Spelling suggestions: "subject:"scalartensor"" "subject:"paleotensor""
11 |
NEUTRON STARS AND BLACK HOLES IN SCALAR-TENSOR GRAVITYHorbatsch, Michael W. 10 1900 (has links)
<p>The properties of neutron stars and black holes are investigated within a class of alternative theories of gravity known as Scalar-Tensor theories, which extend General Relativity by introducing additional light scalar fields to mediate the gravitational interaction.</p> <p>It has been known since 1993 that neutron stars in certain Scalar-Tensor theories may undergo ‘scalarization’ phase transitions. The Weak Central Coupling (WCC) expansion is introduced for the purpose of describing scalarization in a perturbative manner, and the leading-order WCC coefficients are calculated analytically for constant-density stars. Such stars are found to scalarize, and the critical value of the quadratic scalar-matter coupling parameter β<sub>s</sub> = −4.329 for the phase transition is found to be similar to that of more realistic neutron star models.</p> <p>The influence of cosmological and galactic effects on the structure of an otherwise isolated black hole in Scalar-Tensor gravity may be described by incorporating the Miracle Hair Growth Formula discovered by Jacobson in 1999, a perturbative black hole solution with scalar hair induced by time-dependent boundary conditions at spatial infinity. It is found that a double-black-hole binary (DBHB) subject to these boundary conditions is inadequately described by the Eardley Lagrangian and emits scalar dipole radiation.</p> <p>Combining this result with the absence of observable dipole radiation from quasar OJ287 (whose quasi-periodic ‘outbursts’ are consistent with the predictions of a general-relativistic DBHB model at the 6% level) yields the bound |φ/Mpl| < (16 days)<sup>-1</sup> on the cosmological time variation of canonically-normalized light (m < 10<sup>−23</sup> eV) scalar fields at redshift z ∼ 0.3.</p> / Doctor of Philosophy (PhD)
|
12 |
Teoria escalar-tensorial: Uma abordagem geométricaAlmeida, Tony Silva 29 July 2014 (has links)
Submitted by Vasti Diniz (vastijpa@hotmail.com) on 2017-09-13T14:39:21Z
No. of bitstreams: 1
arquivototal.pdf: 851323 bytes, checksum: 599a5da8bbbe70ff2f4ba121890878e2 (MD5) / Made available in DSpace on 2017-09-13T14:39:21Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 851323 bytes, checksum: 599a5da8bbbe70ff2f4ba121890878e2 (MD5)
Previous issue date: 2014-07-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this cool thesis, we consider an approach to Brans-Dicke theory of gravity in which the
scalar eld has a geometrical nature. By postulating the Palatini variation, we nd out
that the role played by the scalar eld consists in turning the space-time geometry into a
Weyl integrable manifold. This procedure leads to a scalar-tensor theory that di ers from
the original Brans-Dicke theory in many aspects and presents some new features. We
also consider the Weyl integrable geometry to investigate gravity in (2+1)-dimensions.
We show that, in addition to leading to a Newtonian limit, WIST in (2+1) dimensions
presents some interesting properties that are not shared by Einstein theory, such as geodesic
deviation between particles in a dust distribution. Finally, taking advantage of the
duality between the geometrical scalar-tensor theory and general relativity coupled with
a massless scalar eld we study naked singularities and wormholes. / Esta tese trata de tópicos relacionados às teorias escalares-tensoriais e a geometria de
Weyl integrável. Nossa abordagem será no sentido de indicar a geometria de Weyl integr
ável como sendo um ambiente natural para a introdução de teorias escalares-tensorias.
Nossa discussão será em torno da teoria de Brans-Dicke, considerada o protótipo das teorias
escalares tensoriais, no entanto a discussão é facilmente estendida para essas versões
mais gerais. Fazemos isso em dois momentos. Primeiro, indicando, no âmbito da teoria
de Brans-Dicke, que na estrutura geométrica e de campos adotadas pela teoria existe
uma relação estreita com a geometria de Weyl, inclusive associando o efeito descrito na
literatura como "quinta força"(que violaria o princípio de equivalência) com o movimento
geodésico da geometria de Weyl integrável, reformulando o postulado geodésico. E, num
segundo momento, usando o método variacional de Palatini, acabamos por formular uma
nova teoria escalar-tensorial, agora com ingredientes completamente geométricos, ambientada
numa geometria de Weyl integrável. Estudamos ainda soluções no vazio do problema
estático de uma distribuição de massa esfericamente simétrica, onde surgem objetos de
interesse astrofísico como singularidades nuas e buracos de minhoca. Também formulamos
a teoria conhecida por WIST (Weyl Integrable Spacetimes) em (2 + 1)D, o que resulta
numa teoria consistente, não sofrendo das falhas associadas à teoria da relatividade geral
nessa dimensionalidade
|
13 |
Modelos cosmológicos numa teoria geométrica escalar - tensorial da gravitação: aspectos clássicos e quânticosAlves Júnior, Francisco Artur Pinheiro 27 September 2016 (has links)
Submitted by Vasti Diniz (vastijpa@hotmail.com) on 2017-09-18T11:29:37Z
No. of bitstreams: 1
arquivototal.pdf: 1956067 bytes, checksum: 845c3d0cd5113c8498d955af9cdcd907 (MD5) / Made available in DSpace on 2017-09-18T11:29:37Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1956067 bytes, checksum: 845c3d0cd5113c8498d955af9cdcd907 (MD5)
Previous issue date: 2016-09-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis, we deal with a particular geometric scalar tensor theory, which is a version of
the Brans-Dicke gravitation, formulated in aWeyl integrable space-time. This formulation
is done using the Palatini's variation procedure. The main point of our work is to perform
two particular applications of the geometrical Brans-Dicke theory. The rst one is the
study of geometric fase transition phenomena, that's related to a continuous change in
the space-time structure of the universe from a Riemann's geometry to a Weyl's geometry,
or in the inverse sense, from Weyl's geometry to Riemann's geometry. This phenomena
seems to take place when the universe starts to expand in a accelerated rate. The second
one is the investigation of classical and quantum behaviour of a anisotropic n-dimensional
universe . To nd solutions that display the dynamical compacti cation of non observed
extra dimensions is the main motivation to study such universe. / Nesta tese, reapresentamos uma teoria escalar tensorial geométrica, que é uma versão da
gravitação de Brans-Dicke formulada em um espaço-tempo de Weyl integrável. Com esta
teoria fazemos duas aplicações especí cas. Uma delas para o estudo de um fenômeno,
que chamamos de transição de fase geométrica, uma mudança contínua na estrutura geom
étrica do espaço-tempo. Este fenômeno parece ocorrer quando o universo se expande
aceleradamente. A segunda aplicação reside no estudo clássico e quântico do comportamento
de um modelo de universo n-dimensional anisotrópico. A motivação para esta
investigação é a busca de soluções que exibem o compactação dinâmica das dimensões
extras, que não são observadas.
|
14 |
Études sur la gravitation en théorie des champs classiques et quantiquesMassart, Victor 08 1900 (has links)
Cette thèse porte sur la gravitation et certains de ses liens avec la théorie des champs. Le
point de départ de cette recherche a été l’étude de la limite newtonienne de la relativité
générale. Très vite, notre intérêt s’est porté sur l’effet du temps retardé et son rôle dans
l’absence d’aberration. Ce manque d’aberration est la raison pour laquelle la force pointe
dans la direction instantanée (extrapolée) pour des sources sans accélération, malgré la vitesse
finie de la gravitation (c’est aussi le cas pour l’électromagnétisme). Ceci nous a conduit à
calculer le champ résultant entre deux masses accélérées avec la présence d’aberration. Nous
avons en particulier considéré le mouvement de deux masses de telle façon que la force totale
de Newton à une position s’annule alors que les effets du temps retardé soient bien différents
de zéro. Nous avons pu calculer ces derniers et proposer deux situations où ils pourraient
être observés dans le futur.
L’étude de la linéarisation de la relativité générale a naturellement porté notre intérêt sur la
physique du graviton, la version quantifiée de la théorie classique linéaire. Plusieurs travaux
sur l’impossibilité d’observer directement ce graviton [1,2] ainsi que des expériences de pensée
sur la possibilité de le quantifier ou non [3] ont piqué notre curiosité. C’est ce qui a lancé la
recherche de la section efficace (et du potentiel) dans le cas d’une diffusion gravitationnelle
sur une particule initialement dans une superposition spatiale.
En parallèle de ces recherches, des discussions avec mon collègue Kévin Nguyen et la lecture
de son article [4], ont attiré mon attention sur le problème de la constante cosmologique
et l’élégante solution proposée. Cette dernière est basée sur l’ajout d’un scalaire couplé
non minimalement avec la gravité et permet d’expliquer la valeur minuscule de la constante
cosmologique par certains très petits paramètres du champ scalaire. Leur solution était
cependant encore très théorique, car elle n’était valable que dans un univers sans matière.
Nous avons donc analysé l’effet de la matière sur l’évolution du champ scalaire et montré
que dans une partie de l’espace des paramètres, la théorie considérée résolvait le problème
de la constante cosmologique tout en restant indistinguable de la relativité générale. / This thesis concerns gravitation and some of its connections with field theory. The starting
point of this research was the study of the Newtonian limit of general relativity. Our interest
was focused on the effect of retarded time and its role in the absence of aberration. Lack of
aberration is the reason why the gravitational force points in the instantaneous (extrapolated)
direction for unaccelerated sources, despite the finite speed of propagation of gravity (this also
holds true for electromagnetism). Naturally this led us to compute the resulting gravitational
field of accelerating masses, where aberration is not absent. In particular, we considered the
motion of two masses such that their total Newtonian force at a position vanished but the
retarded gravitational effects were non-zero. We were able to calculate these retarded effects
and to propose two situations where they could be observed in the future.
The study of the linearization of general relativity naturally arouse our interest toward
the physics of gravitons, the quantized version of the linear classical theory. In particular,
there has been much thought and literature on the impossibility of directly observing a
graviton [1, 2] as well as thought experiments on the possibility of quantizing gravity or
not [3]. This led to the calculation of the cross section (and gravitational potential) in the
case of the gravitational scattering off a massive particle that is in a spatially non-local
quantum superposition.
In parallel with this research, some discussions with my colleague Kévin Nguyen about
his article [4] on the problem of the cosmological constant, focussed my interest on this
problem and the elegant solution proposed. The solution is based on the addition of a nonminimally
coupled scalar and makes it possible to explain the tiny value of the cosmological
constant through some small parameters of the scalar field. The solution is however very
theoretical as it was only done in a matter free universe. We therefore examined at the effect
of different kinds of matter on the evolution of the scalar field. We show that in one part of
the parameter space, the theory we considered resolved the cosmological constant problem
while being indistinguishable from general relativity.
|
15 |
Des équations de contrainte en gravité modifiée : des théories de Lovelock à un nouveau problème de σk-Yamabe / On the constraint equations in modified gravityLachaume, Xavier 15 December 2017 (has links)
Cette thèse est consacrée au problème d’évolution des théories de gravité modifiée : après avoir rappelé ce qu’il en est pour la Relativité Générale (RG), nous exposons le formalisme n + 1 des théories ƒ(R), Brans-Dicke et tenseur-scalaire et redémontrons un résultat connu : le problème de Cauchy est bien posé pour ces théories, et les équations de contrainte se réduisent à celles de la RG avec un champ de matière. Puis nous effectuons la même décomposition n + 1 pour les théories de Lovelock et, ce qui est nouveau, ƒ(Lovelock). Nous étudions ensuite les équations de contrainte des théories de Lovelock et montrons qu’elles sont, dans le cas conformément plat et symétrique en temps, la prescription d’une somme de σk-courbures. Afin de résoudre cette équation de prescription, nous introduisons une nouvelle famille de polynômes semi-symétriques homogènes et développons des résultats de concavité pour ces polynômes. Nous énonçons une conjecture qui, si elle était avérée, nous permettrait de résoudre l’équation de prescription dans de nombreux cas : ∀ P;Q ∈ ℝ[X], avec deg P = deg Q = p, P et Q sont scindés => p ∑ k=0 P(k) Q(p-k) est scindé / This thesis is devoted to the evolution problem for modified gravity theories. After having explained this problem for General Relativity (GR), we present the n + 1 formalism for ƒ(R) theories, Brans-Dicke and scalar-tensor theories. We recall a known result: the Cauchy problem for these theories is well-posed, and the constraint equations are reduced to those of GR with a matter field. Then we proceed to the same n+1 decomposition for Lovelock and ƒ(Lovelock) theories, the latter being an original result. We show that in the locally conformally flat timesymmetric case, they can be written as the prescription of a sum of σk-curvatures. In order to solve the prescription equation, we introduce a new family of homogeneous semisymmetric polynomials and prove some concavity results for those polynomials. We express the following conjecture: if this is true, we are able to solve the prescription equation in many cases. ∀ P;Q ∈ ℝ[X], avec deg P = deg Q = p, P and Q are real-rooted => p ∑ k=0 P(k) Q(p-k) is real-rooted:
|
Page generated in 0.0319 seconds