Spelling suggestions: "subject:"schadstoff"" "subject:"schadstoffbau""
31 |
Extraktion organischer Schadstoffe aus Böden mit überkritischem Wasser und Evaluation von ExtraktionsmodellenKollmus, Jan 17 July 2006 (has links)
Gegenstand vorliegender Arbeit ist die Untersuchung unterschiedlicher Modellansätze zur Beschreibung der Extraktion organischer Schadstoffe aus Böden unter Verwendung von überkritischem Wasser. Dazu wurden in der Literatur vorhandene Stofftransportmodelle herangezogen und eigene Modellansätze entwickelt. Das Modell berücksichtigt die Geschwindigkeits- und Temperaturverteilung im Reaktor und berechnet daraus, in Abhängigkeit der desorptiven, diffusiven und konvektiven Stofftransportvorgänge eine Schadstoffverteilung. Zur Lösung der Modellgleichungen wurde FEMLAB 3.1 verwendet. Zur Parameterbestimmung und Modellüberprüfung wurden Extraktionsversuche an real kontaminierten Böden und an künstlich kontaminierten Modellböden durchgeführt. Einfache und komplexe chemische Gleichgewichte der organischen Schadstoffe wurden auf Basis der Gibbs Energetik mit FACTSAGE 5.2 ermittelt und dienten als weitere Inputparameter für die Modellberechnungen.
|
32 |
Untersuchung der Beeinflussung von Wasserstoffbeimischung und Sauerstoffreduktion in Erdgas-Flammen auf Kenngrößen und Schadstoffbildung in technischen VerbrennungsprozessenEckart, Sven 07 December 2022 (has links)
In einer zukünftig nachhaltigen Gesellschaft wird Wasserstoff eine bedeutende Rolle als Energieträger spielen. Der Übergangspfad von reinem Erdgas zur Verwendung von Gemischen bis 50 % Wasserstoff muss eingehender untersucht werden. Die in dieser Arbeit durchgeführte Forschung konzentriert sich auf die Sicherheitsaspekte, Schadstoffentwicklung und Stabilitätsfelder von laminaren Flammen. Ein entscheidender Parameter für die Sicherheit von Brenneranlagen ist die laminare Brenngeschwindigkeit. In dieser Arbeit wurden Methan-Wasserstoff-Gemische experimentell vermessen und mit numerischen Daten unter Verwendung verschiedener Reaktionsmechanismen verglichen.
Zur hochgenauen Messung der laminaren Brenngeschwindigkeit wurde der Heat Flux Brenner verwendet. In der vorliegenden Untersuchung wurden die laminaren adiabaten Brenngeschwindigkeiten für Methan-Wasserstoff-Sauerstoff-Stickstoff-Gemische bei verschiedenen Äquivalenzverhältnissen und variierten Sauerstoffanteilen untersucht. Die experimentellen Daten bis 20 % Wasserstoff bei reduziertem Sauerstoffgehalt konnten durch zehn ausgewählte detaillierte Reaktionsmechanismen nur teilweise wiedergegeben werden. Weiterführende Messungen befassen sich mit Methan-Wasserstoff-Luft Gemischen bei verschiedenen Äquivalenzverhältnissen, Temperaturen und Wasserstoffgehalten bis zu 50 %. Für diese Parameter wurde anschließend in Abhängigkeit der Höhe über dem Brenner eine Abgasanalyse mit dem Ziel der lokalen Stickstoffoxidkonzentration durchgeführt. Dabei zeigte sich im laminaren adiabaten Zustand eine Verringerung der Stickstoffoxide, insbesondere im brennstoffreichen Bereich. Eine Überlagerung von erhöhter Brenngeschwindigkeit und einhergehender kürzerer Verweilzeit wurde in Wasserstoff-Methan-Flammen im Vergleich zu reinen Methan-Flammen als Ursache ermittelt und numerisch nachvollzogen. Die experimentellen Daten konnten durch ausgewählte Reaktionsmechanismen nur teilweise wiedergegeben werden. Final wurden für vergleichbare Bedingungen an einem Gegenstrombrenner auch nicht vorgemischte Flammen bis zu einem Wasserstoffanteil von 50 % detaillierter untersucht. Dabei lag das Hauptaugenmerk der Ermittlung der Verlöschungsstreckungsgrenzen. Es konnte gezeigt werden, dass sich diese im Fall der Wasserstoffbeimischung deutlich iivergrößern, was auch von den numerischen Modellen vorhergesagt wurde. Im Fall einer Sauerstoffreduktion kommt es hingegen zu einer deutlichen Verkleinerung des stabilen Flammenbereiches. Es konnte gezeigt werden, dass sich dieser Zusammenhang nichtlinear zwischen der Sauerstoff- und Brennstoffkonzentration verhält.
Abschließend konnte ein umfassender Datensatz zu laminaren Brenngeschwindigkeiten, Erlöschungsstreckungsraten und Schadstoffen für Methan-Wasserstoff-Flammen bis zu einem Anteil von 50 % Wasserstoff erstellt werden. Dieser dient der Verbesserung bestehender Reaktionsmechanismen und liefert grundlegende Erkenntnisse zur Auslegung von Brennern.:1 Einleitung, Motivation und Aufgabenstellung der Arbeit
2 Stand der Wissenschaft und Technik
3 Versuchsaufbau, verwendete Messmethoden und experimentelle Versuchsdurchführung
4 Numerische Methoden
5 Experimentelle und numerische Ergebnisse zur laminaren Brenngeschwindigkeit
6 Experimentelle und numerische Ergebnisse zur Erlöschungsstreckungsrate
7 Einfluss der Wasserstoffbeimischung in Methan-Flammen auf die Schadstoffbildung
8 Zusammenfassung und Ausblick
9 Literatur
10 Anhang / In a future sustainable society, hydrogen is expected to play an important role as an energy carrier. The transition path from pure natural gas to the use of mixtures, up to 50 % hydrogen, has to be investigated in more detail. The research that has been conducted focuses on the safety, pollutant emission and the stability areas of laminar flames. A significant parameter for the safety of burner systems is the laminar burning velocity. In this work, methane-hydrogen mixtures were measured experimentally and compared with numerical approaches using different reaction mechanisms.
The Heat Flux Burner was used to measure the laminar burning velocity with high accuracy. In the present study, the laminar adiabatic burning velocities for methane-hydrogen-oxygen-nitrogen mixtures at different equivalence ratios and varied oxygen contents was investigated. The experimental data up to 20 % hydrogen at reduced oxygen content could only be partially reproduced by ten selected detailed reaction mechanisms. Further measurements are concerned with methane-hydrogen-air mixtures at different equivalence ratios, temperatures and hydrogen contents up to 50 %. For these parameters, an exhaust gas analysis was carried out as a function of the height above the burner with the aim of nitrogen oxide detections. A reduction in nitrogen oxides in the laminar adiabatic state was observed, especially in the fuel-rich range. A superposition of increased burning velocity and accompanying shorter residence time in the hydrogen-methane mixtures compared to pure methane flames was determined as the cause which could also be shown numerically. The experimental results could only be partially reproduced by selected reaction mechanisms. Furthermore, for comparable conditions, non-premixed flames up to a hydrogen content of 50 % were investigated in more detail. The main focus was the determination of the extinction strain rate limits. It could be shown that these increase significantly in the case of hydrogen admixture, which could also be predicted by the numerical models. In the case of oxygen reduction, on contrary, there is a significant reduction of the stable flame area. It could be demonstrated that this relationship is non-linear between the oxygen and fuel concentration.
Finally, a comprehensive data set on laminar burning rates, extinction stretching rates and pollutants for methane-hydrogen flames up to a proportion of 50 % hydrogen could be generated. This can contribute to the improvement of existing reaction mechanisms and provide fundamental knowledge for the design of burners.:1 Einleitung, Motivation und Aufgabenstellung der Arbeit
2 Stand der Wissenschaft und Technik
3 Versuchsaufbau, verwendete Messmethoden und experimentelle Versuchsdurchführung
4 Numerische Methoden
5 Experimentelle und numerische Ergebnisse zur laminaren Brenngeschwindigkeit
6 Experimentelle und numerische Ergebnisse zur Erlöschungsstreckungsrate
7 Einfluss der Wasserstoffbeimischung in Methan-Flammen auf die Schadstoffbildung
8 Zusammenfassung und Ausblick
9 Literatur
10 Anhang / 在未来的可持续发展社会中,氢气将作为一种能源载体发挥重要作用。从纯天然气到使用高达50 %的氢气混合物的过渡需要进行更详细的科研调查。本论文的研究重点集中于安全角度,污染物的演变以及层流火焰的稳定性领域。作为燃烧系统安全的一个关键参数文章使用层状燃烧率。本文献通过实验测量了甲烷-氢气混合物,并对在不同反应机制的形成的数字数据进行了比较。
热流量燃烧器被用来高精度地测量层状燃烧速度。本研究针对不同当量比和不同氧含量的甲烷-氢-氧-氮混合物进行了层流绝热燃烧速度的分析。在氧气减少的情况下,至20 % 的氢气实验数据只能由10个选定的详细反应机制部分地重现。进一步的测量针对不同当量比、温度和氢含量至50 %的甲烷-氢-空气混合物。然后对这些参数依赖于燃烧器上方的高度,进行了废气分析,目的是确定局部的氮氧化物浓度。结果表明在层状绝热条件下,特别是在燃料丰富的区域,氮氧化物有所减少。与纯甲烷火焰相比,氢-甲烷火焰的高燃烧速度和短暂的停留时间两者叠加被确定为其原因,文章对此并进行了数值重建。实验数据只能被选定的反应机理部分重现。最后,文章在逆流燃烧器上的可比条件下,也对氢气含量至50 %的非预混火焰进行了更详细的研究。研究在此特别进行了熄灭应变率的测定。 结果表明,如同数值模型所预测,在氢气掺入的情况下,以上数值都明显增加。 而在氧气减少的情况下,稳定的火焰面积明显减少。由此可以证明氧气和燃料浓度之间的非线性关系。最后,文章结果可以用于建立一个关于甲烷-氢气 (其氢气比例最高至50 %)火焰的层流燃烧速度、熄灭应变率和污染物的综合数据集。这有助于优化现有的反应机制,并为燃烧器的设计提供基本知识。:1 Einleitung, Motivation und Aufgabenstellung der Arbeit
2 Stand der Wissenschaft und Technik
3 Versuchsaufbau, verwendete Messmethoden und experimentelle Versuchsdurchführung
4 Numerische Methoden
5 Experimentelle und numerische Ergebnisse zur laminaren Brenngeschwindigkeit
6 Experimentelle und numerische Ergebnisse zur Erlöschungsstreckungsrate
7 Einfluss der Wasserstoffbeimischung in Methan-Flammen auf die Schadstoffbildung
8 Zusammenfassung und Ausblick
9 Literatur
10 Anhang
|
33 |
Silikonstab-Passivsammler für hydrophobe OrganikaGunold, Roman 23 March 2016 (has links) (PDF)
Diese Dissertation beschäftigt sich mit der passiven Probenahme von hydrophoben organischen Schadstoffen in Oberflächengewässern: Polyaromatische Kohlenwasserstoffe (PAK), polychlorierte Biphenyle (PCB), polybromierte Biphenylether (PBDE), Organochlorpestizide (u. a. HCH, DDX) und weitere hydrophobe Pestizide.
Die Zielstellung dieser Arbeit lag bei der Validierung des Silikonstabs als Alternativmethode im Gewässermonitoring zu konventionellen Probenahmetechniken wie Schöpf- und Wochenmischproben der Wasserphase sowie Schwebstoffanalysen.
Die Probenahme mit dem Silikonstab erfolgte durch dessen Exposition im Gewässer für einen Zeitraum zwischen einer Woche und mehreren Monaten. Nach Einholung wurden die im Silikonstab akkumulierten Schadstoffe (Analyten) mittels instrumenteller Analytik quantifiziert. Die Probenaufgabe erfolgte ohne vorherige Lösungsmittelextraktion durch direktes Erhitzen des Silikonstabs, wodurch die Analyten vom Polymer desorbieren (Thermodesorption). Die durch Hitze freigesetzten Analyten wurden direkt auf eine chromatographische Trennsäule gegeben und massenspektroskopisch quantifiziert.
Nach Erhalt der Ergebnisse der Silikonstab-Analytik gibt es verschiedene Herangehensweisen für die Berechnung der zeitgemittelten Analytkonzentrationen im Gewässer, die in dieser Arbeit vorgestellt und diskutiert werden. Dazu gehören die Verwendung von experimentellen Daten aus Kalibrierversuchen und Berechnungen auf Grundlage von physikochemischen Eigenschaften der Analyten wie dem Sammler-Wasser-Verteilungskoeffizienten.
Im Zuge dieser Arbeit wurde die Aufnahmekinetik des Silikonstabs bei verschiedenen Temperaturen und Fließgeschwindigkeiten mit Hilfe von Kalibrierversuchen untersucht. Die gewonnenen experimentellen Daten wurden für die Entwicklung von Rechenmodellen herangezogen, mit denen das Aufnahmeverhalten vorgesagt werden soll.
Es wurden Sammler-Wasser-Verteilungskoeffizienten für den Silikonstab u. a. mit der Kosolvenzmethode bestimmt und als Parameter für die Berechnung von zeitgemittelten Analytkonzentrationen des Gewässers verwendet.
Für die Validierung wurde der Silikonstab in zwei Gewässergütemessstationen der Fließgewässer Mulde (Dessau) und Elbe (Magdeburg) in Durchflussbehältern exponiert und die zeitgemittelten Analytkonzentrationen mit verschiedenen Rechenmodellen bestimmt. Die erhaltenen Werte werden mit gleichzeitig entnommenen Wochenmischproben der Wasserphase sowie monatlichen Schwebstoffproben verglichen und die Eignung des Silikonstabs als alternative Probenahmemethode für das Umweltmonitoring von Oberflächengewässern diskutiert.
|
34 |
Coherent gas flow patterns in heterogeneous permeability fieldsSamani, Shirin 16 February 2012 (has links) (PDF)
Gas injection into saturated porous media has a high practical relevance. It is applied in
groundwater remediation (air sparging), in CO2 sequestration into saline aquifers, and
in enhanced oil recovery of petroleum reservoirs. This wide range of application
necessitates a comprehensive understanding of gas flow patterns that may develop
within the porous media and required modeling of multi-phase flow. There is an
ongoing controversy in literature, if continuum models are able to describe the complex
flow pattern observed in heterogeneous porous media, especially the channelized
stochastic flow pattern. Based on Selker’s stochastic hypothesis, a gas channel is
caused by a Brownian-motion process during gas injection. Therefore, the pore-scale
heterogeneity will determine the shape of the single stochastic gas channels. On the
other hand there are many studies on air sparging, which are based on continuum
modeling. Up to date it is not clear under which conditions a continuum model can
describe the essential features of the complex gas flow pattern. The aim of this study is
to investigate the gas flow pattern on bench-scale and field scale using the continuum
model TOUGH2. Based on a comprehensive data set of bench-scale experiments and
field-scale experiments, we conduct for the first time a systematic study and evaluate
the prediction ability of the continuum model.
A second focus of this study is the development of a “real world”-continuum model,
since on all scales – pore-scale, bench scale, field scale – heterogeneity is a key driver
for the stochastic gas flow pattern. Therefore, we use different geostatistical programs
to include stochastic conditioned and unconditioned parameter fields.
Our main conclusion from bench-scale experiments is that a continuum model, which is
calibrated by different independent measurements, has excellent prediction ability for
the average flow behavior (e.g. the gas volume-injection rate relation). Moreover, we
investigate the impact of both weak and strong heterogeneous parameter fields
(permeability and capillary pressure) on gas flow pattern. The results show that a
continuum model with weak stochastic heterogeneity cannot represent the essential
features of the experimental gas flow pattern (e.g., the single stochastic gas channels).
Contrary, applying a strong heterogeneity the continuum model can represent the
channelized flow. This observation supports Stauffer’s statement that a so-called subscale
continuum model with strong heterogeneity is able to describe the channelized
flow behavior. On the other hand, we compare the theoretical integral gas volumes with
our experiments and found that strong heterogeneity always yields too large gas
volumes.
At field-scale the 3D continuum model is used to design and optimize the direct gas
injection technology. The field-scale study is based on the working hypotheses that the
key parameters are the same as at bench-scale. Therefore, we assume that grain size and
injection rate will determine whether coherent channelized flow or incoherent bubbly
flow will develop at field-scale. The results of four different injection regimes were
compared with the data of the corresponding field experiments. The main conclusion is
that because of the buoyancy driven gas flow the vertical permeability has a crucial
impact. Hence, the vertical and horizontal permeability should be implemented
independently in numerical modeling by conditioned parameter fields.
|
35 |
Coherent gas flow patterns in heterogeneous permeability fields: Coherent gas flow patterns in heterogeneous permeability fields: from bench-scale to field-scaleSamani, Shirin 02 August 2012 (has links)
Gas injection into saturated porous media has a high practical relevance. It is applied in
groundwater remediation (air sparging), in CO2 sequestration into saline aquifers, and
in enhanced oil recovery of petroleum reservoirs. This wide range of application
necessitates a comprehensive understanding of gas flow patterns that may develop
within the porous media and required modeling of multi-phase flow. There is an
ongoing controversy in literature, if continuum models are able to describe the complex
flow pattern observed in heterogeneous porous media, especially the channelized
stochastic flow pattern. Based on Selker’s stochastic hypothesis, a gas channel is
caused by a Brownian-motion process during gas injection. Therefore, the pore-scale
heterogeneity will determine the shape of the single stochastic gas channels. On the
other hand there are many studies on air sparging, which are based on continuum
modeling. Up to date it is not clear under which conditions a continuum model can
describe the essential features of the complex gas flow pattern. The aim of this study is
to investigate the gas flow pattern on bench-scale and field scale using the continuum
model TOUGH2. Based on a comprehensive data set of bench-scale experiments and
field-scale experiments, we conduct for the first time a systematic study and evaluate
the prediction ability of the continuum model.
A second focus of this study is the development of a “real world”-continuum model,
since on all scales – pore-scale, bench scale, field scale – heterogeneity is a key driver
for the stochastic gas flow pattern. Therefore, we use different geostatistical programs
to include stochastic conditioned and unconditioned parameter fields.
Our main conclusion from bench-scale experiments is that a continuum model, which is
calibrated by different independent measurements, has excellent prediction ability for
the average flow behavior (e.g. the gas volume-injection rate relation). Moreover, we
investigate the impact of both weak and strong heterogeneous parameter fields
(permeability and capillary pressure) on gas flow pattern. The results show that a
continuum model with weak stochastic heterogeneity cannot represent the essential
features of the experimental gas flow pattern (e.g., the single stochastic gas channels).
Contrary, applying a strong heterogeneity the continuum model can represent the
channelized flow. This observation supports Stauffer’s statement that a so-called subscale
continuum model with strong heterogeneity is able to describe the channelized
flow behavior. On the other hand, we compare the theoretical integral gas volumes with
our experiments and found that strong heterogeneity always yields too large gas
volumes.
At field-scale the 3D continuum model is used to design and optimize the direct gas
injection technology. The field-scale study is based on the working hypotheses that the
key parameters are the same as at bench-scale. Therefore, we assume that grain size and
injection rate will determine whether coherent channelized flow or incoherent bubbly
flow will develop at field-scale. The results of four different injection regimes were
compared with the data of the corresponding field experiments. The main conclusion is
that because of the buoyancy driven gas flow the vertical permeability has a crucial
impact. Hence, the vertical and horizontal permeability should be implemented
independently in numerical modeling by conditioned parameter fields.
|
36 |
Silikonstab-Passivsammler für hydrophobe Organika: Aufnahmekinetik, Verteilungskoeffizienten, Modellierung und Freiland-KalibrierungGunold, Roman 14 December 2015 (has links)
Diese Dissertation beschäftigt sich mit der passiven Probenahme von hydrophoben organischen Schadstoffen in Oberflächengewässern: Polyaromatische Kohlenwasserstoffe (PAK), polychlorierte Biphenyle (PCB), polybromierte Biphenylether (PBDE), Organochlorpestizide (u. a. HCH, DDX) und weitere hydrophobe Pestizide.
Die Zielstellung dieser Arbeit lag bei der Validierung des Silikonstabs als Alternativmethode im Gewässermonitoring zu konventionellen Probenahmetechniken wie Schöpf- und Wochenmischproben der Wasserphase sowie Schwebstoffanalysen.
Die Probenahme mit dem Silikonstab erfolgte durch dessen Exposition im Gewässer für einen Zeitraum zwischen einer Woche und mehreren Monaten. Nach Einholung wurden die im Silikonstab akkumulierten Schadstoffe (Analyten) mittels instrumenteller Analytik quantifiziert. Die Probenaufgabe erfolgte ohne vorherige Lösungsmittelextraktion durch direktes Erhitzen des Silikonstabs, wodurch die Analyten vom Polymer desorbieren (Thermodesorption). Die durch Hitze freigesetzten Analyten wurden direkt auf eine chromatographische Trennsäule gegeben und massenspektroskopisch quantifiziert.
Nach Erhalt der Ergebnisse der Silikonstab-Analytik gibt es verschiedene Herangehensweisen für die Berechnung der zeitgemittelten Analytkonzentrationen im Gewässer, die in dieser Arbeit vorgestellt und diskutiert werden. Dazu gehören die Verwendung von experimentellen Daten aus Kalibrierversuchen und Berechnungen auf Grundlage von physikochemischen Eigenschaften der Analyten wie dem Sammler-Wasser-Verteilungskoeffizienten.
Im Zuge dieser Arbeit wurde die Aufnahmekinetik des Silikonstabs bei verschiedenen Temperaturen und Fließgeschwindigkeiten mit Hilfe von Kalibrierversuchen untersucht. Die gewonnenen experimentellen Daten wurden für die Entwicklung von Rechenmodellen herangezogen, mit denen das Aufnahmeverhalten vorgesagt werden soll.
Es wurden Sammler-Wasser-Verteilungskoeffizienten für den Silikonstab u. a. mit der Kosolvenzmethode bestimmt und als Parameter für die Berechnung von zeitgemittelten Analytkonzentrationen des Gewässers verwendet.
Für die Validierung wurde der Silikonstab in zwei Gewässergütemessstationen der Fließgewässer Mulde (Dessau) und Elbe (Magdeburg) in Durchflussbehältern exponiert und die zeitgemittelten Analytkonzentrationen mit verschiedenen Rechenmodellen bestimmt. Die erhaltenen Werte werden mit gleichzeitig entnommenen Wochenmischproben der Wasserphase sowie monatlichen Schwebstoffproben verglichen und die Eignung des Silikonstabs als alternative Probenahmemethode für das Umweltmonitoring von Oberflächengewässern diskutiert.:I ZUSAMMENFASSUNG ...................................................................................................... 2
II INHALTSVERZEICHNIS .................................................................................................. 3
III ABBILDUNGSVERZEICHNIS .......................................................................................... 5
IV TABELLENVERZEICHNIS ................................................................................................ 6
V GLEICHUNGSVERZEICHNIS ............................................................................................ 7
VI ABKÜRZUNGSVERZEICHNIS........................................................................................... 9
0 VIELEN DANK AN … ...................................................................................................... 11
1. EINLEITUNG ................................................................................................................ 12
1.1 Wasser, seine Nutzung und Verschmutzung ............................................................ 12
1.2 Das Wasser und seine Schadstoffe .......................................................................... 15
1.3 Monitoring von Oberflächengewässern .................................................................... 17
1.3.1 Entnahme konventioneller Schöpfproben .............................................................. 17
1.3.2 Entnahme von Mischproben (integrative oder Kompositproben) ........................... 18
1.3.3 Probenahme des Schwebstoffanteils in der Wasserphase .................................... 19
2. PASSIVSAMMLER IN DER WASSERANALYTIK ................................................................ 21
2.1 Theoretische Grundlagen ......................................................................................... 21
2.1.1 Allgemeiner Aufbau von Passivsammlern ............................................................... 23
2.1.2 Die einzelnen Schritte von der Wasser- in die Sammelphase ................................ 25
2.1.3 Adsorptive und absorptive Akkumulation des Analyten in der Sammelphase ........ 26
2.2 Passivsammlersysteme in der Wasseranalytik ......................................................... 28
2.2.1 Absorbierende Passivsammler für hydrophobe Analyten ....................................... 28
2.2.1.1 Semipermeable membrane device (SPMD) .......................................................... 28
2.2.1.2 LDPE-Streifen (LDPE strips) ................................................................................ 29
2.2.1.3 Silikonplatten (silicone sheets) ........................................................................... 30
2.2.1.4 Chemcatcher ...................................................................................................... 31
2.2.1.5 Lösungsmittelfreie Passivsammler (MESCO / Silikonstab) .................................. 32
2.2.2 Absorbierende Passivsammler für polare Analyten ............................................... 35
2.2.2.1 Polar organic integrative Sampler (POCIS) ......................................................... 35
2.2.2.2 Chemcatcher ...................................................................................................... 35
2.3 Auswertung von Passivsammlerdaten ..................................................................... 35
2.3.1 Gleichgewichtssammler ......................................................................................... 36
2.3.2 Laborkalibrierung .................................................................................................. 37
2.3.3 In-situ-Kalibrierung mit Performance Reference Compounds (PRC) ...................... 38
2.3.4 Validierung von Passivsammlern............................................................................ 39
3. LÖSLICHKEIT UND THERMODYNAMISCHES GLEICHGEWICHT ...................................... 41
3.1 Freie Enthalpie und chemisches Potential ................................................................ 41
3.2 Lineare freie Energie-Beziehungen (LFER) für die Abschätzung von KSW ................ 41
3.3 Kosolvenzmodelle für die Modellierung von KSW ...................................................... 43
3.3.1 Log-Linear-Modell von Yalkowsky .......................................................................... 43
3.3.2 Freie Enthalpie-Ansatz (Khossravi-Connors-Modell) .............................................. 44
3.3.3 Jouyban-Acree-Modell ............................................................................................ 44
4. MATERIAL UND METHODEN ......................................................................................... 45
4.1 Präparation der verwendeten Passivsammler .......................................................... 45
4.2 Laborkalibrierung zur Bestimmung von Sammelraten ............................................... 45
4.2.1 Beschreibung der Versuche für die Silikonstab-Kalibrierung .................................. 45
4.3 Experimentelle Bestimmung von Sammler-Wasser-Verteilungskoeffizienten KSW ... 48
4.3.1 Zeitabhängige KSW-Bestimmung in der Wasserphase .......................................... 48
4.3.2 KSW-Bestimmung mit der Kosolvenzmethode ....................................................... 50
4.4 Validierung des Silikonstabs an limnischen Gewässergütemessstationen ............... 52
5. ERGEBNISSE UND DISKUSSION ................................................................................... 55
5.1 Sammelraten RS für den Silikonstab aus Kalibrierversuchen .................................... 55
5.1.1 Temperaturabhängigkeit ....................................................................................... 58
5.1.2 Einfluss der Hydrodynamik auf die Aufnahmekinetik von PAK ................................ 59
5.1.3 Modellierung von Sammelraten .............................................................................. 62
5.1.3.1 Polynomisches Modell nach Vrana [137] ............................................................. 62
5.1.3.2 Diffusionsmodell nach Booij [71] ......................................................................... 64
5.1.3.3 Diffusionsmodell nach Rusina [85] ...................................................................... 66
5.1.4 Wahl der geeigneten In-situ-Kalibrierung am Beispiel eines Kalibrierversuchs ..... 67
5.1.4.1 Berechnung von In-situ-Sammelraten mit RS-Modellen ...................................... 68
5.1.4.2 Berechnung von In-situ-Sammelraten über Eliminierung von PRCs .................... 69
5.1.4.3 Vergleich Modelle und PRCs mit experimentellen Sammelraten .......................... 70
5.2 Experimentelle Bestimmung des Sammler-Wasser-Verteilungskoeffizienten KSW ... 73
5.2.1 Zeitabhängige KSW-Bestimmung in der Wasserphase .......................................... 73
5.2.2 Zusammenfassung KSW(t)-Versuche in der Wasserphase .................................... 81
5.2.3 KSW-Bestimmung mit der Kosolvenzmethode ....................................................... 81
5.2.3.1 Kosolvenzmodelle ............................................................................................... 83
5.2.4 Zusammenfassung ................................................................................................ 90
5.3 Empirische Modelle zur Abschätzung von KSW-Werten ............................................ 92
5.3.1 Lineare Korrelation des KSW mit physikochemischen und Molekülparametern ...... 92
5.3.2 Berechnung mit Mehrparameter-Regression (LSER) .............................................. 95
5.3.3 Zusammenfassung Abschätzung von KSW-Werten für den Silikonstab ................. 97
5.4 Freilandvalidierung des Silikonstab-Passivsammlers ................................................ 97
5.4.1 Ausbringung an Gewässergütemessstationen....................................................... 97
5.4.1.1 Validierung des Silikonstabs mit Wasserproben ............................................... 100
5.4.1.2 Validierung des Silikonstabs mit Sedimentproben ............................................ 102
5.4.2 Validierung des Silikonstabs bei Laborvergleichsstudien ..................................... 105
6. ERGEBNISSE UND AUSBLICK ..................................................................................... 105
VII LITERATURVERZEICHNIS ......................................................................................... 107
VIII ANHANG ................................................................................................................. 116
|
37 |
In silico Interaktionsanalysen von 17β-Estradiol-TargetstrukturenEisold, Alexander 18 April 2019 (has links)
Micro-pollutants such as 17β-estradiol (E2) have been detected in different water resources and their negative effects on the environment and organisms have been demonstrated. It is essential to confirm the presence of micro-pollutants in different environments by biosensors and to remove these compounds. In this thesis, E2-binding target structures were used to investigate the underlying binding properties. E2-binding protein, DNA-, and PNA-aptamere (peptide nucleic acid) structures were used as targets to determine physicochemical interactions. The protein dataset consist of 35 publicly accessible three-dimensional structures of E2-protein complexes, from which six representative binding sites could be selected. There is no three-dimensional structure information for an E2-specific DNA aptamer, thus it was modeled using a coarse-grained modeling method. Using sequence information additional DNA aptamers were modeled. The E2 ligand was positioned close to the potential binding area of the aptamer structures, the underlying complexes were investigated by a molecular dynamics simulation, and the interactions were examined by an interaction profiler tool for each time step. A PNA generator was developed that can convert DNA and RNA in silico to more robust, but chemically equivalent PNA. This generator was used to transform the E2-specific DNA aptamer into PNA for binding studies with E2. All formed complexes were investigated with respect to the following non-covalent interaction types: hydrogen bonds, water-mediated hydrogen bonds, π-stacking, and hydrophobic interactions. Ten functional groups could be derived which formed the conserved interactions to E2. The study contributes to the understanding of the behavior of ligands that bind through different target structures in an aqueous solution and to the identification of binding specific interaction partners. The results of this thesis can be used to design novel synthetic receptor and filter systems.
|
Page generated in 0.0318 seconds