Spelling suggestions: "subject:"canner."" "subject:"3dscanner.""
221 |
Imagerie multimodale en cardiologie : application à la surveillance des bioprothèses aortiques / Multimodality imaging in cardiology : application to the assessment of aortic bioprosthesesSalaun, Erwan 20 December 2018 (has links)
L’incidence et la prévalence des maladies valvulaires sont en augmentation, l’épidémiologie de ces maladies se modifie avec une prépondérance des maladies dégénératives, et le traitement considéré est le plus souvent le remplacement valvulaire prothétique, notamment dans le cadre de la sténose aortique qui est la maladie valvulaire la plus fréquente. Les techniques de remplacement valvulaire et les prothèses valvulaires ont grandement évolué ces dernières années, notamment avec le développement des implantations de prothèses par voie percutanée. Cependant les substituts valvulaires aortiques biologiques sont exposés à des complications diverses mettant en jeu la fonction de la prothèse : fuite péri-prothétique, endocardite infectieuse, dégénérescence des tissus biologiques. Ces complications restent des challenges diagnostiques et l’échographie est l’imagerie de référence. Cependant, l’imagerie cardiaque et valvulaire a réalisé de grands progrès, et l’utilisation d’autres techniques ou modalités d’imagerie peut être une alternative ou un complément à l’exploration par échocardiographie : imagerie par scanner, imagerie par résonance magnétique, imagerie nucléaire. Le recours et la combinaison de ces différentes techniques s’intègrent dans une approche globale, nommée imagerie multimodale. L’objectif général de ce projet de doctorat a été d’étudier l’apport de l’imagerie multimodale dans la surveillance des bioprothèses aortiques et l’évaluation des complications et de la dégénérescence structurelle qui peuvent survenir. / The incidence and prevalence of heart valve diseases are increasing worldwide. Their epidemiology also changes, and the required treatment is most often a prosthetic valve replacement, especially for aortic stenosis that is the most frequent heart valve disease. Techniques of valve replacement as well as prosthesis themselves have dramatically evolved in recent years, especially with the development of percutaneous transcatheter procedures. However, biologic aortic valve substitutes are at risk of several complications including prosthetic valve dysfunction, paravalvular regurgitation, infective endocarditis and structural valve deterioration. Correctly diagnose any of these complications still is a challenge but echocardiography plays a pivotal role and remains the gold-standard as per diagnostic imaging. Nonwithsanding the fact that echocardiography is the main imaging modality for valvular anomalies, great progress has been made in cardiac imaging and modalities like CT-Scan, MRI and nuclear imaging are nowadays regularly used along with echocardiography. The use and combination of these different techniques are part of a global approach, entitled multi-modality imaging.The general objective of this doctoral project was to study the contribution of the multi-imaging approach in the assessment of the bioprosthesis function and screening for complications and structural valve deterioration that may occur.
|
222 |
Planar segmentation for Geometric Reverse Engineering using data from a laser profile scanner mounted on an industrial robotRahayem, Mohamed January 2008 (has links)
<p>Laser scanners in combination with devices for accurate orientation like Coordinate Measuring Machines (CMM) are often used in Geometric Reverse Engineering (GRE) to measure point data. The industrial robot as a device for orientation has relatively low accuracy but the advantage of being numerically controlled, fast, flexible, rather cheap and compatible with industrial environments. It is therefore of interest to investigate if it can be used in this application.</p><p>This thesis will describe a measuring system consisting of a laser profile scanner mounted on an industrial robot with a turntable. It will also give an introduction to Geometric Reverse Engineering (GRE) and describe an automatic GRE process using this measuring system. The thesis also presents a detailed accuracy analysis supported by experiments that show how 2D profile data can be used to achieve a higher accuracy than the basic accuracy of the robot. The core topic of the thesis is the investigation of a new technique for planar segmentation. The new method is implemented in the GRE system and compared with an implementation of a more traditional method.</p><p>Results from practical experiments show that the new method is much faster while equally accurate or better.</p>
|
223 |
An Implementation Of Ekf Slam With Planar SegmentsTurunc, Cagri 01 October 2012 (has links) (PDF)
Localization and mapping are vital capabilities for a mobile robot. These two capabilities strongly depend on each other and simultaneously executing both of these operations is called SLAM (Simultaneous Localization and Mapping). SLAM
problem requires the environment to be represented with an abstract mapping model. It is possible to construct a map from point cloud of environment via scanner sensor systems. On the other hand, extracting higher level of features from
point clouds and using these extracted features as an input for mapping system is also a possible solution for SLAM.
In this work, a 4D feature based EKF SLAM system is constructed and open form of equations of algorithm are presented. The algorithm is able to use center of mass
and direction of features as input parameters and executes EKF SLAM via these parameters. Performance of 4D feature based EKF SLAM was examined and compared with 3D EKF SLAM via monte-carlo simulations. By this way / it is believed
that, contribution of adding a direction vector to 3D features is investigated and illustrated via graphs of monte-carlo simulations.
At the second part of the work, a scanner sensor system with IR distance finder is designed and constructed. An algorithm was presented to extract planar features from data collected by sensor system. A noise model was proposed for output
features of sensor and 4D EKF SLAM algorithm was executed via extracted features of scanner system. By this way, performance of 4D EKF SLAM algorithm is tested
with real sensor data and output results are compared with 3D features. So in this work, contribution of using 4D features instead of 3D ones was examined via comparing performance of 3D and 4D algorithms with simulation results and real
sensor data.
|
224 |
An Implementation Of 3d Slam With Planar SegmentsTurunc, Cagri 01 January 2013 (has links) (PDF)
Localization and mapping are vital capabilities for a mobile robot. These two capabilities strongly depend on each other and simultaneously executing both of these operations is called SLAM (Simultaneous Localization and Mapping). SLAM problem requires the environment to be represented with an abstract mapping model. It is possible to construct a map from point cloud of environment via scanner sensor systems. On the other hand, extracting higher level of features from point clouds and using these extracted features as an input for mapping system is also a possible solution for SLAM.
In this work, a 4D feature based EKF SLAM system is constructed and open form of equations of algorithm are presented. The algorithm is able to use center of mass and direction of features as input parameters and executes EKF SLAM via these parameters. Performance of 4D feature based EKF SLAM was examined and compared with 3D EKF SLAM via monte-carlo simulations. By this way / it is believed that, contribution of adding a direction vector to 3D features is investigated and illustrated via graphs of monte-carlo simulations.
At the second part of the work, a scanner sensor system with IR distance finder is designed and constructed. An algorithm was presented to extract planar features from data collected by sensor system. A noise model was proposed for output features of sensor and 4D EKF SLAM algorithm was executed via extracted features of scanner system. By this way, performance of 4D EKF SLAM algorithm is tested with real sensor data and output results are compared with 3D features. So in this work, contribution of using 4D features instead of 3D ones was examined via comparing performance of 3D and 4D algorithms with simulation results and real sensor data.
|
225 |
Contraste en la ejecución de auscultaciones geodésicas por métodos clásicos y con láser escáner.Luis Ruiz, Julio Manuel de 04 March 2010 (has links)
El objeto fundamental de esta investigación es contrastar las auscultaciones geodésicas que serealizan en la actualidad por métodos clásicos y las que se pueden plantear con la aparición en elescenario topográfico del láser escáner. No se trata de determinar si el nivel de precisión escomparable, lo cual con una simple verificación de las especificaciones del instrumental aemplear en ambos casos indica que no lo es, sino que dado un método cuyo orden de precisiónes mayor (auscultaciones geodésicas clásicas), determinar el nivel de exactitud que se puedellegar a obtener con las auscultaciones geodésicas que se pueden proponer con el láser escáner.Todo ello con la finalidad de buscar aplicaciones en las que este tipo de instrumental puedatener cabida en el futuro. / The main objective of this research is to contrast geodetic auscultations which arecurrently being carried out by traditional methods and those which can be consideredwith the appearance of the laser scanner within the area of topography. It's not aquestion of determining if the level of accuracy is comparable, as this can be done bysimply verifying the instrumental specifications used in both cases, indicating that it isnot possible, but that given a method whose order of accuracy is greater (traditionalgeodetic auscultations), it's a question of determining the level of accuracy which canbe obtained with geodetic auscultations proposed by the laser scanner. The whole aimof this is to search for applications in which this type of instrument may find a place inthe future.
|
226 |
Pilot Study of Systems to Drive Autonomous Vehicles on Test TracksAgardt, Erik, Löfgren, Markus January 2008 (has links)
<p>This Master’s thesis is a pilot study that investigates different systems to drive autonomous and non-autonomous vehicles simultaneously on test tracks. The thesis includes studies of communication, positioning, collision avoidance, and techniques for surveillance of vehicles which are suitable for implementation. The investigation results in a suggested system outline.</p><p>Differential GPS combined with laser scanner vision is used for vehicle state estimation (position, heading, velocity, etc.). The state information is transmitted with IEEE 802.11 to all surrounding vehicles and surveillance center. With this information a Kalman prediction of the future position for all vehicles can be estimated and used for collision avoidance.</p>
|
227 |
Multimedia unter LinuxHeik, Andreas 21 March 2000 (has links)
Mit der Verbreitung von Linux als Desktopsystem steigen auch die Anforderungen des Nutzers an multimediale
Fähigkeiten wie z.B. das Anhören eines digitalisierten Musikstückes, die Einbindung einer Digitalkamera in die
Bildverarbeitung, die Nutzung einer Radio/TV-Karte oder gar das Bearbeiten eines kleinen Videofilms.
|
228 |
Specialization in Small-Scale Societies: The Organization of Pottery Production at Kolomoki (9ER1), Early County, GeorgiaLaforge, Travis 01 January 2012 (has links)
Investigating the organization of production systems can reveal much about a society, in particular how resources and labor were allocated, and the influence that economic, political, social, and ceremonial institutions had on the production process. Interpreting the nature of specialized production is useful for understanding how production was organized. In turn, the degree of standardization exhibited by the goods being produced is used to determine the nature of specialization. While archaeological research regarding specialized production has expanded over time to incorporate a wide range of societies, such research is often focused on complex societies. The research presented here focuses on the small-scale, or non-stratified, community that once inhabited the Kolomoki site, a Middle to Late Woodland period site in Early county, Georgia. This thesis utilizes a three-dimensional laser scanner to document Weeden Island pottery from Kolomoki. The digital images created by the scanner were used to measure incising and punctation marks. The measurements were then analyzed in order to determine the extent of standardization among the decorative attributes. Results suggest that standardization varies among different subsamples of pottery. However, the overall degree of standardization is relatively low, thus suggesting that specialized production may not have existed, or was very limited, at Kolomoki. Despite the limited extent of standardization among the decorative attributes, the results of this research, especially in conjunction with previous research, suggest that some pottery may have been afforded special attention during the production process. In particular, pottery from mound proveniences, and socially valued goods, notably sacred and prestige items, demonstrate higher degrees of standardization. This leads to the conclusion that the production of Weeden Island pottery was likely influenced by ritual and ceremonial activity within the Kolomoki community. This thesis contributes to a greater understanding of specialization in non-stratified Woodland period societies in the southeastern United States.
|
229 |
Rock Slope Stability Investigations In Three Dimensions For A Part Of An Open Pit Mine In USAShu, Biao January 2014 (has links)
Traditional slope stability analysis and design methods, such as limit equilibrium method and continuum numerical methods have limitations in investigating three dimensional large scale rock slope stability problems in open pit mines associated with stress concentrations and deformations arising due to intersection of many complex major discontinuity structures and irregular topographies. Analytical methods are limited to investigating kinematics and limit equilibrium conditions based on rigid body analyses. Continuum numerical methods fail to simulate the detachment of rock blocks and large displacements and rotations. Therefore, there is an urgent need to try some new methods to have a deeper understanding of the open pit mine rock slope stability problems. The intact rock properties and discontinuity properties for both DRC and DP rock formations that exist in the selected open pit mine were determined from tests conducted on rock samples collected from the mine site. Special survey equipment (Professor Kulatilake owns) which has a total station, laser scanner and a camera was used to perform remote fracture mapping in the research area selected at the mine site. From remote fracture mapping data, the fracture orientation, spacing and density were calculated in a much refined way in this dissertation compared to what exist in the literature. Discontinuity orientation distributions obtained through remote fracture mapping agreed very well with the results of manual fracture mapping conducted by the mining company. This is an important achievement in this dissertation compared to what exist in the literature. GSI rock quality system and Hoek-Brown failure criteria were used to estimate the rock mass properties combining the fracture mapping results with laboratory test results of intact rock samples. Fault properties and the DRC-DP contact properties were estimated based on the laboratory discontinuity test results. A geological model was built in a 3DEC model including all the major faults, DRC-DP contact, and two stages of rock excavation. The built major discontinuity system of 44 faults in 3DEC with their real orientations, locations and three dimensional extensions were validated successfully using the fault geometry data provided by the mining company using seven cross sections. This was a major accomplishment in this dissertation because it was done for the first time in the world. Numerical modeling was conducted to study the effect of boundary conditions, fault system and lateral stress ratio on the stability of the considered rock slope. For the considered section of the rock slope, the displacements obtained through stress boundary conditions were seemed more realistic than that obtained through zero velocity boundary conditions (on all four lateral faces). The fault system was found to play an important role with respect to rock slope stability. Stable deformation distributions were obtained for k₀ in the range of 0.4 to 0.7. Because the studied rock mass is quite stable, it seems that an appropriate range for k₀ for this rock mass is between 0.4 and 0.7. Seven monitoring points were selected from the deformation monitoring conducted at the open pit mine site by the mining company using a robotic total station to compare with numerical predictions. The displacements occurred between July 2011 and July 2012 due to the nearby rock mass excavation that took place during the same period were compared between the field monitoring results and the predicted numerical modeling results; a good agreement was obtained. This is a huge success in this dissertation because such a comparison was done for the first time in the world. In overall, the successful simulation of the rock excavation during a certain time period indicated the possibility of using the procedure developed in this dissertation to investigate rock slope stability with respect to expected future rock excavations in mine planning.
|
230 |
Pilot Study of Systems to Drive Autonomous Vehicles on Test TracksAgardt, Erik, Löfgren, Markus January 2008 (has links)
This Master’s thesis is a pilot study that investigates different systems to drive autonomous and non-autonomous vehicles simultaneously on test tracks. The thesis includes studies of communication, positioning, collision avoidance, and techniques for surveillance of vehicles which are suitable for implementation. The investigation results in a suggested system outline. Differential GPS combined with laser scanner vision is used for vehicle state estimation (position, heading, velocity, etc.). The state information is transmitted with IEEE 802.11 to all surrounding vehicles and surveillance center. With this information a Kalman prediction of the future position for all vehicles can be estimated and used for collision avoidance.
|
Page generated in 0.0551 seconds