Spelling suggestions: "subject:"deries temporais"" "subject:"deries atemporais""
171 |
[en] A HYBRID NEURO- EVOLUTIONARY APPROACH FOR DYNAMIC WEIGHTED AGGREGATION OF TIME SERIES FORECASTERS / [pt] ABORDAGEM HÍBRIDA NEURO-EVOLUCIONÁRIA PARA PONDERAÇÃO DINÂMICA DE PREVISORESCESAR DAVID REVELO APRAEZ 18 February 2019 (has links)
[pt] Estudos empíricos na área de séries temporais indicam que combinar
modelos preditivos, originados a partir de diferentes técnicas de modelagem,
levam a previsões consensuais superiores, em termos de acurácia, às previsões
individuais dos modelos envolvidos na combinação. No presente trabalho é
apresentada uma metodologia de combinação convexa de modelos estatísticos de
previsão, cujo sucesso depende da forma como os pesos de combinação de cada
modelo são estimados. Uma Rede Neural Artificial Perceptron Multi-camada
(Multilayer Perceptron - MLP) é utilizada para gerar dinamicamente vetores de
pesos ao longo do horizonte de previsão, sendo estes dependentes da contribuição
individual de cada previsor observada nos dados históricos da série. O ajuste dos
parâmetros da rede MLP é efetuado através de um algoritmo de treinamento
híbrido, que integra técnicas de busca global, baseadas em computação
evolucionária, junto com o algoritmo de busca local backpropagation, de modo a
otimizar de forma simultânea tanto os pesos quanto a arquitetura da rede, visando,
assim, a gerar de forma automática um modelo de ponderação dinâmica de
previsores de alto desempenho. O modelo proposto, batizado de Neural Expert
Weighting - Genetic Algorithm (NEW-GA), foi avaliado em diversos
experimentos comparativos com outros modelos de ponderação de previsores,
assim como também com os modelos individuais envolvidos na combinação,
contemplando 15 séries temporais divididas em dois estudos de casos: séries de
derivados de petróleo e séries da versão reduzida da competição NN3, uma
competição entre metodologias de previsão, com maior ênfase nos modelos
baseados em Redes Neurais. Os resultados demonstraram o potencial do NEWGA
em fornecer modelos acurados de previsão de séries temporais. / [en] Empirical studies on time series indicate that the combination of forecasting
models, generated from different modeling techniques, leads to higher
consen+sus forecasts, in terms of accuracy, than the forecasts of individual
models involved in the combination scheme. In this work, we present a
methodology for convex combination of statistical forecasting models, whose
success depends on how the combination weights of each model are estimated.
An Artificial Neural Network Multilayer Perceptron (MLP) is used to generate
dynamically weighting vectors over the forecast horizon, being dependent on the
individual contribution of each forecaster observed over historical data series. The
MLP network parameters are adjusted via a hybrid training algorithm that
integrates global search techniques, based on evolutionary computation, along
with the local search algorithm backpropagation, in order to optimize
simultaneously both weights and network architecture. This approach aims to
automatically generate a dynamic weighted forecast aggregation model with
high performance. The proposed model, called Neural Expert Weighting -
Genetic Algorithm (NEW-GA), was com- pared with other forecaster
combination models, as well as with the individual models involved in the
combination scheme, comprising 15 time series divided into two case studies:
Petroleum Products and the reduced set of NN3 forecasting competition, a
competition between forecasting methodologies, with greater emphasis on
models based on neural networks. The results obtained demonstrated the
potential of NEW-GA in providing accurate models for time series forecasting.
|
172 |
[en] SYNTHESIS OF RAIN ATTENUATION TIME SERIES FOR EARTH-SPACE PATHS IN TROPICAL AND EQUATORIAL AREAS / [pt] SÍNTESE DE SÉRIES TEMPORAIS DE ATENUAÇÃO POR CHUVA PARA ENLACES TERRA-ESPAÇO EM ÁREAS TROPICAIS E EQUATORIAISMARCIO EDUARDO DA COSTA RODRIGUES 02 April 2019 (has links)
[pt] Sintetizadores de séries temporais de atenuação por chuva constituem um importante recurso para o projeto, teste e otimização de Técnicas de Mitigação de Desvanecimento. Como dados experimentais de propagação não estão disponíveis para todas as configurações possíveis de enlaces Terra-espaço, a síntese de séries temporais de atenuação por chuva torna-se uma solução interessante, permitindo a reprodução das características dinâmicas de longa duração da atenuação pela chuva. Nesta tese de doutorado, modelos de canal capazes de sintetizar períodos curtos e longos de atenuação por chuva são analisados, testados e validados para os climas tropical e equatorial brasileiros. Aspectos críticos que determinam o
correto comportamento destes geradores de séries temporais são analisados e sua faixa de validade é apresentada. Em regiões de clima tropical e equatorial, o desenvolvimento insuficiente da estrutura de telecomunicações terrestre e, por vezes, a necessidade de vencer distâncias continentais, amplificam a necessidade de implementação de sistemas de comunicação por satélite no médio prazo. Tais sistemas apresentam a vantagem de servir grandes áreas com curto tempo de implantação e a possibilidade de atingir mercado considerável. Para as novas aplicações, fortemente focadas em conteúdo multimídia para consumidores corporativos e residenciais, a banda C não é atraente porque o desenvolvimento de novos
sistemas com pequenos terminais, como desejado, é incompatível com as grandes antenas necessárias para a proteção dos sistemas existentes nesta banda. Para o fornecimento de serviços multimídia a altas taxas é previsto o uso da banda Ka. Problemas de propagação são severos nestas altas faixas de frequência de forma que figuras de mérito padrão para desempenho e disponibilidade são difíceis de ser obtidas em regiões climáticas tropicais e equatoriais. Por esta razão, metodologias tradicionais de cálculo de enlaces, que levam ao uso de altas margens fixas não são as mais indicadas. Lança-se mão de Técnicas de Mitigação de Desvanecimento (Fade Mitigation Techniques, FMT). No projeto e otimização de FMTs, o conhecimento do comportamento dinâmico do canal de radiopropagação é necessário. Objetivando preencher este requisito, são usadas séries temporais de atenuação por chuva nas simulações de sistema. Porém, séries temporais experimentais não estão disponíveis em nível global em todas as frequências e inclinações de enlace desejadas, para que se projete e teste FMTs. Portanto, a alternativa ao uso de séries experimentais é a geração (sintetização) de séries temporais de atenuação por chuva fazendo uso de
características climatológicas bem como de parâmetros geométricos e de propagação relativos ao enlace.
Neste trabalho, modelos de canal baseados na abordagem original de Maseng e Bakken são testados com dados de beacon em 11,5 GHz (banda Ku), medidos em quatro localidades Brasileiras, representativas de climas tropical, subtropical e equatorial. Ainda, um modelo misto usando cadeias de Markov e um modelo, já existente, gerador de eventos de atenuação por chuva sob demanda é proposto e analisado. Validação é realizada por meio de variáveis de teste propostas pela ITU-R e também pela análise da fidelidade que características específicas dos eventos sintetizados possuem em relação às características de eventos reais medidos. / [en] Rain attenuation time series synthesizers constitute an important resource to the design, test and optimization of Fade Mitigation Techniques (FMTs). In the absence of experimental propagation data for every possible Earth-Space configuration, the synthesis of rain attenuation time series becomes an interesting
solution to allow for the reproduction of the long-term dynamic characteristics of rain attenuation. In this thesis, channel models able to synthesize long- and shortterm rain attenuation periods are discussed, tested and validated for the Brazilian tropical and equatorial climates. Critical issues determining the correct behavior
of such time series generators are analyzed and their range of validity is presented.
|
173 |
[en] USING LINEAR AND NON-LINEAR APPROACHES TO MODEL THE BRAZILIAN ELECTRICITY SPOT PRICE SERIES / [pt] MODELOS LINEARES E NÃO LINEARES NA MODELAGEM DO PREÇO SPOT DE ENERGIA ELÉTRICA DO BRASILLUIZ FELIPE MOREIRA DO AMARAL 17 July 2003 (has links)
[pt] Nesta dissertação, estratégias de modelagem são
apresentadas envolvendo modelos de séries temporais
lineares e não lineares para modelar a série do preço
spot no mercado elétrico brasileiro. Foram usados, dentre
os lineares, os modelos ARIMA(p,d,q) proposto por Box,
Jenkins e Reinsel (1994) e os modelos de regressão
dinâmica. Dentre os não lineares, o modelo escolhido foi o
STAR desenvolvido, inicialmente, por Chan e Tong (1986) e,
posteriormente, por Teräsvista (1994). Para este modelo,
testes do tipo Multiplicador de Lagrange foram usados para
testar linearidade, bem como para avaliar os modelos
estimados. Além disso, foi também utilizada uma proposta
para os valores iniciais do algoritmo de otimização,
desenvolvido por Franses e Dijk (2000). Estimativas do
filtro de Kalman suavizado foram usadas para substituir os
valores da série de preço durante o racionamento de energia
ocorrido no Brasil. / [en] In this dissertation, modeling strategies are presented
involving linear and non-linear time series models to model
the spot price of Brazil s electrical energy market. It has
been used, among the linear models, the modeling approach
of Box, Jenkins and Reinsel (1994) i.e., ARIMA(p,d,q)
models, and dynamic regression. Among the non-linear ones,
the chosen model was the STAR developed, initially,
by Chan and Tong (1986) and, later, by Teräsvirta (1994).
For this model, the Lagrange Multipliers test, to measure
the degree of non linearity of the series , as well as to
evaluate the estimated model was used. Moreover, it was
also used a proposal for the initial values of the
optimization algorithm, developed by Franses and Dijk
(2000). The smoothed Kalman filter estimates were used in
order to provide values for the spot price series during
the energy shortage period.
|
174 |
[en] THE INFLUENCE OF THE SAMPLING INTERVAL IN THE LONG MEMORY ESTIMATION IN TIME SERIES / [es] INFLUENCIA DEL INTERVALO DE OBSERVACIÓN EN LA ESTIMACIÓN DE LA MEMORIA PROLONGADA / [pt] INFLUÊNCIA DO INTERVALO DE OBSERVAÇÃO NA ESTIMAÇÃO DA MEMÓRIA LONGALEONARDO ROCHA SOUZA 06 April 2001 (has links)
[pt] Esta tese de doutorado relaciona a estimação da
diferenciação fracionária, como medida de
memória longa, com o intervalo de tempo entre observações
contíguas de uma série temporal. Em
teoria, o grau de diferenciação é constante em relação à
diminuição da freqüência de observação, não
importando se para diminuir a freqüência de observação
ignore-se as observações intermediárias ou
agregue-se as observações temporalmente. Entretanto, para o
caso de se obter séries amostradas a uma
freqüência mais baixa através de se ignorar observações
intermediárias, observamos nesta tese, através
de simulações Monte Carlo, um corportamento diverso.
Quando se amostra toda n-ésima observação de uma série,
n>1, nota-se um considerável vício
de estimação do grau de diferenciação (ou parâmetro de
memória longa). O viés é em direção de zero,
sendo positivo para valores negativos do parâmetro de
memória longa e negativo para valores
positivos do parâmetro de memória longa, d. Para valores
positivos de d, o viés tem natureza
aproximadamente quadrática, diminuindo para valores de d
próximos de zero ou 0,5 e sendo mais
intenso para valores em torno de 0,25. Para valores
negativos de d, o viés é tal que a estimativa fica
sempre bem próxima de zero, ou seja, é da magnitude de d.
Ao considerarmos o efeito de aliasing (em que componentes
de período menor que o intervalo
de observação são observados como se tivessem freqüências
mais baixas) conseguimos fórmulas
heurísticas que explicam satisfatoriamente esse vício,
produzindo resultados bastante semelhantes ao
verificado nas simulações Monte Carlo.
Por outro lado, se a diminuição na freqüência de observação
é induzida por agregação
temporal, não há vício considerável na estimação, como
também mostramos atrvés de simulações
Monte Carlo.
Propõe-se nesta tese ainda uma maneira de melhorar a
estimação da memória longa através da
combinação de estimativas da série amostrada a diferentes
freqüências. Em alguns casos, consegue-se
reduções de até 30% no desvio-padrão da estimativa
combinada em relação à original, sem causar viés
significativo. / [en] This thesis investigates the relationship between the
estimation of the fractional integration, as a measure of
long memory, and the time interval between observations of
a time series. In theory, the fractional integration is
invariant to the frequency of observation. However, skip-
sampling induces a considerable bias in the estimation, as
shown by Monte Carlo simulations. The aliasing effect
explains the bias and suggests formulas for it, which yield
results very close to the simulated ones. On the other
hand, temporal aggregation does not induce relevant bias to
the long memory estimation. In addition, a combination of
estimates from the same data sampled at different rates is
proposed, achieving in some cases reduction of 30% in the
root mean squared estimation error. / [es] Esta tesis de doctorado relaciona la estimación de la
diferenciación fraccionaria, como medida de memoria
prolongada, con el intervalo de tiempo entre observaciones
contíguas de una serie de tiempo. En teoría, el grado de
diferenciación es constante en relación a la disminución de
la frecuencia de observación, sin importar que para
disminuir la frecuencia de observación se ignoren las
observaciones intermedias o se agreguen observaciones
temporalmente. Sin embargo, en esta tesis se observa, a
través de simulaciones Monte Carlo, un comportamiento
diverso en el caso de obtener series muestreadas a una
frecuencia más baja ignorando observaciones intermedias.
Cuando se muestrea la n-ésima observación de una serie,
n>1, se nota un considerable sesgo de estimación del grado
de diferenciación (o parámetro de memoria longa). El sesgo
está en dirección de cero, siendo positivo para valores
negativos del parámetro de memoria prolongada y negativo
para valores positivos del parámetro de memoria prolongada,
d. Para valores positivos de d, el sesgo tiene una
naturaleza aproximadamente cuadrática, disminuyendo para
valores de d próximos de cero o 0,5 y siendo más intenso
para valores en torno de 0,25. Para valores negativos de d,
el sesgo es tal que la estimativa está siempre bien próxima
de cero, o sea, es de la magnitude de d. Al considerar el
efecto de aliasing (en que componentes de período menor que
el intervalo de observación son observados como se tuvieran
frecuencias más bajas) conseguimos fórmulas heurísticas que
explican satisfactoriamente ese sesgo, produciendo
resultados bastante semejantes a los obtenidos en las
simulaciones Monte Carlo. Por otro lado, si la disminución
en la frecuencia de observación se induce por agregación
temporal, no hay sesgo considerable en la estimación, como
también mostramos a través de simulaciones Monte Carlo. Se
propone en esta tesis una forma de mejorar la estimación de
la memoria prolongada a través de la combinación de
estimativas de la serie amostrada a diferentes frecuencias.
En algunos casos, se consiguen reducciones de hasta 30% en
la desviación estándar de la estimativa combinada en
relación a la original, sin causar sesgo significativo.
|
175 |
[en] STATISTICAL MODEL FOR PREDICTING THE SUPPLY OF HIGHER EDUCATION: 2015-2035 / [es] MODELO ESTADÍSTICO PARA LA PROYECCIÓN DE OFERTA DE EDUCACIÓN SUPERIOR: 2015-2035 / [pt] MODELO ESTATÍSTICO PARA A PROJEÇÃO DA OFERTA DE ENSINO SUPERIOR: 2015-2035CLARENA PATRICIA ARRIETA ARRIETA 03 October 2018 (has links)
[pt] Segundo o INEP/MEC, nos últimos 20 anos, o número de matrículas da educação superior de graduação no Brasil cresceu mais de duas vezes, com uma taxa de crescimento anual verificada a partir de 2001 em torno de 5,7 por cento ao ano. Ainda segundo esta instituição, em 2008 houve o ingresso de 1.505.819
novos estudantes nos cursos presenciais, ao mesmo tempo em que 1.479.318 vagas não foram ocupadas, sendo que 54,6 por cento do total de vagas ofertadas pelo setor privado. Tendo em conta que São Paulo é o maior estado do Brasil, é muito importante que o Ministério da Educação tome conhecimento de como
se dará a dinâmica da oferta de educação superior nos próximos 20 anos para que suas ações (políticas públicas, sobretudo) possam ser realizadas com êxito. O objetivo deste trabalho é aplicar modelagem estatística para estimar a oferta do ensino superior do Estado de São Paulo no período de 2015 a 2035, considerando dados da INEP de educação superior. A motivação para este trabalho é melhorar o planejamento da oferta de curso superior e fazer a replicação do modelo preditivo para outros estados do Brasil. A metodologia usada é modelagem estatística (modelos de regressão linear) e séries temporais
(Holt). Como resultado, têm-se as áreas e/os cursos onde o governo federal deve investir no futuro aprimorando seu planejamento. / [en] According to INEP/MEC, in the last 20 years, the number of
undergraduate higher education enrollments in Brazil has grown more than
twice, with an annual growth rate of 5,7 percent per year since 2001. According
to this institution, in 2008 there were 1.505.819 new students enrolled in
presential courses, while 1.479.318 vacancies were not filled, with 54.6 percent of the
total number of vacancies offered by the private sector. Given that São Paulo is
the largest state in Brazil, it is very important that the Ministry of Education
becomes aware of the dynamics of the offer of higher education in the next 20
years so that its actions (mainly public policies) can be successfully executed.
The objective of this study is to apply statistical modeling to estimate the
offer of higher education in the State of São Paulo in the period from 2015
to 2035, considering data from INEP about higher education. The motivation
for this work is to improve the planning of the offer of higher education and
to replicate the predictive model for other Brazilian states. The methodology
used concerns statistical modeling (linear regression models) and time series
(Holt). As a result, it is obtained the areas and/or courses where the federal
government should invest in the future, improving its planning. / [es] Según el INEP/MEC, en los últimos 20 años, el número de matrículas de educación superior en Brasil creció más de dos veces, con una tasa de crecimiento anual verificada a partir de 2001 en torno al 5,7 por ciento por año. Según esta institución, en 2008 hubo un ingreso de 1.505.819 nuevos estudiantes en los cursos presenciales, al mismo tiempo que 1.479.318 vacantes no fueron ocupadas, siendo el 54,6 por ciento del total de vacantes ofrecidas por el sector privado. Dado que São Paulo es el mayor estado de Brasil, es muy importante que el Ministerio de Educación tome conocimiento de cómo se dará la dinámica de la oferta de educación superior en los próximos 20 años para que sus acciones (políticas públicas, sobre todo) puedan realizarse con éxito. El objetivo de este trabajo es aplicar modelos estadísticos para estimar la oferta de educación superior del Estado de São Paulo en el período de 2015 a 2035, considerando datos de INEP de educación superior. La motivación para este trabajo es mejorar la planificación de la oferta de curso superior y hacer replicación del modelo predictivo para otros estados de Brasil. La metodología utilizada es
modelos estadístico (modelos de regresión lineal) y series tiempo (Holt). Como resultado, se tienen las áreas y/o cursos donde el gobierno federal debe invertir en el futuro mejorando su planificación.
|
176 |
[en] A SYSTEM FOR STOCK MARKET FORECASTING AND SIMULATION / [pt] UM SISTEMA PARA PREDIÇÃO E SIMULAÇÃO DO MERCADO DE CAPITAISPAULO DE TARSO GOMIDE CASTRO SILVA 02 February 2017 (has links)
[pt] Nos últimos anos, vem crescendo o interesse acerca da predição do comportamento do mercado de capitais, tanto por parte dos investidores quanto dos pesquisadores. Apesar do grande número de publicações tratando esse problema, predizer com eficiência futuras tendências e desenvolver estratégias de negociação capazes de traduzir boas predições em lucros são ainda grandes desafios. A dificuldade em realizar tais tarefas se deve tanto à não linearidade e grande volume de ruídos presentes nos dados do mercado, quanto à falta de sistemas que possam avaliar com propriedade a qualidade das predições realizadas. Nesse trabalho, são realizadas predições de séries temporais visando auxiliar o investidor tanto em operações de compra e venda, como em Pairs Trading. Além disso, as predições são feitas considerando duas diferentes periodicidades. Uma predição interday, que considera apenas dados diários e tem como objetivo a predição de valores referentes ao presente dia. E uma predição intraday, que visa predizer valores referentes a cada hora de negociação do dia atual e para isso considera também os dados intraday conhecidos até o momento que se deseja prever. Para ambas as tarefas propostas, foram testadas três ferramentas de predição, quais sejam, Regressão por Mínimos Quadrados Parciais, Regressão por Vetores de Suporte e Redes Neurais Artificiais. Com o intuito de melhor avaliar a qualidade das predições realizadas, é proposto ainda um trading system. Os testes foram realizados considerando ativos das companhias mais negociadas da BM e FBOVESPA, a bolsa de valores oficial do Brasil e terceira maior do mundo. Os resultados dos três preditores são apresentados e comparados a quatro benchmarks, bem como com a solução ótima. A diferença na qualidade de predição, considerando o erro de predição ou as métricas do trading system, são notáveis. Se quando analisado apenas o Erro Percentual Absoluto Médio os preditores propostos não mostram uma melhora significativa, quando as métricas do trading system são consideradas eles apresentam um resultado bem superior. O retorno anual do investimento em alguns casos atinge valor superior a 300 por cento. / [en] The interest of both investors and researchers in stock market behavior forecasting has increased throughout the recent years. Despite the wide number of publications examining this problem, accurately predicting future stock trends and developing business strategies capable of turning good predictions into profits are
still great challenges. This is partly due to the nonlinearity and noise inherent to the stock market data source, and partly because benchmarking systems to assess the forecasting quality are not publicly available. Here, we perform time series forecasting aiming to guide the investor both into Pairs Trading and buy and sell
operations. Furthermore, we explore two different forecasting periodicities. First, an interday forecast, which considers only daily data and whose goal is predict values referring to the current day. And second, the intraday approach, which aims to predict values referring to each trading hour of the current day and also
takes advantage of the intraday data already known at prediction time. In both forecasting schemes, we use three regression tools as predictor algorithms, which are: Partial Least Squares Regression, Support Vector Regression and Artificial Neural Networks. We also propose a trading system as a better way to assess
the forecasting quality. In the experiments, we examine assets of the most traded companies in the BM and FBOVESPA Stock Exchange, the world s third largest and official Brazilian Stock Exchange. The results for the three predictors are presented and compared to four benchmarks, as well as to the optimal solution.
The difference in the forecasting quality, when considering either the forecasting error metrics or the trading system metrics, is remarkable. If we consider just the mean absolute percentage error, the proposed predictors do not show a significant superiority. Nevertheless, when considering the trading system evaluation, it shows really outstanding results. The yield in some cases amounts to an annual return on investment of more than 300 per cent.
|
177 |
[en] APPLICATION OF NONLINEAR MODELS FOR AUTOMATIC TRADING IN THE BRAZILIAN STOCK MARKET / [pt] APLICAÇÃO DE MODELOS NÃO LINEARES EM NEGOCIAÇÃO AUTOMÁTICA NO MERCADO ACIONÁRIO BRASILEIROTHIAGO REZENDE PINTO 16 October 2006 (has links)
[pt] Esta dissertação tem por objetivo comparar o desempenho de
modelos não
lineares de previsão de retornos em 10 ativos do mercado
acionário brasileiro. Entre os modelos escolhidos, pode-se
citar o STAR-Tree, que combina
conceitos da metodologia STAR (Smooth Transition
AutoRegression) e do
algoritmo CART (Classification And Regression Trees),
tendo como resultado final uma regressão com transição
suave entre múltiplos regimes. A
especificação do modelo é feita através de testes de
hipótese do tipo Multiplicador de Lagrange que indicam o
nó a ser dividido e a variável explicativa
correspondente. A estimação dos parâmetros é feita pelo
método de Mínimos
Quadrados Não Lineares para determinar o valor dos
parâmetros lineares
e não lineares. Redes Neurais, modelos ARMAX (estes
lineares) e ainda o
método Naive também foram incluídos na análise. Os
resultados das previsões foram avaliados a partir de
medidas estatísticas e financeiras e se
basearam em um negociador automático que informa o
instante correto de
assumir uma posição comprada ou vendida em cada ativo. Os
melhores desempenhos foram alcançados pelas Redes Neurais,
pelos modelos ARMAX
e pela forma de previsão ARC (Adaptative Regime
Combination) derivada
da metodologia STAR-Tree, sendo ambos ainda superiores ao
retorno das
ações durante o período de teste / [en] The goal of this dissertation is to compare the
performance of non linear
models to forecast return on 10 equities in the Brazilian
Stock Market.
Among the chosen ones, it can be cited the STAR-Tree,
which matches
concepts from the STAR (Smooth Transition AutoRegression)
methodology
and the CART (Classification And Regression Trees)
algorithm, having
as the resultant structure a regression with smooth
transition among
multiple regimes. The model specification is done by
Lagrange Multiplier
hypothesis tests that indicate the node to be splitted and
the corresponding
explanatory variable. The parameter estimation is done by
the Non Linear
Least Squares method that determine the linear and non
linear parameters.
Neural Netwoks, ARMAX models (these ones linear) and the
Naive method
were also included in the analysis. The forecasting
results were calculated
using statistical and financial measures and were based on
an automatic
negociator that signaled the right instant to take a short
or a long position in
each stock. The best results were reached by the Neural
Networks, ARMAX
models and ARC (Adaptative Regime Combination )
forecasting method
derived from STAR-Tree, with all of them performing better
then the equity
return during the test period.
|
178 |
[en] TREE-STRUCTURED SMOOTH TRANSITION REGRESSION MODELS / [pt] MODELOS DE REGRESSÃO COM TRANSIÇÃO SUAVE ESTRUTURADOS POR ÁRVORESJOEL MAURICIO CORREA DA ROSA 22 July 2005 (has links)
[pt] O objetivo principal desta tese introduzir um modelo
estruturado por árvores
que combina aspectos de duas metodologias: CART
(Classification and Regression
Tree) e STR (Smooth Transition Regression). O modelo aqui
denominado
STR-Tree. A idéia especificar um modelo não-linear
paramétrico através da estrutura
de uma árvore de decisão binária. O modelo resultante pode
ser analisado
como uma regressão com transição suave entre múltiplos
regimes. As decisões
sobre as divisões dos nós são inteiramente baseadas em
testes do tipo Multiplicadores
de Lagrange. Uma especificação alternativa baseada em
validação cruzada
também utilizada. Um experimento de Monte Carlo utilizado
para avaliar o
desempenho da metodologia proposta comparando-a com outras
técnicas comumente
utilizadas. Como resultado verifica-se que o modelo STR-
Tree supera o
tradicional CART quando seleciona a arquitetura de árvores
simuladas. Além do
mais, utilizar testes do tipo Multiplicadores de Lagrange
gera resultados melhores
do que procedimentos de validação cruzada. Quando foram
utilizadas bases
de dados reais, o modelo STR-Tree demonstrou habilidade
preditiva superior ao
CART. Através de uma aplicação, extende-se a metodologia
para a análise de
séries temporais. Neste caso, o modelo denominado STAR-
Tree, sendo obtido
através de uma árvore de decisão binária que ajusta
modelos autoregressivos de
primeira ordem nos regimes. A série de retornos da taxa de
câmbio Euro/Dólar
foi modelada e a capacidade preditiva e o desempenho
financeiro do modelo
foi comparado com metodologias padrões como previsões
ingênuas e modelos
ARMA. Como resultado obtido um modelo parcimonioso que
apresenta desempenho
estatístico equivalente às estratégias convencionais,
porém obtendo
resultados financeiros superiores. / [en] He main goal of this Thesis is to introduce a tree-
structured model that combines
aspects from two methodologies: CART (Classification and
Regression Trees)
and STR (Smooth Transition Regression). The model is
called STR-Tree, The
idea is to specify a nonlinear parametric model through
the structure of a binary
decision tree. The resulting modelo can be analyzed as a
smooth transition
regression model with multiple regimes. The decisions for
splitting the nodes
of the tree are entirely based on Lagrange Multipliers
tests. An alternative
specification that uses cross- validation is also tried. A
Monte Carlo Experiment
is used to evaluate the performance of the proposed
methodology and to compare
with other techniques that are commonly used. The results
showed that the STRTree
model outperformed the traditional CART when specifying
the architecture
of a simulated tree. Moreover, the use of Lagrange
Multipliers tests gave better
results than a cross-validation procedure. After applying
the model to real
datasets, it could be seen that STR-Tree showed superior
predictive ability when
compared to CART. The idea was extended to time series
analysis through an
application. In this situation, we call the model as STAR-
Tree which is obtained
through a binary decision tree that fits first-order
autoregressive models for
different regimes. The model was fitted to the returns of
Euro/Dolar exchange
rate time series and then evaluated statistically and
financially. Comparing with
the naive approach and ARMA methodology, the STAR-Tree was
parsimonious
and presented statistical performance equivalent to
others. The financial results
were better than the others.
|
179 |
[en] TIME SERIES ANALYSIS USING SINGULAR SPECTRUM ANALYSIS (SSA) AND BASED DENSITY CLUSTERING OF THE COMPONENTS / [pt] ANÁLISE DE SÉRIES TEMPORAIS USANDO ANÁLISE ESPECTRAL SINGULAR (SSA) E CLUSTERIZAÇÃO DE SUAS COMPONENTES BASEADA EM DENSIDADEKEILA MARA CASSIANO 19 June 2015 (has links)
[pt] Esta tese propõe a utilização do DBSCAN (Density Based Spatial Clustering of Applications with Noise) para separar os componentes de ruído na fase de agrupamento das autotriplas da Análise Singular Espectral (SSA) de Séries Temporais. O DBSCAN é um método moderno de clusterização (revisto em 2013) e especialista em identificar ruído através de regiões de menor densidade. O método de agrupamento hierárquico até então é a última inovação na separação de ruído na abordagem SSA, implementado no pacote R- SSA. No entanto, o método de agrupamento hierárquico é muito sensível a ruído, não é capaz de separá-lo corretamente, não deve ser usado em conjuntos com diferentes densidades e não funciona bem no agrupamento de séries temporais de diferentes tendências, ao contrário dos métodos de aglomeração à base de densidade que são eficazes para separar o ruído a partir dos dados e dedicados para trabalhar bem em dados a partir de diferentes densidades. Este trabalho mostra uma melhor eficiência de DBSCAN sobre os outros métodos já utilizados nesta etapa do SSA, garantindo considerável redução de ruídos e proporcionando melhores previsões. O resultado é apoiado por avaliações experimentais realizadas para séries simuladas de modelos estacionários e não estacionários. A combinação de metodologias proposta também foi aplicada com sucesso na previsão de uma série real de velocidade do vento. / [en] This thesis proposes using DBSCAN (Density Based Spatial Clustering of Applications with Noise) to separate the noise components of eigentriples in the grouping stage of the Singular Spectrum Analysis (SSA) of Time Series. The DBSCAN is a modern (revised in 2013) and expert method at identify noise through regions of lower density. The hierarchical clustering method was the last innovation in noise separation in SSA approach, implemented on package R-SSA. However, is repeated in the literature that the hierarquical clustering method is very sensitive to noise, is unable to separate it correctly, and should not be used in clusters with varying densities and neither works well in clustering time series of different trends. Unlike, the methods of density based clustering are effective in separating the noise from the data and dedicated to work well on data from different densities This work shows better efficiency of DBSCAN over the others methods already used in this stage of SSA, because it allows considerable reduction of noise and provides better forecasting. The result is supported by experimental evaluations realized for simulated stationary and non-stationary series. The proposed combination of methodologies also was applied successfully to forecasting real series of wind s speed.
|
180 |
O uso de quase U-estatísticas para séries temporais uni e multivaridas / The use of quasi U-statistics for univariate and multivariate time seriesValk, Marcio 17 August 2018 (has links)
Orientador: Aluísio de Souza Pinheiro / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatítica e Computação Científica / Made available in DSpace on 2018-08-17T14:57:09Z (GMT). No. of bitstreams: 1
Valk_Marcio_D.pdf: 2306844 bytes, checksum: 31162915c290291a91806cdc6f69f697 (MD5)
Previous issue date: 2011 / Resumo: Classificação e agrupamento de séries temporais são problemas bastante explorados na literatura atual. Muitas técnicas são apresentadas para resolver estes problemas. No entanto, as restrições necessárias, em geral, tornam os procedimentos específicos e aplicáveis somente a uma determinada classe de séries temporais. Além disso, muitas dessas abordagens são empíricas. Neste trabalho, propomos métodos para classificação e agrupamento de séries temporais baseados em quase U-estatísticas(Pinheiro et al. (2009) e Pinheiro et al. (2010)). Como núcleos das U-estatísticas são utilizadas métricas baseadas em ferramentas bem conhecidas na literatura de séries temporais, entre as quais o periodograma e a autocorrelação amostral. Três situações principais são consideradas: séries univariadas; séries multivariadas; e séries com valores aberrantes. _E demonstrada a normalidade assintética dos testes propostos para uma ampla classe de métricas e modelos. Os métodos são estudados também por simulação e ilustrados por aplicação em dados reais. / Abstract: Classifcation and clustering of time series are problems widely explored in the current literature. Many techniques are presented to solve these problems. However, the necessary restrictions in general, make the procedures specific and applicable only to a certain class of time series. Moreover, many of these approaches are empirical. We present methods for classi_cation and clustering of time series based on Quasi U-statistics (Pinheiro et al. (2009) and Pinheiro et al. (2010)). As kernel of U-statistics are used metrics based on tools well known in the literature of time series, including the sample autocorrelation and periodogram. Three main situations are considered: univariate time series, multivariate time series, and time series with outliers. It is demonstrated the asymptotic normality of the proposed tests for a wide class of metrics and models. The methods are also studied by simulation and applied in a real data set. / Doutorado / Estatistica / Doutor em Estatística
|
Page generated in 0.0493 seconds