• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 18
  • 10
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 166
  • 23
  • 19
  • 18
  • 17
  • 17
  • 17
  • 17
  • 14
  • 14
  • 14
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Incoherent Scatter Radar Study of the Ionospheric D-region

Ma, Zheng 14 July 2015 (has links)
No description available.
92

Characterization and Improvement of a Cone-Beam CT Scanner for Quantitative Imaging

Joshi, Jimish Dilip 28 October 2010 (has links)
No description available.
93

Extreme loading and fatigue analysis of a wave energy device / Analys av extrembelastningar och utmattning för ett vågkraftverk

Gustafsson, Egil January 2016 (has links)
Wave energy is one of the possible solutions for meeting the future energy demand in a clean and sustainable way. Extracting large amounts of energy, a wave energy device would be subjected to extreme and fatigue loads from the waves. Designing such a device, a trade off needs to be done between making a device that is strong enough to withstand the loads and on the same time not too heavy making it inefficient and too costly. Having good estimations of extreme and fatigue loads are therefore critical when designing an efficient wave energy device. This thesis has aimed to create a tool that can be used between the already existing hydrodynamic and solid mechanic models available at CorPower Oceean. The goal has been that the tool shall extract the extreme and fatigue loads from the hydrodynamic model and format them in a way so that they can be used in the solid mechanical model. Four different tools have been created and compared for calculating fatigue using amplitude and spectral methods, where the amplitude methods also are able to estimate extreme loads. The fatigue tools have been evaluated against each other in a simple example showing that the estimated accumulated fatigue damage can be decreased by using several variables. An application of the tools has been done on a critical sub system of the wave energy device developed by CorPower Ocean. Where in this application critical points against extreme loading and fatigue have been localized. A new design has been suggested based on the strength analysis from the first one. Increasing the number of variables and using the tools developed in this thesis can significantly improve the fatigue damage estimations of the system. What fatigue method to use depends on the details for each case.
94

Heavy vehicles: Load variation and scatter / Tunga fordon: Belastningars variation och spridning

Hård, Patrik January 2020 (has links)
This master thesis studies accelerations recorded and stored onboard Scania trucks. From these accelerations, a general load (𝐹 = 𝑚 ∗ 𝑎) description is deduced. In the next step, an abstract number, ‘pseudo-damage’, representing the load’s fatigue damage potential is calculated. Method At workshop visits, data stored on-board is ‘read out’ and stored in a database. Read-outs from Scania test vehicles are used to study how accumulated pseudo-damage evolves with mileage and test cycles. Pseudo-damage intensity (damage per km or test cycle) variation in carefully controlled vehicle operation, i.e. test track vehicle testing, suggests a threshold between random scatter and variation caused by describable load-influencing factors (vehicle specification, road quality, etc). Influence of wheel configuration – two or three axles – on accelerations and pseudo-damage is studied as an example of vehicle specification influence. Result Test track operation produces considerably higher pseudo-damage intensities than operation on public roads. A ‘normal’ pseudo-damage distribution is shown on title page. But when the vehicle’s operation is split in two distinctly different modes, the distribution displays two peaks instead. RSD, relative standard deviation of pseudo-damage intensity, is used to quantify scatter and variation. Available data indicates that RSD below 0,3 can be regarded as purely random scatter. RSD values above this threshold suggests that traceable, maybe intentional, variation of loadinfluencing factors is present. A pilot study of axle configuration’s influence on loads (pseudo-damage calculated from acceleration matrices) produces inconclusive results, the available database (number of trucks) is too small. Conclusions and recommendations On-board storage of acceleration data provides a general ‘fatigue load’ indication. Resolution is sufficient for meaningful load variation studies. Regular, closer-spaced read-outs would facilitate more detailed studies of test vehicles’ operation. / Mastersarbetet studerar accelerationer, uppmätta och lagrade hos Scanias fordon. Från dessa accelerationer är begreppet ‘pseudo-skada’ beräknat. Pseudo-skada representerar en lasts utmattnings skada potential. Metod Vid verkstadsbesök sparas den data som finns lagrad ombord på lastbilen till en databas. Med utläsningar från testfordonen studeras hur den ackumulerade pseudo-skadan beror på miltal och antal körda test cykler. Genom analys utav variationen i pseudo-skada intensitet (skada per km eller test cykel) från en välkontrollerad fordonsdrift, exempelvis test utförda på test banan, fås ett tröskelvärde mellan slumpmässiga variationer och variationer som beror på förklarliga belastningspåverkande faktorer (fordon specifikation, väg kvalité, etc.) Som ett exempel på influens från olika fordon specifikationer, studeras beroendet mellan pseudoskada och hjulkonfiguration. Fordon med antingen två eller tre hjulaxlar är studerade. Resultat Vid framförande av fordon på testbanan genereras högre pseudo-skada intensitet än när fordonet framförs på allmänna vägar. Figuren på titelsidan visar den normala fördelningen utav pseudo-skada. När fordonsdriften är uppdelad i två distinkta körsätt visar istället fördelningen upp två stycken pikar. Relativ standard avvikelse, RSD, av pseudo-skada intensiteten är beräknad för att kvantifiera slumpmässig och betydelsefull variation. Tillgänglig data visar att ett RSD under 0,3 är att se som slumpmässig variation. RSD värden över detta tröskelvärde visar på existens utav spårbara variationer från belastningspåverkande faktorer. Resultaten från förstudien av beroendet mellan hjulkonfiguration och pseudo-skada är inte slutgiltiga. Den analyserade datamängden är för liten. Slutsatser och rekommendationer De lagrade accelerationerna ger en generell indikation om ‘utmattningslasten‘. Upplösningen är tillräcklig för att kunna studera de meningsfulla lastvariationerna. Regelbundna utläsningar, i ett tätare intervall, skulle främja mer detaljerade studier utav fordonsdriften.
95

Development of a Microchip-Based Flow Cytometer with Integrated Optics – Device Design, Fabrication, and Testing

Watts, Benjamin 04 1900 (has links)
<p>Lab-on-a-chip technologies have created a burgeoning number of new and novel devices designed to automate biological processes on-chip in an efficient and inexpensive format for far reaching point-of-care (POC) medicine and diagnostic treatments and for remote and on-line monitoring functions. This work designed a device that integrated advanced optical functionality on-chip with the microfluidics to relieve the reliance on traditional bulky and expensive free-space optics and a high-quality light source. The multimodal input beam was reshaped into an optimized geometry in the microchannel via a 2D system of lenses - improving the quality and reliability of detection through uniform detection of particles. A uniform beam geometry across the sample stream with a uniform beam width will allow repeatable excitation and burst duration to allow for more reliable and predictable detection. Numerous beam geometries were created and the quality and illumination properties confirmed by testing each with a couple sizes of fluorescent and non-fluorescent microspheres to test the effect of beam geometry and particle size combination on device performance. The measured coefficient of variation (CV) for fluorescent beads was found to have a particular beam geometry that yielded best device performance based on the bead size. Fluorescent beads 2.5µm in diameter had a CV of 8.5% for a 3.6 µm beam waist while 6 µm beads yielded a 14.6% CV with a 10 µm beam waist. When measuring scatter and fluorescence signal from a 10 µm the 2.5- and 6.0 µm beads gave 11.4% and 15.8% and 15.9% and 20.4% fluorescent and scatter CVs for each set of beads, respectively. Separately testing each beam geometry with 1-, 2-, and 5 µm beads did not yield any predictable ideal beam-bead ideal pairing for best performance. Lastly, further integration of optical function was shown through the on-chip collection of signals; CVs of 29% and 30% were measured for side scatter and forward scatter, respectively, for 5 µm beads. The reliability of this all-optically guided scheme was confirmed by comparing it to a simultaneously recorded free-space collection scheme. The coincidence rate was found to be 94% and 96% for the side scatter and forward scatter schemes. Both had very low false positive rates – below 0.5% - with missed detection rates that were satisfactory but in need of improvement. Sources of noise and device improvements were identified and suggested.</p> / Doctor of Philosophy (PhD)
96

Advanced Projection Ultrasound Imaging with CMOS-based Sensor Array: Development, Characterization, and Potential Medical Applications

Liu, Chu Chuan 22 January 2010 (has links)
Since early 1960s, ultrasound has become one of the most widely used medical imaging device as a diagnostic tool or an image guider for surgical intervention because of its high portability, non-ionization, non-invasiveness and low cost. Although continuous improvements in commercial equipments have been underway for many years, almost all systems are developed with pulse-echo geometry. In this research, a newly invented ultrasound sensor array was incorporated into the developments of a projection imaging system. Three C-scan prototypes, which included prototypes #1, #2 and an ultrasound mammography system, were constructed. Systematic and Evaluative studies included ultrasound CT, 3-D ultrasound, and multi-modality investigations were also performed. Furthermore, a new analytical method to model ultrasound forward scattering distribution (FSD) was developed by employing a specific annular apparatus. After applying this method, the scattering-corrected C-scan images revealed more detail structures as compared to unprocessed images. This new analytical modelling approach is believed to be effective for most imaging systems operating in projection geometry. In summary, while awaiting additional clinical validation, the C-scan ultrasound prototypes with the state-of-the-art PE-CMOS sensor arrays can provide veritable value and holds real and imminent promise in medical diagnostic imaging. Potential future uses of C-scan ultrasound include but not limit to computerized tomography, biopsy guidance, therapeutic device placing, foreign object detection, pediatric imaging, breast imaging, prostate imaging, human extremities imaging and live animal imaging. With continuous research and development, we believe that C-scan ultrasound has the potential to make a significant impact in the field of medical ultrasound imaging. / Ph. D.
97

X-ray Coherent Scatter Imaging for Intra-operative Margin Detection in Breast Conserving Surgeries

Lakshmanan, Manu Nachiappan January 2015 (has links)
<p>One of the challenges facing clinical practice today is intra-operative margin detection in breast conserving surgeries (BCS) or lumpectomy procedures. When a surgeon removes a breast tumor from a patient during a BCS procedure, the surgically excised tissue specimen is examined to see whether it contains a margin of healthy tissue around the tumor. A healthy margin of tissue around the tumor would indicate that the tumor in its entirety has been removed. On the other hand, if cancerous tissue is at the surface of the specimen, that would indicate that the tumor may have been transected during the procedure, leaving some residual cancerous tissue inside the patient. The most effective intra-operative real-time margin detection techniques currently used in clinical practice are frozen section analysis (FSA) and touch-prep cytology. These methods have been shown to possess inconsistent accuracy, which result in 20% to 30% of BCS patients being called back for a repeat BCS procedure to remove the residual tumor tissue. In addition these techniques have been shown to be time-consuming--requiring the operating room team to have to wait at least 20 minutes for the results. Therefore, there is a need for accurate and faster technology for intra-operative margin detection. </p><p>In this dissertation, we describe an x-ray coherent scatter imaging technique for intra-operative margin detection with greater accuracy and speed than currently available techniques. The method is based on cross-sectional imaging of the differential coherent scatter cross section in the sample. We first develop and validate a Monte Carlo simulation of coherent scattering. Then we use that simulation to design and test coherent scatter computed tomography (CSCT) and coded aperture coherent scatter spectral imaging (CACSSI) for cancerous voxel detection and for intra-operative margin detection using (virtual) clinical trials. Finally, we experimentally implement a CACSSI system and determine its accuracy in cancer detection using tissue histology. </p><p>We find that CSCT and CACSSI are able to accurately detect cancerous voxels inside of breast tissue specimens and accurately perform intra-operative margin detection. Specifically, for the task of individual cancerous voxel detection, we show that CSCT and CACSSI have AUC values of 0.97 and 0.94, respectively. Whereas for the task of intra-operative margin detection, the results of our virtual clinical trials show that CSCT and CACSSI have AUC values of 0.975 and 0.741, respectively. The gap in spatial resolution between CSCT and CACSSI affects the results of intra-operative margin detection much more than it does the task of individual cancerous voxel detection. Finally, we also show that CSCT would require on the order of 30 minutes to create a 3D image of a breast cancer specimen, whereas CACSSI would require on the order of 3 minutes. </p><p>These results of this work show that coherent scatter imaging has the potential to provide more accurate intra-operative margin detection than currently used clinical techniques. In addition, the speed (and therefore low scan duration: 3 min) of CACSSI, along with its ability to automatically classify cancerous tissue for margin detection means that coherent scatter imaging would be much more cost-effective than the clinical techniques that require up to 20 minutes and a trained pathologist. With the cancerous voxel detection accuracy of a 0.94 AUC and scan time of on the order of 3 minutes demonstrated for coherent scatter imaging in this work, coherent scatter imaging has the potential to reduce healthcare costs for BCS procedures and rates of repeat BCS surgeries. The accuracy for CACSSI can be considerably improved to match CSCT accuracy by improving its spatial resolution through a number of techniques: incorporating into the CACSSI reconstruction algorithm the ability to differentiate noise from high frequency signal so that we can image with higher frequency coded aperture masks; implementing a 2D coded aperture mask with a 2D detector; or acquiring additional angles of projection data.</p> / Dissertation
98

Teacher Implementation of a Pretreatment Assessment Procedure in a Public Middle School

Alcala, Angelo L. (Angelo Lee) 05 1900 (has links)
In an attempt to determine the effectiveness of a pretreatment assessment procedure known as the scatter plot (Touchette, MacDonald, & Langer, 1985), direct observational data was collected by 13 middle school teachers on four "problem" students. After four weeks of data collection, interobserver agreement probes were calculated and a visual analysis of the plotted data was performed to ascertain a possible pattern of problem behavior. Additionally, in an attempt to assess the teachers' perceptions of the scatter plot, the 13 teachers were asked to complete a questionnaire. Although a visual analysis of the plotted data suggested a possible pattern of problem behavior, interobserver agreement probes failed to achieve a desired overall reliability of 90% or higher. Despite a low IOA, results of the questionnaire administered to the 13 teachers generally supported the use of the scatter plot as a means of assessing student behavior. Possible reasons for failing to attain an IOA of 90% or higher include the total number of students in a class, the number of subjects observed per period, the teacher's location in the classroom, and the subjects ability to recognize if the teacher was "looking." Recommendations are provided regarding future research concerning the scatter plot and other more formal approaches to assessing student behavior.
99

ASSOCIATED PARTICLE NEUTRON ELEMENTAL IMAGING FOR NONINVASIVE MEDICAL DIAGNOSTICS

Michael R Abel (6594194) 10 June 2019 (has links)
<p>A novel system has been simulated with accompanying experimental data that is designed to provide spatial information of elemental concentrations at biologically relevant levels. Using a deuterium-deuterium (DD) neutron generator, two large high-purity germanium (HPGe) detectors operating in tandem, and the associated particle imaging (API) technique, elemental iron concentrations as low as 100 ppm have been resolved <i>in vivo</i> in the liver of a simulated reference man with an equivalent dose to the region of interest of < 5 mSv and an estimated whole body dose of 0.82 mSv. Using the Monte Carlo Neutral Particle (MCNP) transport code, achievable spatial resolutions in the projective and depth dimensions of < 1 cm and < 3 cm are achievable, respectively, for iron-containing voxels on the order of 1,000 ppm Fe – with an overall 225 ps system timing resolution, 6.25 mm<sup>2</sup> imaging plate pixels, and a Gaussian-distributed DD neutron source spot with a diameter of 2 mm. Additionally, as a departure from Monte Carlo simulations, the underlying concepts of fast neutron inelastic scatter analysis as an initial surrogate to true associated particle neutron elemental imaging (APNEI) were demonstrated using a DD neutron generator, iron-made interrogation targets, a sodium iodide detector, and physical neutron/gamma shielding, which yielded an approximate detection limit for iron of 3.45 kg which was simulated to improve to 0.44 kg upon incorporation of the associated particle collimation methodology.</p> The API technique allows concentrations of elements such as iron to be quantified due to time-tagged electronic collimation and corresponding background signal reduction. Inherent to the API process is the collection of spatial and temporal information, which allows the perceived origin of a photon signal to be identified in 3D space. This process was modeled algorithmically in MCNP and employed using relevant equipment and shielding geometries. By leveraging the capabilities of modern-day neutron generator and coincident timing technologies with high throughput signal processing discrimination, the applicability of APNEI to disease diagnostics and etiological research is promising.
100

Aplicação das equações de perturbações não lineares com sintetização da turbulência submalha para solução de escoamentos turbulentos. / Application of non-linear perturbation equations with subgrid turbulence synthesized for a solution of turbulent flows.

Silva, Ricardo Galdino da 06 November 2018 (has links)
As simulações de escoamentos em torno de geometrias de aplicações industriais (geometrias complexas), como por exemplo configurações de aeronaves com hipersustentadores defletidos, apresentam uma vasta gama de estruturas vorticais (complexidade do escoamento). A importância das interações entre as estruturas é grande para a correta previsão da dinâmica das estruturas vorticais presentes no escoamento, uma vez que estas interações ditam as características do processo de transferência de energia cinética turbulenta. Vale ressaltar que no processo de transferência de energia cinética turbulenta não temos uma única direção e sim a possibilidade de duas direções, que representam o processo de cascata direta ou clássica (a transferência de energia cinética turbulenta se dá das maiores estruturas vorticais para as menores - forward scatter ) e a cascata indireta (a transferência de energia cinética turbulenta que se dá das menores estruturas vorticais para as maiores - backscatter ). O balanço entre estes dois processos, direto e indireto, resulta na dominância do processo direto, ou seja, o processo dominante de transferência de energia se dá das maiores estruturas vorticais para as menores. Entretanto, ambos os processos devem estar presentes na solução numérica, para que esta seja capaz de prever de forma correta a dinâmica (interações entre estruturas vorticais de tamanhos variados) presente no escoamento. Os modelos convencionais utilizados no tratamento da turbulência (ou fechamento da turbulência), sejam do tipo RANS (Reynolds Average Navier Stokes ) ou do tipo LES (Large Eddy Simulation) apresentam limitações teóricas (modelo não é capaz de representar as interações entre todas as escalas presentes no escoamento) e práticas (necessidade de discretização espacial que aumenta significativamente o custo computacional). No caso dos modelos LES a malha nas proximidades de paredes sólidas deveriam ser extremamente refinadas, o que resulta em praticamente resolver todas as escalas, para representar os efeitos da cascata direta (forward scatter ) e da cascata indireta (backscatter ) de energia cinética turbulenta. Isto ocorre em decorrência do caráter dissipativo dos modelos submalha utilizadas nas formulações LES. Por este motivo, o presente trabalho tem por objetivo desenvolver uma metodologia para solução do escoamento turbulento que seja capaz de apresentar os processos de cascata direta e cascata indireta sem a necessidade de malhas extremamente refinadas. Para tanto, iremos utilizar as equações Navier-Stokes escritas em função das flutuações (flutuações resolvidas), sendo esta formulação baseada nos trabalhos de Morris et al. [1997], Labourasse e Sagaut [2002] e Batten et al. [2004b]. As equações são obtidas por meio da divisão dos campos em uma média temporal, flutuações resolvidas e flutuações submalha. Sendo a média temporal, obtida previamente por meio de uma solução RANS do escoamento, que no nosso caso é obtida com o modelo RANS SA-QCR2013 proposto por Mani et al. [2013]. As flutuações resolvidas são o resultado da solução numérica das equações obtidas com a discretização espacial dada pela malha utilizada. Por fim as flutuações submalha são introduzidas via modelo de Billson [2004] (modelo de sintetização ou reconstrução da turbulência). Esta formulação foi aplicada para solução do escoamento em um canal formado por paredes paralelas com Re? = 395 e Re? = 1000. Estes números de Reynolds foram escolhidos por existirem resultados obtidos via DNS ou até mesmo resultados experimentais disponíveis na literatura, os resultados são enconstrados em Moser et al. [1999], del Álamo et al. [2004] e Schultz e Flack [2013]. Os resultados obtidos com o modelo proposto mostraram que a cascata inversa (backscatter ) está presente em todas as regiões da camada limite (subcamada laminar, buffer layer e logarítmica) do canal, onde o pico de transferência ocorre, para os números de Reynolds avaliados, na região da buffer layer. Este comportamento foi observado nos resultados gerados por todas as malhas avaliadas, a diferenças entre as malhas está no refinamento na região próxima às paredes sólidas. O refinamento da malha na direção da altura do canal (normal às paredes sólidas) faz com que o balanço entre as taxas de dissipação de energia cinética turbulenta passe a indicar a dominância da cascata direta no processo de transferência de energia. Nas malhas menos refinadas na região próxima à parede temos o domínio da cascata indireta no processo de transferência de energia cinética turbulenta. A introdução das flutuações submalha via modelo de sintetização da turbulência leva a uma tendência de inverter o domínio da cascata inversa (backscatter ) nas malhas menos refinadas. Os resultados obtidos com a metodologia NLDE com flutuações turbulentas submalha introduzidas por meio de modelo de sintetização turbulenta apresentam boa concordância com os respectivos resultados obtidos via DNS e ou experimentais. / Simulations of flows around industrial geometries (complex geometries), such as configurations of aircraft with deployed high-lift surface, present a wide range of vortical structures (flow complexity). The importance of the interactions between the structures is great for the correct prediction of the dynamics of the vortical structures present in the flow since these interactions dictate the characteristics of the turbulent kinetic energy transfer process. It is noteworthy that in the process of transferring turbulent kinetic energy we do not have a single direction but the possibility of two directions, which represent the direct cascade or classical cascade process (the transfer of turbulent kinetic energy occurs from the large eddy to small eddy - the forward scatter) and the reverse cascade (the transfer of turbulent kinetic energy occurs from small eddy to the large eddy - backscatter). The net balance between these two processes, direct and reverse, results in the predominance of the direct process, that is, the dominant process of energy transfer occurs from the largest eddy to the smaller ones. However, both processes must be present in a numerical solution, so that it is able to predict correctly the dynamics (interactions between vortical structures of varying sizes) present in the flow. The conventional models used in turbulence treatment (or turbulence closure), whether of the RANS (Reynolds Average Navier Stokes) type or the LES (Large Eddy Simulation) type have theoretical limitations (model is not able to represent the interactions between the scales present in the flow) and practices (needs spatial discretization that signifcantly increases the computational cost). In the case of LES models, the mesh close to solid walls should be extremely refined, which results in practically resolving all scales to represent the effects of the forward scatter and the backscatter of turbulent kinetic energy. This is due to the dissipative character of the sub-grid models used in the LES formulations. For this reason, the present research effort aims to develop a methodology for solving turbulent flow, that is able to present both energy transfer process, forward scatter and backscatter without the need of extremely refined meshes. For this, we will use the Navier-Stokes equations written in function of the fluctuations (resolved fluctuations), being this formulation based on the works of Morris et al. [1997], Labourasse e Sagaut [2002] and Batten et al. [2004b]. The equations are obtained by dividing the fields into an average time, resolved fluctuations and sub-grid fluctuations. The time-averaged, obtained previously by means of a RANS solution of the flow, which in our case is obtained with the model RANS SA-QCR2013 proposed by Mani et al. [2013]. The resolved fluctuations are the result of the numerical solution of the equations obtained with the spatial discretization given by the mesh used. Finally, the sub-grid turbulence fluctuations are introduced via the model of Billson [2004] (model for synthesizing or reconstructing turbulence). This formulation was applied to solve of the flow in a channel formed by parallel walls at Re? = 395 and Re? = 1000. The reason to choose those Reynolds number is related to the fact that there are results obtained via DNS or even experimental results available in the literature, one can found those results in Moser et al. [1999], del Álamo et al. [2004] and Schultz e Flack [2013]. The results obtained with the proposed model showed that the backscatter is present in all regions of the boundary layer (lamellar layer, buffer layer, and log-layer) of the channel, where the transfer peak occurs, for the evaluated Reynolds numbers, in the region of the buffer layer. This behavior was observed in the results generated by all meshes evaluated, the differences between the meshes are in the refinement in the region near the solid walls. The refinement of the mesh in the direction of the channel height (normal to the solid walls) causes the balance between the rates of dissipation of turbulent kinetic energy to indicate the dominance of the direct cascade in the energy transfer process. In the less refined meshes in the region near the wall, we have the domain of the indirect cascade in the process of transfer of turbulent kinetic energy. The introduction of the sub-grid fluctuations via the turbulence synthesizing model leads to a tendency to invert the reverse cascade domain (backscatter) in the solutions obtained with the coarsest grid. The results obtained with the NLDE turbulence, in which we use a synthetic turbulence model to introduce subgrid turbulent fluctuations, show good agreement with DNS results and or experimental results.

Page generated in 0.1075 seconds