Spelling suggestions: "subject:"sentiment analysis"" "subject:"centiment analysis""
231 |
Je "hype" opravdu tak mocný? Korelace mezi masovou a sociální médii a fluktuacemi hodnoty kryptoměn / Is hype really that powerful? The correlation between mass and social media and cryptocurrency rates fluctuationsIlina, Viktoriia January 2021 (has links)
Twelve years after Satoshi Nakamoto published the paper describing the functioning mechanism and principals of cryptocurrency that maintains secure and anonymous digital transactions beyond any banks, cryptocurrencies have become a multi-billion-dollar industry comprising millions of investors, miners, developers and profiteers. However, the actual price determinants and ways to forecast future price changes remain an open question yet to discover the answer for. This study attempts to figure out whether media hype exerts that much influence upon cryptocurrencies price movements and whether it can be used as the basis for future movements prediction. Two cryptocurrencies, Bitcoin and Tezos, and 7 mass and social media factors for each of them were considered on daily basis from 08-01-2018 to 10-31-2020. To explore the interdependence between media drivers and cryptocurrencies' prices in short, medium and long timespan, this study deploys wavelet coherence approach. There was found, that price changes turn to be the supreme prior to hype, even though the growing ado may push the prices even higher. Thus, hype is failing to prove itself as a reliable cryptocurrency price predictor. Crypto investors, though, should anyways take the news background into account while building trading strategies,...
|
232 |
Users’ Attitude Towards ChatGPT : A sentiment Analysis on Twitter & RedditÖrnfelt, Jonas January 2023 (has links)
OpenAI recently introduced ChatGPT, a chatbot powered by the GPT-3 family of deep learninglanguage models (LLMs). With the aid of machine learning techniques, ChatGPT has been fine-tuned to improve its capacity to respond to a diverse range of queries, and it has been describedas one of the most advanced machine learning technologies currently available. While AI israpidly advancing and being integrated into society, the comprehension of people's attitudestowards these novel technologies is not progressing at the same rate. Prior research studies andliterature have highlighted the importance of assessing user sentiment towards newly launchedAI services. Evaluating the expressed attitudes towards the recently introduced ChatGPT canprovide valuable insights into the product's potential, as well as highlighting any challenges orproblems encountered by users. This paper presents a study that examines the attitudesexpressed on the social media platforms Twitter and Reddit. For data collection, this studyutilized social media data in the form of free text obtained through the APIs of Twitter andReddit. A qualitative analysis is carried out with the aid of a sentiment analysis tool to assesslanguage and categorize text data based on their expressed attitudes. This data is presented in aquantitative summary. The findings indicate a favorable disposition among users towardsChatGPT in general but that there are areas of concern where users have conveyed sentimentsof feeling intimidated or having a negative resonance with ChatGPT's capabilities andachievements. This study contributes to the existing understanding of user attitudes towardsChatGPT and highlights the necessity for further research to delve deeper into this area.
|
233 |
Predicting High-Cap Tech Stock Polarity: A Combined Approach using Support Vector Machines and Bidirectional Encoders from TransformersGrisham, Ian L 01 May 2023 (has links) (PDF)
The abundance, accessibility, and scale of data have engendered an era where machine learning can quickly and accurately solve complex problems, identify complicated patterns, and uncover intricate trends. One research area where many have applied these techniques is the stock market. Yet, financial domains are influenced by many factors and are notoriously difficult to predict due to their volatile and multivariate behavior. However, the literature indicates that public sentiment data may exhibit significant predictive qualities and improve a model’s ability to predict intricate trends. In this study, momentum SVM classification accuracy was compared between datasets that did and did not contain sentiment analysis-related features. The results indicated that sentiment containing datasets were typically better predictors, with improved model accuracy. However, the results did not reflect the improvements shown by similar research and will require further research to determine the nature of the relationship between sentiment and higher model performance.
|
234 |
Understanding Sales Performance Using Natural Language Processing - An experimental study evaluating rule-based algorithms in a B2B settingSmedberg, Angelica January 2023 (has links)
Natural Language Processing (NLP) is a branch in data science that marries artificial intelligence with linguistics. Essentially, it tries to program computers to understand human language, both spoken and written. Over the past decade, researchers have applied novel algorithms to gain a better understanding of human sentiment. While no easy feat, incredible improvements have allowed organizations, politicians, governments, and other institutions to capture the attitudes and opinions of the public. It has been particularly constructive for companies who want to check the pulse of a new product or see what the positive or negative sentiments are for their services. NLP has even become useful in boosting sales performance and improving training. Over the years, there have been countless studies on sales performance, both from a psychological perspective, where characteristics of salespersons are explored, and from a data science/AI (Artificial Intelligence) perspective, where text is analyzed to predict sales forecasting (Pai & Liu, 2018) and coach sales agents using AI trainers (Luo et al., 2021). However, few studies have discussed how NLP models can help characterize sales performance using actual sales transcripts. Thus, there is a need to explore to what extent NLP models can inform B2B businesses of the characteristics embodied within their salesforce. This study aims to fill that literature gap. Through a partnership with a medium-sized tech company based out of California, USA, this study conducted an experiment to try and answer to what extent can we characterize sales performance based on real-life sales communication? And in what ways can conversational data inform the sales team at a California-based mid-sized tech company about how top performers communicate with customers? In total, over 5000 sentences containing over 110 000 words were collected and analyzed using two separate rule-based sentiment analysis techniques: TextBlob developed by Steven Loria (2013) and Valence Aware Dictionary and sEntiment Reasoner (VADER) developed by CJ Hutto and Eric Gilbert (2014). A Naïve Bayes classifier was then adopted to test and train each sentiment output from the two rule-based techniques. While both models obtained high accuracy, above 90%, it was concluded that an oversampled VADER approach yields the highest results. Additionally, VADER also tends to classify positive and negative sentences more correctly than TextBlob, when manually reviewing the output, hence making it a better model for the used dataset.
|
235 |
Optimizing Lexicon-Based Sentiment Analysis for COVID-19 Twitter : Interactions in Health ContextsRamin, Jafari January 2023 (has links)
During the COVID-19 pandemic, the surge in social media usage has elevated interestin sentiment analysis, especially for health-related applications. This bachelor thesisexplores the effectiveness of two lexicon-based sentiment analysis techniques, with afocus on enhancing the accuracy of the Valence Aware Dictionary for SentimentReasoning (VADER) algorithm. This bachelor's thesis delves into two lexicon-basedsentiment analysis methods, primarily aiming to enhance the accuracy of the ValenceAware Dictionary for Sentiment Reasoning (VADER) algorithm. By assessing 5000manually labeled COVID-19-related tweets across four dataset versions, we gauge therelative effectiveness of these methods. The focus lies on understanding the rolepreprocessing techniques play in sentiment analysis and refining the VADER algorithm.The insights drawn can inform the design of more effective public health policies andcommunication approaches by capturing more accurately public sentiment expressed intweets. In health contexts like COVID-19, it's vital to gauge public sentiment, whichhelps identify and manage psychological distress, anxiety, and fear. Through thissentiment exploration, healthcare providers can offer comprehensive care and improvesupport systems and mechanisms during global health crises like COVID-19.
|
236 |
Swedish finance Twitter accounts short term impact on Swedish small cap companiesJanér, John, Rahimzadagan, Noah January 2021 (has links)
Over the last five years, the amount of retail investors has increased immensely. Trying to make informed decisions, many of the more active investors look to social media as a source of information. In early 2021, the eyes of the world focused on retail investors as Gamestop, a video game retailing company, experienced an immense price surge over the course of a few weeks on the stock market. This event, among others, lead the SEC (Securities and Exchange Commission) to open up a discussion about the impact of social media on the stock market. It seemed individual social media accounts were able to increase the volatility in a number of different stocks. This study investigates the immediate impact of larger Swedish Twitter accounts on the volatility and price of Swedish small- cap companies. Sentiment analysis and data modeling in the Python programming language were used in order to compare volatility and price changes before and after tweets of different sentiments were made about the companies. Our study was unable to find any correlation between an immediate change in price or an immediate increase in volatility and tweets made, suggesting Swedish finance Twitter accounts have little to no immediate impact on Swedish small- cap companies. / Under de senaste fem åren har antalet privata investerare ökat markant. När privata investerare försöker göra välgrundade investeringsbeslut brukar de ofta använda inlägg på sociala medier som ledstjärna. Tidigt på år 2021 vändes blickarna mot privata investerare när priset på spelåterförsäljningsföretaget Gamestops aktier ökat med flera hundratals procent under bara loppet av några få veckor. Denna prisökning fick SEC (Securities and Exchange Commission i USA) att inleda en diskussion om inverkan av sociala medier på aktiehandeln. Mycket påvisade att individuella konton på sociala medier hade förmågan att öka volatilitet av aktiepriser för vissa bolag. Det här forskningsprojektet ämnar att undersöka den omedelbara inverkan av svenska twitterkonton på pris och volatilitet av pris av svenska småföretags aktier. Sentimentanalys och datamodellering gjordes i programmeringsspråket Python för att jämföra volatilitet och prisändringar innan och efter tweets av olika sentiment gjordes om de olika företagen. Studien lyckades inte visa på korrelation mellan en omedelbar ändring i pris eller omedelbar ökning i volatilitet och gjorda tweets, vilket tyder på att twitterkonton har inget eller väldigt lite inflytande på svenska småföretag.
|
237 |
Readability: Man and Machine : Using readability metrics to predict results from unsupervised sentiment analysis / Läsbarhet: Människa och maskin : Användning av läsbarhetsmått för att förutsäga resultaten från oövervakad sentimentanalysLarsson, Martin, Ljungberg, Samuel January 2021 (has links)
Readability metrics assess the ease with which human beings read and understand written texts. With the advent of machine learning techniques that allow computers to also analyse text, this provides an interesting opportunity to investigate whether readability metrics can be used to inform on the ease with which machines understand texts. To that end, the specific machine analysed in this paper uses word embeddings to conduct unsupervised sentiment analysis. This specification minimises the need for labelling and human intervention, thus relying heavily on the machine instead of the human. Across two different datasets, sentiment predictions are made using Google’s Word2Vec word embedding algorithm, and are evaluated to produce a dichotomous output variable per sentiment. This variable, representing whether a prediction is correct or not, is then used as the dependent variable in a logistic regression with 17 readability metrics as independent variables. The resulting model has high explanatory power and the effects of readability metrics on the results from the sentiment analysis are mostly statistically significant. However, metrics affect sentiment classification in the two datasets differently, indicating that the metrics are expressions of linguistic behaviour unique to the datasets. The implication of the findings is that readability metrics could be used directly in sentiment classification models to improve modelling accuracy. Moreover, the results also indicate that machines are able to pick up on information that human beings do not pick up on, for instance that certain words are associated with more positive or negative sentiments. / Läsbarhetsmått bedömer hur lätt eller svårt det är för människor att läsa och förstå skrivna texter. Eftersom nya maskininlärningstekniker har utvecklats kan datorer numera också analysera texter. Därför är en intressant infallsvinkel huruvida läsbarhetsmåtten också kan användas för att bedöma hur lätt eller svårt det är för maskiner att förstå texter. Mot denna bakgrund använder den specifika maskinen i denna uppsats ordinbäddningar i syfte att utföra oövervakad sentimentanalys. Således minimeras behovet av etikettering och mänsklig handpåläggning, vilket resulterar i en mer djupgående analys av maskinen istället för människan. I två olika dataset jämförs rätt svar mot sentimentförutsägelser från Googles ordinbäddnings-algoritm Word2Vec för att producera en binär utdatavariabel per sentiment. Denna variabel, som representerar om en förutsägelse är korrekt eller inte, används sedan som beroende variabel i en logistisk regression med 17 olika läsbarhetsmått som oberoende variabler. Den resulterande modellen har högt förklaringsvärde och effekterna av läsbarhetsmåtten på resultaten från sentimentanalysen är mestadels statistiskt signifikanta. Emellertid är effekten på klassificeringen beroende på dataset, vilket indikerar att läsbarhetsmåtten ger uttryck för olika lingvistiska beteenden som är unika till datamängderna. Implikationen av resultaten är att läsbarhetsmåtten kan användas direkt i modeller som utför sentimentanalys för att förbättra deras prediktionsförmåga. Dessutom indikerar resultaten också att maskiner kan plocka upp på information som människor inte kan, exempelvis att vissa ord är associerade med positiva eller negativa sentiment.
|
238 |
Big Social Data Analytics: A Model for the Public SectorBin Saip, Mohamed A. January 2019 (has links)
The influence of Information and Communication Technologies (ICTs)
particularly internet technology has had a fundamental impact on the
way government is administered, provides services and interacts with citizens.
Currently, the use of social media is no longer limited to informal environments
but is an increasingly important medium of communication between citizens and
governments. The extensive and increasing use of social media will continue to
generate huge amounts of user-generated content known as Big Social Data
(BSD). The growing body of BSD presents innumerable opportunities as well as
challenges for local government planning, management and delivery of public
services to citizens. However, the governments have not yet utilised the
potential of BSD for better understanding the public and gaining new insights
from this new way of interactions. Some of the reasons are lacking in the
mechanism and guidance to analyse this new format of data. Thus, the aim of
this study is to evaluate how the body of BSD can be mined, analysed and
applied in the context of local government in the UK. The objective is to develop
a Big Social Data Analytics (BSDA) model that can be applied in the case of local
government. Data generated from social media over a year were collected,
collated and analysed using a range of social media analytics and network
analysis tools and techniques. The final BSDA model was applied to a local
council case to evaluate its impact in real practice. This study allows to better
understand the methods of analysing the BSD in the public sector and extend
the literature related to e-government, social media, and social network theory / Universiti Utara Malaysia
|
239 |
A Hyperlink and Sentiment Analysis of the 2016 Presidential Election: Intermedia Issue Agenda and Attribute Agenda Setting in Online ContextsJoa, Youngnyo 02 August 2017 (has links)
No description available.
|
240 |
Herausforderungen für Sentiment Analysis bei literarischen TextenSchmidt, Thomas, Burghardt, Manuel, Wolff, Christian 29 May 2024 (has links)
In diesem Beitrag wird über die Ergebnisse eines laufenden Digital Humanities-Projekt zur Sentiment
Analysis in literarischen Texten berichtet und die Implikation von diesem diskutiert. In dem Projekt werden verschiedene Methoden der Sentiment Analysis auf Texte historischer Dramen des 18. Jahrhunderts
von G. E. Lessing implementiert und gegeneinander evaluiert. Zur Evaluation wurde ein von Menschen
bezüglich des Sentiments annotiertes Testkorpus erstellt. Basierend auf den ersten Erfahrungen des Projekts diskutieren wir über Probleme und Herausforderungen, die sich aus der Perspektive der Informatik
zur Sentiment Analysis historischer Dramen ergaben. Es wird deutlich, dass bestehende Standardlösungen der Sentiment Analysis für dieses spezifische Szenario nicht ohne Weiteres anwendbar sind. Vielmehr ist die Informatik gefordert, die bestehenden Methoden anzupassen, weiterzuentwickeln und sich
mit besonderen Eigenheiten der Textform historischer literarischer Texte auseinanderzusetzen.
|
Page generated in 0.0736 seconds