rays. This is related to the Deligne pairing construction in algebraic geometry, and covers many of the classical energy functionals in Kähler geometry (including Aubin's J-functional and the Mabuchi K-energy functional). In particular, this yields a natural potential-theoretic aproach to energy functional asymptotics in the theory of K-stability. Building on this foundation we establish a number of stability results for cscK manifolds: First, we show that cscK manifolds are K-semistable in our generalized sense, extending a result due to S. Donaldson in the projective setting. Assuming that the automorphism group is discrete we further show that K-stability is a necessary condition for existence of constant scalar curvature Kähler metrics on compact Kähler manifolds. More precisely, we prove that coercivity of the Mabuchi functional implies uniform K-stability, generalizing results of T. Mabuchi, J. Stoppa, R. Berman, R. Dervan as well as S. Boucksom, T. Hisamoto and M. Jonsson for polarized manifolds. This gives a new and more general proof of one direction of the Yau-Tian-Donaldson conjecture in this setting. The other direction (sufficiency of K-stability) is considered to be one of the most important open problems in Kähler geometry. We finally give some partial results in the case of compact Kähler manifolds admitting non-trivial holomorphic vector fields, discuss some further perspectives and applications of the theory of K-stability for compact Kähler manifolds with transcendental cohomology class, and ask some questions related to stability loci in the Kähler cone.
|
29 |
Domaines extrémaux pour la première valeur propre de l’opérateur de Laplace-BeltramiSicbaldi, Pieralberto 08 December 2009 (has links)
Dans tout ce qui suit, nous considérons une variété riemannienne compacte de dimension au moins égale à 2. A tout domaine (suffisamment régulier) , on peut associer la première valeur propre ?Ù de l’opérateur de Laplace-Beltrami avec condition de Dirichlet au bord. Nous dirons qu’un domaine est extrémal (sous entendu, pour la première valeur propre de l’opérateur de Laplace-Beltrami) si est un point critique de la fonctionnelle Ù? ?O sous une contrainte de volume V ol(Ù) = c0. Autrement dit, est extrémal si, pour toute famille régulière {Ot}te (-t0,t0) de domaines de volume constant, telle que Ù 0 = Ù, la dérivée de la fonction t ? ?Ot en 0 est nulle. Rappelons que les domaines extrémaux sont caractérisés par le fait que la fonction propre, associée à la première valeur propre sur le domaine avec condition de Dirichlet au bord, a une donnée de Neumann constante au bord. Ce résultat a été démontré par A. El Soufi et S. Ilias en 2007. Les domaines extrémaux sont donc des domaines sur lesquels peut être résolu un problème elliptique surdéterminé. L’objectif principal de cette thèse est la construction de domaines extrémaux pour la première valeur propre de l’opérateur de Laplace-Beltrami avec condition de Dirichlet au bord. Nous donnons des résultats d’existence de domaines extrémaux dans le cas de petits volumes ou bien dans le cas de volumes proches du volume de la variété. Nos résultats permettent ainsi de donner de nouveaux exemples non triviaux de domaines extrémaux. Le premier résultat que nous avons obtenu affirme que si une variété admet un point critique non dégénéré de la courbure scalaire, alors pour tout volume petit il existe un domaine extrémal qui peut être construit en perturbant une boule géodésique centrée en ce point critique non dégénéré de la courbure scalaire. La méthode que nous utilisons pour construire ces domaines extrémaux revient à étudier l’opérateur (non linéaire) qui à un domaine associe la donnée de Neumann de la première fonction propre de l’opérateur de Laplace-Beltrami sur le domaine. Il s’agit d’un opérateur (hautement non linéaire), nonlocal, elliptique d’ordre 1. Dans Rn × R/Z, le domaine cylindrique Br × R/Z, o`u Br est la boule de rayon r > 0 dans Rn, est un domaine extrémal. En étudiant le linéarisé de l’opérateur elliptique du premier ordre défini par le problème précédent et en utilisant un résultat de bifurcation, nous avons démontré l’existence de domaines extrémaux nontriviaux dans Rn × R/Z. Ces nouveaux domaines extrémaux sont proches de domaines cylindriques Br × R/Z. S’ils sont invariants par rotation autour de l’axe vertical, ces domaines ne sont plus invariants par translations verticales. Ce deuxi`eme r´esultat donne un contre-exemple à une conjecture de Berestycki, Caffarelli et Nirenberg énoncée en 1997. Pour de grands volumes la construction de domaines extrémaux est techniquement plus difficile et fait apparaître des phénomènes nouveaux. Dans ce cadre, nous avons dû distinguer deux cas selon que la première fonction propre Ø0 de l’opérateur de Laplace-Beltrami sur la variété est constante ou non. Les résultats que nous avons obtenus sont les suivants : 1. Si Ø0 a des points critiques non dégénérés (donc en particulier n’est pas constante), alors pour tout volume assez proche du volume de la variété, il existe un domaine extrémal obtenu en perturbant le complément d’une boule géodésique centrée en un des points critiques non dégénérés de Ø0. 2. Si Ø0 est constante et la variété admet des points critiques non dégénérés de la courbure scalaire, alors pour tout volume assez proche du volume de la variété il existe un domaine extrémal obtenu en perturbant le complément d’une boule géodésique centrée en un des points critiques non dégénérés de la courbure scalaire / In what follows, we will consider a compact Riemannian manifold whose dimension is at least 2. Let Ù be a (smooth enough) domain and ?O the first eigenvalue of the Laplace-Beltrami operator on Ù with 0 Dirichlet boundary condition. We say that Ù is extremal (for the first eigenvalue of the Laplace-Beltrami operator) if is a critical point for the functional Ù? ?O with respect to variations of the domain which preserve its volume. In other words, Ù is extremal if, for all smooth family of domains { Ù t}te(-t0,t0) whose volume is equal to a constant c0, and Ù 0 = Ù, the derivative of the function t ? ?Ot computed at t = 0 is equal to 0. We recall that an extremal domain is characterized by the fact that the eigenfunction associated to the first eigenvalue of the Laplace-Beltrami operator over the domain with 0 Dirichlet boundary condition, has constant Neumann data at the boundary. This result has been proved by A. El Soufi and S. Ilias in 2007. Extremal domains are then domains over which can be solved an elliptic overdeterminated problem. The main aim of this thesis is the construction of extremal domains for the first eigenvalue of the Laplace-Beltrami operator with 0 Dirichlet boundary condition. We give some existence results of extremal domains in the cases of small volume or volume closed to the volume of the manifold. Our results allow also to construct some new nontrivial exemples of extremal domains. The first result we obtained states that if the manifold has a nondegenerate critical point of the scalar curvature, then, given a fixed volume small enough, there exists an extremal domain that can be constructed by perturbation of a geodesic ball centered in that nondegenerated critical point of the scalar curvature. The methode used is based on the study of the operator that to a given domain associes the Neumann data of the first eigenfunction of the Laplace-Beltrami operator over the domain. It is a highly nonlinear, non local, elliptic first order operator. In Rn × R/Z, the circular-cylinder-type domain Br × R/Z, where Br is the ball of radius r > 0 in Rn, is an extremal domain. By studying the linearized of the elliptic first order operator defined in the previous problem, and using some bifurcation results, we prove the existence of nontrivial extremal domains in Rn × R/Z. Such extremal domains are closed to the circular-cylinder-type domains Br × R/Z. If they are invariant by rotation with respect to the vertical axe, they are not invariant by vertical translations. This second result gives a counterexemple to a conjecture of Berestycki, Caffarelli and Nirenberg stated in 1997. For big volumes the construction of extremal domains is technically more difficult and shows some new phenomena. In this context, we had to distinguish two cases, according to the fact that the first eigenfunction Ø0 of the Laplace-Beltrami operator over the manifold is constant or not. The results obtained are the following : 1. If Ø0 has a nondegenerated critical point (in particular it is not constant), then, given a fixed volume closed to the volume of the manifold, there exists an extremal domain obtained by perturbation of the complement of a geodesic ball centered in a nondegenerated critical point of Ø0. 2. If Ø0 is constant and the manifold has some nondegenerate critical points of the scalar curvature, then, for a given fixed volume closed to the volume of the manifold, there exists an extremal domain obtained by perturbation of the complement of a geodesic ball centered in a nondegenerate critical point of the scalar curvature
|
30 |
Twisted K-theory with coefficients in a C*-algebra and obstructions against positive scalar curvature metrics / Getwistete K-Theorie mit Koeffizienten in einer C*-Algebra und Obstruktionen gegen positive skalare KrümmungPennig, Ulrich 31 August 2009 (has links)
No description available.
|
Page generated in 0.0448 seconds