Spelling suggestions: "subject:"semidefinite programming"" "subject:"semidefinite erogramming""
91 |
Analyse en stabilité et synthèse de lois de commande pour des systèmes polynomiaux saturants / Stability analysis and controller synthesis for saturating polynomial systemsValmorbida, Giorgio 08 July 2010 (has links)
La classe des systèmes non-linéaires dont la dynamique est définie par un champ de vecteurs polynomial est étudié. Des modèles polynomiaux peuvent représenter différents systèmes réels ou bien définir des approximations plus riches que des modèles linéaires pour des systèmes non-linéaires différentiables. Des techniques de programmation semi-définie développées récemment ont rendu possible l'étude de cette classe de systèmes avec des outils numériques. Le problème d'analyse en stabilité locale est résolu via des conditions basées sur la positivité de polynomes. Dans le cadre de la synthèse de lois de commande nous proposons un changement de variables linéaire pour traiter la synthèse de lois de commande non-linéaire qui garantissent la stabilité locale. Les ensembles définissant des estimations de la région d'attraction, définis par des courbes de niveau de la fonction de Lyapunov pour le système, sont également donnés par des fonctions polynomiales / We study the class of nonlinear dynamical systems which vector field is defined by polynomial functions. A large set of systems can be modeled using such class of functions. Tests for stability are formulated as semidefinite programming problems by considering positive polinomials to belong to the class of Sum of Squares polynomials. Polynomial control law gains are computed based on a linear change of coordinates and guarantee the local stability of the closed-loop system. Lyapunov theory is then applied in order to obtain estimates of the region of attraction for stable equilibrium points. Such estimates are given by level sets of polynomial positive functions
|
92 |
Exact algorithms for determinantal varieties and semidefinite programming / Algorithmes exacts pour les variétés déterminantielles et la programmation semi-définieNaldi, Simone 24 September 2015 (has links)
Dans cette thèse, nous nous intéressons à l'étude des structures déterminantielles apparaissent dans l'optimisation semi-définie (SDP), le prolongement naturel de la programmation linéaire au cône des matrices symétrique semi-définie positives. Si l'approximation d'une solution d'un programme semi-défini peut être calculé efficacement à l'aide des algorithmes de points intérieurs, ni des algorithmes exacts efficaces pour la SDP sont disponibles, ni une compréhension complète de sa complexité théorique a été atteinte. Afin de contribuer à cette question centrale en optimisation convexe, nous concevons un algorithme exact pour décider la faisabilité d'une inégalité matricielle linéaire (LMI) $A(x)\succeq 0$. Quand le spectraèdre associé (le lieu $\spec$ des $x \in \RR^n$ ou $A(x)\succeq 0$) n'est pas vide, la sortie de cet algorithme est une représentation algébrique d'un ensemble fini qui contient au moins un point $x \in \spec$: dans ce cas, le point $x$ minimise le rang de $A(x)$ sur $\spec$. La complexité est essentiellement quadratique en le degré de la représentation en sortie, qui coïncide, expérimentalement, avec le degré algébrique de l'optimisation semi-définie. C'est un garantie d'optimalité de cette approche dans le contexte des algorithmes exacts pour les LMI et la SDP. Remarquablement, l'algorithme ne suppose pas la présence d'un point intérieur dans $\spec$, et il profite de l'existence de solutions de rang faible de l'LMI $A(x)\succeq 0$. Afin d'atteindre cet objectif principal, nous développons une approche systématique pour les variétés déterminantielles associées aux matrices linéaires. Nous prouvons que décider la faisabilité d'une LMI $A(x)\succeq 0$ se réduit à calculer des points témoins dans les variétés déterminantielles définies sur $A(x)$. Nous résolvons ce problème en concevant un algorithme exact pour calculer au moins un point dans chaque composante connexe réelle du lieu des chutes de rang de $A(x)$. Cet algorithme prend aussi avantage des structures supplémentaires, et sa complexité améliore l'état de l'art en géométrie algébrique réelle. Enfin, les algorithmes développés dans cette thèse sont implantés dans une nouvelle bibliothèque Maple appelé Spectra, et les résultats des expériences mettant en évidence la meilleure complexité sont fournis. / In this thesis we focus on the study of determinantal structures arising in semidefinite programming (SDP), the natural extension of linear programming to the cone of symetric positive semidefinite matrices. While the approximation of a solution of a semidefinite program can be computed efficiently by interior-point algorithms, neither efficient exact algorithms for SDP are available, nor a complete understanding of its theoretical complexity has been achieved. In order to contribute to this central question in convex optimization, we design an exact algorithm for deciding the feasibility of a linear matrix inequality (LMI) $A(x) \succeq 0$. When the spectrahedron $\spec = \{x \in \RR^n \mymid A(x) \succeq 0\}$ is not empty, the output of this algorithm is an algebraic representation of a finite set meeting $\spec$ in at least one point $x^*$: in this case, the point $x^*$ minimizes the rank of the pencil on the spectrahedron. The complexity is essentially quadratic in the degree of the output representation, which meets, experimentally, the algebraic degree of semidefinite programs associated to $A(x)$. This is a guarantee of optimality of this approach in the context of exact algorithms for LMI and SDP. Remarkably, the algorithm does not assume the presence of an interior point in the spectrahedron, and it takes advantage of the existence of low rank solutions of the LMI. In order to reach this main goal, we develop a systematic approach to determinantal varieties associated to linear matrices. Indeed, we prove that deciding the feasibility of a LMI can be performed by computing a sample set of real solutions of determinantal polynomial systems. We solve this problem by designing an exact algorithm for computing at least one point in each real connected component of the locus of rank defects of a pencil $A(x)$. This algorithm admits as input generic linear matrices but takes also advantage of additional structures, and its complexity improves the state of the art in computational real algebraic geometry. Finally, the algorithms developed in this thesis are implemented in a new Maple library called {Spectra}, and results of experiments highlighting the complexity gain are provided.
|
93 |
On Graph Embeddings and a new Minor Monotone Graph Parameter associated with the Algebraic Connectivity of a GraphWappler, Markus 30 May 2013 (has links)
We consider the problem of maximizing the second smallest eigenvalue of the weighted Laplacian of a (simple) graph over all nonnegative edge weightings with bounded total weight.
We generalize this problem by introducing node significances and edge lengths.
We give a formulation of this generalized problem as a semidefinite program.
The dual program can be equivalently written as embedding problem. This is fifinding an embedding of the n nodes of the graph in n-space so that their barycenter is at the origin, the distance between adjacent nodes is bounded by the respective edge length, and the embedded nodes are spread as much as possible. (The sum of the squared norms is maximized.)
We proof the following necessary condition for optimal embeddings. For any separator of the graph at least one of the components fulfills the following property: Each straight-line segment between the origin and an embedded node of the component intersects the convex hull of the embedded nodes of the separator.
There exists always an optimal embedding of the graph whose dimension is bounded by the tree-width of the graph plus one.
We defifine the rotational dimension of a graph. This is the minimal dimension k such that for all choices of the node significances and edge lengths an optimal embedding of the graph can be found in k-space.
The rotational dimension of a graph is a minor monotone graph parameter.
We characterize the graphs with rotational dimension up to two.:1 Introduction
1.1 Notations and Preliminaries
1.2 The Algebraic Connectivity
1.3 Two applications
1.4 Outline
2 The Embedding Problem
2.1 Semidefinite formulation
2.2 The dual as geometric embedding problem
2.3 Physical interpretation and examples
2.4 Formulation without fifixed barycenter
3 Geometrical Operations
3.1 Congruent transformations
3.2 Folding a flat halfspace
3.3 Folding and Collapsing
4 Structural properties of optimal embeddings
4.1 Separator-Shadow
4.2 Separators containing the origin
4.3 The tree-width bound
4.4 Application to trees
5 The Rotational Dimension of a graph
5.1 Defifinition and basic properties
5.2 Characterization of graphs with small rotational dimension
5.3 The Colin de Verdi ere graph parameter
List of Figures
Bibliography
Theses
|
94 |
Stochastic Combinatorial Optimization / Optimisation combinatoire stochastiqueCheng, Jianqiang 08 November 2013 (has links)
Dans cette thèse, nous étudions trois types de problèmes stochastiques : les problèmes avec contraintes probabilistes, les problèmes distributionnellement robustes et les problèmes avec recours. Les difficultés des problèmes stochastiques sont essentiellement liées aux problèmes de convexité du domaine des solutions, et du calcul de l’espérance mathématique ou des probabilités qui nécessitent le calcul complexe d’intégrales multiples. A cause de ces difficultés majeures, nous avons résolu les problèmes étudiées à l’aide d’approximations efficaces.Nous avons étudié deux types de problèmes stochastiques avec des contraintes en probabilités, i.e., les problèmes linéaires avec contraintes en probabilité jointes (LLPC) et les problèmes de maximisation de probabilités (MPP). Dans les deux cas, nous avons supposé que les variables aléatoires sont normalement distribués et les vecteurs lignes des matrices aléatoires sont indépendants. Nous avons résolu LLPC, qui est un problème généralement non convexe, à l’aide de deux approximations basée sur les problèmes coniques de second ordre (SOCP). Sous certaines hypothèses faibles, les solutions optimales des deux SOCP sont respectivement les bornes inférieures et supérieures du problème du départ. En ce qui concerne MPP, nous avons étudié une variante du problème du plus court chemin stochastique contraint (SRCSP) qui consiste à maximiser la probabilité de la contrainte de ressources. Pour résoudre ce problème, nous avons proposé un algorithme de Branch and Bound pour calculer la solution optimale. Comme la relaxation linéaire n’est pas convexe, nous avons proposé une approximation convexe efficace. Nous avons par la suite testé nos algorithmes pour tous les problèmes étudiés sur des instances aléatoires. Pour LLPC, notre approche est plus performante que celles de Bonferroni et de Jaganathan. Pour MPP, nos résultats numériques montrent que notre approche est là encore plus performante que l’approximation des contraintes probabilistes individuellement.La deuxième famille de problèmes étudiés est celle relative aux problèmes distributionnellement robustes où une partie seulement de l’information sur les variables aléatoires est connue à savoir les deux premiers moments. Nous avons montré que le problème de sac à dos stochastique (SKP) est un problème semi-défini positif (SDP) après relaxation SDP des contraintes binaires. Bien que ce résultat ne puisse être étendu au cas du problème multi-sac-à-dos (MKP), nous avons proposé deux approximations qui permettent d’obtenir des bornes de bonne qualité pour la plupart des instances testées. Nos résultats numériques montrent que nos approximations sont là encore plus performantes que celles basées sur les inégalités de Bonferroni et celles plus récentes de Zymler. Ces résultats ont aussi montré la robustesse des solutions obtenues face aux fluctuations des distributions de probabilités. Nous avons aussi étudié une variante du problème du plus court chemin stochastique. Nous avons prouvé que ce problème peut se ramener au problème de plus court chemin déterministe sous certaine hypothèses. Pour résoudre ce problème, nous avons proposé une méthode de B&B où les bornes inférieures sont calculées à l’aide de la méthode du gradient projeté stochastique. Des résultats numériques ont montré l’efficacité de notre approche. Enfin, l’ensemble des méthodes que nous avons proposées dans cette thèse peuvent s’appliquer à une large famille de problèmes d’optimisation stochastique avec variables entières. / In this thesis, we studied three types of stochastic problems: chance constrained problems, distributionally robust problems as well as the simple recourse problems. For the stochastic programming problems, there are two main difficulties. One is that feasible sets of stochastic problems is not convex in general. The other main challenge arises from the need to calculate conditional expectation or probability both of which are involving multi-dimensional integrations. Due to the two major difficulties, for all three studied problems, we solved them with approximation approaches.We first study two types of chance constrained problems: linear program with joint chance constraints problem (LPPC) as well as maximum probability problem (MPP). For both problems, we assume that the random matrix is normally distributed and its vector rows are independent. We first dealt with LPPC which is generally not convex. We approximate it with two second-order cone programming (SOCP) problems. Furthermore under mild conditions, the optimal values of the two SOCP problems are a lower and upper bounds of the original problem respectively. For the second problem, we studied a variant of stochastic resource constrained shortest path problem (called SRCSP for short), which is to maximize probability of resource constraints. To solve the problem, we proposed to use a branch-and-bound framework to come up with the optimal solution. As its corresponding linear relaxation is generally not convex, we give a convex approximation. Finally, numerical tests on the random instances were conducted for both problems. With respect to LPPC, the numerical results showed that the approach we proposed outperforms Bonferroni and Jagannathan approximations. While for the MPP, the numerical results on generated instances substantiated that the convex approximation outperforms the individual approximation method.Then we study a distributionally robust stochastic quadratic knapsack problems, where we only know part of information about the random variables, such as its first and second moments. We proved that the single knapsack problem (SKP) is a semedefinite problem (SDP) after applying the SDP relaxation scheme to the binary constraints. Despite the fact that it is not the case for the multidimensional knapsack problem (MKP), two good approximations of the relaxed version of the problem are provided which obtain upper and lower bounds that appear numerically close to each other for a range of problem instances. Our numerical experiments also indicated that our proposed lower bounding approximation outperforms the approximations that are based on Bonferroni's inequality and the work by Zymler et al.. Besides, an extensive set of experiments were conducted to illustrate how the conservativeness of the robust solutions does pay off in terms of ensuring the chance constraint is satisfied (or nearly satisfied) under a wide range of distribution fluctuations. Moreover, our approach can be applied to a large number of stochastic optimization problems with binary variables.Finally, a stochastic version of the shortest path problem is studied. We proved that in some cases the stochastic shortest path problem can be greatly simplified by reformulating it as the classic shortest path problem, which can be solved in polynomial time. To solve the general problem, we proposed to use a branch-and-bound framework to search the set of feasible paths. Lower bounds are obtained by solving the corresponding linear relaxation which in turn is done using a Stochastic Projected Gradient algorithm involving an active set method. Meanwhile, numerical examples were conducted to illustrate the effectiveness of the obtained algorithm. Concerning the resolution of the continuous relaxation, our Stochastic Projected Gradient algorithm clearly outperforms Matlab optimization toolbox on large graphs.
|
95 |
Towards fast and certified multiple-precision librairies / Vers des bibliothèques multi-précision certifiées et performantesPopescu, Valentina 06 July 2017 (has links)
De nombreux problèmes de calcul numérique demandent parfois à effectuer des calculs très précis. L'étude desystèmes dynamiques chaotiques fournit des exemples très connus: la stabilité du système solaire ou l’itération à longterme de l'attracteur de Lorenz qui constitue un des premiers modèles de prédiction de l'évolution météorologique. Ons'intéresse aussi aux problèmes d'optimisation semi-définie positive mal-posés qui apparaissent dans la chimie oul'informatique quantique.Pour tenter de résoudre ces problèmes avec des ordinateurs, chaque opération arithmétique de base (addition,multiplication, division, racine carrée) demande une plus grande précision que celle offerte par les systèmes usuels(binary32 and binary64). Il existe des logiciels «multi-précision» qui permettent de manipuler des nombres avec unetrès grande précision, mais leur généralité (ils sont capables de manipuler des nombres de millions de chiffres) empêched’atteindre de hautes performances. L’objectif majeur de cette thèse a été de développer un nouveau logiciel à la foissuffisamment précis, rapide et sûr : on calcule avec quelques dizaines de chiffres (quelques centaines de bits) deprécision, sur des architectures hautement parallèles comme les processeurs graphiques et on démontre des bornesd'erreur afin d'être capables d’obtenir des résultats certains. / Many numerical problems require some very accurate computations. Examples can be found in the field ofdynamical systems, like the long-term stability of the solar system or the long-term iteration of the Lorenz attractor thatis one of the first models used for meteorological predictions. We are also interested in ill-posed semi-definite positiveoptimization problems that appear in quantum chemistry or quantum information.In order to tackle these problems using computers, every basic arithmetic operation (addition, multiplication,division, square root) requires more precision than the ones offered by common processors (binary32 and binary64).There exist multiple-precision libraries that allow the manipulation of very high precision numbers, but their generality(they are able to handle numbers with millions of digits) is quite a heavy alternative when high performance is needed.The major objective of this thesis was to design and develop a new arithmetic library that offers sufficient precision, isfast and also certified. We offer accuracy up to a few tens of digits (a few hundred bits) on both common CPU processorsand on highly parallel architectures, such as graphical cards (GPUs). We ensure the results obtained by providing thealgorithms with correctness and error bound proofs.
|
96 |
Contributions to analysis and control of Takagi-Sugeno systems via piecewise, parameter-dependent, and integral Lyapunov functionsGonzález Germán, Iván Temoatzin 04 May 2018 (has links)
Esta tesis considera un enfoque basado en Lyapunov para el análisis y control de sistemas no lineales cuyas ecuaciones dinámicas son reescritas como un modelo Takagi-Sugeno o uno polinomial convexo. Estas estructuras permiten resolver problemas de control mediante técnicas de optimización convexa, más concretamente desigualdades matriciales lineales y suma de cuadrados, que son eficientes herramientas desde un punto de vista computacional. Después de proporcionar una visión general básica del estado actual en el campo de los modelos Takagi-Sugeno, esta tesis aborda cuestiones sobre las funciones de Lyapunov por trozos, dependiente de parámetros e integral de línea, con las siguientes contribuciones:
Un algoritmo mejorado para estimaciones del dominio de atracción de sistemas no lineales para sistemas de tiempo continuo. Los resultados se basan en funciones de Lyapunov por trozos, desigualdades matriciales lineales y argumentaciones geométricas; enfoques basados en conjuntos de nivel en la literatura previa se han mejorado significativamente.
Una función Lyapunov generalizada dependiente de parámetros para la síntesis de controladores para sistemas Takagi-Sugeno. El enfoque propone una ley de control multi-índice que retroalimenta la derivada del tiempo de las funciones de membresía del modelo Takagi-Sugeno para anular los términos que causan localidad a priori en el análisis de Lyapunov.
Una nueva función integral de Lyapunov para el análisis de estabilidad de sistemas no lineales. Estos resultados generalizan aquellos basados en funciones de Lyapunov integral de línea al marco polinomial; resulta que los requisitos de independencia del camino pueden ser anulados por una definición adecuada de una función Lyapunov con términos integrales. / This thesis considers a Lyapunov-based approach for analysis and control of nonlinear systems whose dynamical equations are rewritten as a Takagi-Sugeno model or a convex polynomial one. These structures allow solving control problems via convex optimisation techniques, more specifically linear matrix inequalities and sum-of-squares, which are efficient tools from the computational point of view. After providing a basic overview of the state of the art in the field of Takagi-Sugeno models, this thesis address issues on piecewise, parameter-dependent and line-integral Lyapunov functions, with the following contributions:
An improved algorithm to estimate the domain of attraction of nonlinear systems for continuous-time systems. The results are based on piecewise Lyapunov functions, linear matrix inequalities, and geometrical argumentations; level-set approaches in prior literature are significantly improved.
A generalised parameter-dependent Lyapunov function for synthesis of controllers for Takagi-Sugeno systems. The approach proposed a multi-index control law that feeds back the time derivative of the membership function of the Takagi-Sugeno model to cancel out the terms that cause a priori locality in the Lyapunov analysis.
A new integral Lyapunov function for stability analysis of nonlinear systems. These results generalise those based on line-integral Lyapunov functions to the polynomial framework; it turns out path-independency requirements can be overridden by an adequate definition of a Lyapunov function with integral terms. / Aquesta tesi considera un enfocament basat en Lyapunov per a l'anàlisi i control de sistemes no lineals les equacions dinàmiques dels quals són reescrites com un model Takagi-Sugeno o un de polinomial convex. Aquestes estructures permeten resoldre problemes de control mitjançant tècniques d'optimització convexa, més concretament desigualtats matricials lineals i suma de quadrats, que són eines eficients des d'un punt de vista computacional. Després de proporcionar una visió general bàsica de l'estat actual en el camp dels models Takagi-Sugeno, aquesta tesi aborda qüestions sobre les funcions de Lyapunov per trossos, dependent de paràmetres i integral de línia, amb les següents contribucions:
Un algoritme millorat per a estimar el domini d'atracció de sistemes no lineals per a sistemes de temps continu. Els resultats es basen en funcions de Lyapunov per trossos, desigualtats matricials lineals i argumentacions geomètriques; enfocaments basats en conjunts de nivell en la literatura prèvia s'han millorat significativament.
Una funció Lyapunov generalitzada dependent de paràmetres per a la síntesi de controladors per a sistemes Takagi-Sugeno. L'enfocament proposa una llei de control multi-índex que retroalimenta la derivada del temps de les funcions de membres del model Takagi-Sugeno per anul·lar els termes que causen localitat a priori en l'anàlisi de Lyapunov.
Una nova funció integral de Lyapunov per a l'anàlisi d'estabilitat de sistemes no lineals. Aquests resultats generalitzen aquells basats en funcions de Lyapunov integral de línia al marc polinomial; resulta que els requisits d'independència del camí poden ser anul·lats per una definició adequada d'una funció Lyapunov amb termes integrals. / González Germán, IT. (2018). Contributions to analysis and control of Takagi-Sugeno systems via piecewise, parameter-dependent, and integral Lyapunov functions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/101282
|
Page generated in 0.094 seconds