Spelling suggestions: "subject:"shapecontrolled"" "subject:"descontrol""
21 |
Influence de taille et de la structure des germes dans la formation de nanoparticules d’or Anisotropes / Crystal Engineering of Anisotropic Gold Nanoparticles through Modulation of Seed Size and Crystal StructureCanbek, Zeliha Cansu 16 December 2014 (has links)
De par leurs nombreuses applications potentielles, de nombreux efforts de recherche ontété poursuivis dans le domaine de la synthèse de nanoparticules. Cependant le mécanisme àl'origine des formes anisotropes de nanoparticules d'or, pour une taille et une structure biendéfinies, reste encore un sujet controverse.L'objectif général de cette thèse est de comprendre l'origine de cette anisotropie, lors dela formation de nanoparticules d'or, en particulier sous la forme de nano-bâtonnets d'or, enphase liquide. Parmi les nombreux procédés de synthèse existants, la "synthèse de particulesanisotropes par croissance à partir de germes" a été retenu, car il permet un contrôle précis dela taille et de la structure des nanoparticules. Lors de la synthèse de nanoparticules, les germesjouent un rôle de précurseur et permettent ainsi de maitriser la structure cristalline desnanoparticules finales. Si le rôle crucial des germes a déjà pu être étudié par différentsgroupes de recherche, une étude systématique sur la genèse de l'anisotropie par rapport à lataille et la structure initale des germes restait à réaliser. Ce travail a ainsi pour objectif derépondrre aux deux questions :i. Comment contrôler la structure cristalline et de la taille des germes?ii. Quelles sont les influences de la taille des germes et de leur structure sur la cinétique dela croissance? / Between the ongoing research on various type of nanomaterials to tune the particle sizeand crystal design in nanoscale for their potential applications, anisotropic gold nanoparticleshas attracted the most intention not only because of their divine color but also their enhancedcatalytic activities, optical properties and electrical conductivities. Event though, many effortshave been already made in the field of synthesis of anisotropic gold nanoparticles, withdefined sizes and structures, growth mechanism of many unique anisotropic shapes is still acontroversial subject.Overall objective of this thesis is to understand the origin of anisotropy during theformation of anisotropic gold nanoparticles, especially gold nanorods, in liquid phase. For ourenvisaged aim, between numerous synthetic methods developed for production ofnanoparticles, seed mediated approach is chosen for the fabrication of final anisotropic goldnanoparticles from small seeds which is grown into final nanoparticle later on. During thesynthesis of nanoparticles, those seeds play critical role as precursors to control the yield ofand the crystal structure of final anisotropic nanoparticle. Here we offer a systematical studyon the origin of anisotropy with respect to “seed size” and “crystal morphology”. Since thesesmall particles are the genesis of anisotropic metal nanoparticle synthesis, in this thesis weanswer following questions to explain the origin of anisotropy;i. How to control the crystal structure and the size of the seeds?ii. What are the influences of controlled seed size and structure on the kinetics ofnanoparticle growth?
|
22 |
Finite Element Analysis and Genetic Algorithm Optimization Design for the Actuator Placement on a Large Adaptive StructureSheng, Lizeng 29 December 2004 (has links)
The dissertation focuses on one of the major research needs in the area of adaptive /intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures -- optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms, GA Version 1, 2 and 3, were developed to find the optimal locations of piezoelectric actuators from the order of 10<SUP>21</SUP> ~ 10<SUP>56</SUP> candidate placements. Introducing a variable population approach, we improve the flexibility of selection operation in genetic algorithms. Incorporating mutation and hill climbing into micro-genetic algorithms, we are able to develop a more efficient genetic algorithm. Through extensive numerical experiments, we find that the design search space for the optimal placements of a large number of actuators is highly multi-modal and that the most distinct nature of genetic algorithms is their robustness. They give results that are random but with only a slight variability. The genetic algorithms can be used to get adequate solution using a limited number of evaluations. To get the highest quality solution, multiple runs including different random seed generators are necessary. The investigation time can be significantly reduced using a very coarse grain parallel computing. Overall, the methodology of using finite element analysis and genetic algorithm optimization provides a robust solution approach for the challenging problem of optimal placements of a large number of actuators in the design of next generation of adaptive structures. / Ph. D.
|
23 |
Nouvelles structures à polymères électroactifs / New electroactive polymers structuresCornogolub, Alexandru 08 April 2016 (has links)
Ces travaux de thèse se veulent exploratoires et visent à proposer d’une part une nouvelle approche hybride piézoélectrique-polymère pour le développement de récupérateur d’énergie et d’autre part à développer des méthodes d’actionnement destinée au contrôle de forme structurelle. L’utilisation de polymères diélectriques dans les dispositifs de récupération d’énergie permet de concilier une densité énergétique élevée avec une faible rigidité et une simplicité de mise en œuvre. L’approche hybride proposée dans le cadre de ces travaux permet de s’affranchir de la source de polarisation externe en la substituant par un dispositif piézoélectrique apte à générer, sous l’action d’une contrainte mécanique, le champ électrique nécessaire au fonctionnement du dispositif. L’optimisation du transfert d’énergie entre deux systèmes supposé quelconque a d’abord été généralisée. Les travaux ont ensuite été orientés vers l’investigation de la faisabilité de l’approche hybride piezo-polymère. Les performances des dispositifs hybrides ont été évaluées expérimentalement et comparées à celles obtenues avec des récupérateurs piézoélectriques simples et avec des récupérateurs polymères à polarisation externe. Il est montré que l’utilisation d’un dispositif hybride permet de concilier les qualités des deux approches simples, à savoir la faculté d’initier le processus de conversion d’énergie grâce au champ électrique généré par l’élément piézoélectrique et d’exploiter la haute densité d’énergie des polymères. La deuxième partie de ces travaux porte sur l’utilisation de matériaux électroactifs comme dispositifs d’actionnement destinés au contrôle de forme de structures minces. L’application finale visée ici est le développement de matériau de type peau active. Différents types de polymères ont d’abord été testés et leur performances ont été comparées avec des modèles théoriques spécifiquement développés. Des structures originales ont été proposées pour solutionner certains problèmes liés à l’actionnement par polymères diélectriques. Des prototypes simples ont permis de valider le principe du contrôle de forme des structures à l’aide de polymères diélectriques. / Dielectric polymers have seen their importance grow in the field of electroactive materials because of their undeniable advantages, particularly for potential applications such as energy harvesting, actuation or sensors. The work done in this thesis is exploratory and aims primarily to provide on one hand a new piezoelectric-polymer hybrid approach for the development of energy harvesting systems and secondly to develop operating methods shape control of structures using electroactive polymers. The use of dielectric polymers in energy harvesting devices reconciles a high energy density with low rigidity and simplicity of integration. The main problem which is characteristic of such devices is that they necessarily require the use of an external bias high voltage supply (> 1kV) to achieve significant energy densities. The hybrid approach proposed in the context of this work eliminates this source of external energy by using a piezoelectric device capable of generating, under the action of a mechanical stress, the electric field required to operate the device. The problem of optimization of energy transfer between any two systems was also studied. The work was then directed towards the investigation of the feasibility of the piezo-polymer hybrid approach. Various configurations have been proposed and evaluated in order to deduce their optimal parameters. The performance of hybrid devices was experimentally evaluated and compared with that obtained with simple piezoelectric or electrostatic (using polymers) systems. The second part of this work focuses on the use of electroactive materials as actuators for shape control of thin structures. The final application aimed here is the development of an active skin type material allowing reconfiguration of orbiting satellite antennas. Different types of polymers were first tested and their performance has been compared with the theoretical models developed specifically in this context. Original structures have been proposed to solve some problems related to the actuation using dielectric polymers. Simple prototypes have validated the principle of the structural shape control. If their use brings undeniable advantages over conventional operating techniques, the fact remains that certain specific characteristics of electroactive polymers limit their performance. For example, the square law characteristic of the electroactive polymer control requires the use of particular geometries in order to obtain a symmetrical two-way displacement. This fact complicates the control of such actuators but allows in the end to add new features. Thus the use of a sectored network of polymer actuator is required to obtain a symmetrical movement on a single type of structure blocked blocked-beam, but allows to consider different deformation profiles. Other similar problems have been addressed using different original structures.
|
24 |
STATIC SHAPE CONTROL OF LAMINATED COMPOSITE PLATE SMART STRUCTURE USING PIEZOELECTRIC ACTUATORS �Chee, Clinton Yat Kuan January 2000 (has links)
The application of static shape control was investigated in this thesis particularly for a composite plate configuration using piezoelectric actuators. A new electro-mechanically coupled mathematical model was developed for the analysis and is based on a third order displacement field coupled with a layerwise electric potential concept. This formulation, TODL, is then implemented into a finite element program. The mathematical model represents an improvement over existing formulations used to model intelligent structures using piezoelectric materials as actuators and sensors. The reason is TODL does not only account for the electro-mechanical coupling within the adaptive material, it also accounts for the full structural coupling in the entire structure due to the piezoelectric material being attached to the host structure. The other significant improvement of TODL is that it is applicable to structures which are relatively thick whereas existing models are based on thin beam / plate theories. Consequently, transverse shearing effects are automatically accounted for in TODL and unlike first order shear deformation theories, shear correction factors are not required. The second major section of this thesis uses the TODL formulation in static shape control. Shape control is defined here as the determination of shape control parameters, including actuation voltage and actuator orientation configuration, such that the structure that is activated using these parameters will conform as close as possible to the desired shape. Several shape control strategies and consequently algorithms were developed here. Initial investigations in shape control has revealed many interesting issues which have been used in later investigations to improve shape controllability and also led to the development of improved algorithms. For instance, the use of discrete actuator patches has led to greater shape controllability and the use of slopes and curvatures as additional control criteria have resulted in significant reduction in internal stresses. The significance of optimizing actuator orientation and its relation to piezoelectric anisotropy in improving shape controllability has also been presented. Thus the major facets of shape control has been brought together and the algorithms developed here represent a comprehensive strategy to perform static shape control.
|
25 |
Size and Shape Controlled Synthesis and Superparamagnetic Properties of Spinel Ferrites NanocrystalsSong, Qing 26 August 2005 (has links)
Size and Shape Controlled Synthesis and Superparamagnetic Properties of Spinel Ferrites Nanocrystals
Qing Song
216 pages
Directed by Dr. Z. John Zhang
The correlationship between magnetic properties and magnetic couplings is established through the investigations of various cubic spinel ferrite nanocrystals. The results of this thesis contribute to the knowledge of size and shape controlled synthesis of various spinel ferrites and core shell architectured nanocrystals as well as the nanomagnetism in spinel ferrites by systematically investigating the effects of spin orbital coupling, magnetocrystalline anisotropy, exchange coupling, shape and surface anisotropy upon superparamagnetic properties of spinel ferrite nanocrystals. A general synthetic method is developed for size and shape control of metal oxide nanocrystals. The size and shape dependent superparamagnetic properties are discussed. The relationship between spin orbital coupling and magnetocrystalline anisotropy is studied comparatively on variable sizes of spherical CoFe2O4 and Fe3O4 nanocrystals. It also addresses the effect of exchange coupling between magnetic hard phase and soft phase upon magnetic properties in core shell structured spinel ferrite nanocrystals. The role of anisotropic shapes of nanocrystals upon self assembled orientation ordered superstructures are investigated. The effect of thermal stability of molecular precursors upon size controlled synthesis of MnFe2O4 nanocrystals and the size dependent superparamagnetic properties are described.
|
26 |
Robust modal filtering for control of flexible aircraftSuh, Peter M. 22 May 2014 (has links)
The work in this dissertation comprises aeroservoelastic simulation development, two modal filter design case studies and theoretical improvement of the modal filter. The modal filter is made robust to sensor bias. Studies have shown that the states estimated by the modal filter can be integrated into active structural control. The integration of modal filters into aircraft structural control systems is explored.
Modal filters require distributed sensing to achieve accurate modal coordinate estimates. Distributed sensing technology has progressed to the point, where it is being tested on aircraft such as Ikhana and the upcoming X-56A. Previously, the modal filter was criticized for requiring too many sensors. It was never assessed for its potential benefits in aircraft control. Therefore it is of practical interest to reinvestigate the modal filter.
The first case study shows that under conditions of sensor normality, the modal filter is a Gaussian efficient estimator in an aeroservoelastic environment. This is a fundamental experiment considering the fact that the modal filter has never been tested in the airflow.
To perform this case study a linear aeroservoelastic code capable of modeling distributed sensing is developed and experimentally validated. From this code, a computational wing model is fitted with distributed sensing. A modal filtering design methodology is developed and applied.
With distributed sensing and modal filtering feedback control is achieved. This is also compared and contrasted with a controller using state-of-the-art accelerometers. In addition, new methods of active shape control are introduced for warping an aeroelastic structure utilizing the modal filter and control surfaces.
The next case study takes place in a realistic setting for an aircraft. Flexible aircraft bring challenges to the active control community. Increased gust loads, possibility of flutter, and off-design drag may detrimentally affect performance and safety. Aeroservoelastic tailoring, gust load alleviation (GLA) and active flutter suppression (AFS) may be required on future flexible air vehicles. It is found that modal filters can theoretically support these systems.
The aircraft case study identifies additional steps required in the modal filtering design methodology. Distributed sensing, the modal filter and modal reference shape control are demonstrated on the X-56A flutter-unstable simulation model. It is shown that control of deformations at potentially millions of points on an aircraft vehicle can be achieved through control of a few modal coordinates.
Finally modal filter robustness is theoretically improved and computationally verified. State-of-the-art modal filters have high bias sensitivity. In fact, this is so critical that state-of-the-art modal filters may never be certified for aircraft implementation. This is especially true within a flight critical control system. The solution to this problem is found through derivation of the robust modal filter.
The filter combines good properties of concentration algorithms with robust re-descending M-estimation. A new trim criterion specific to the strain based modal sensing system is derived making the filter robust to asymmetric or leverage point outliers. Robust starts are introduced to improve convergence of the modal estimation system to the globally optimal solution in the presence of 100s of biased fiber optic sensors.
|
27 |
STATIC SHAPE CONTROL OF LAMINATED COMPOSITE PLATE SMART STRUCTURE USING PIEZOELECTRIC ACTUATORS �Chee, Clinton Yat Kuan January 2000 (has links)
The application of static shape control was investigated in this thesis particularly for a composite plate configuration using piezoelectric actuators. A new electro-mechanically coupled mathematical model was developed for the analysis and is based on a third order displacement field coupled with a layerwise electric potential concept. This formulation, TODL, is then implemented into a finite element program. The mathematical model represents an improvement over existing formulations used to model intelligent structures using piezoelectric materials as actuators and sensors. The reason is TODL does not only account for the electro-mechanical coupling within the adaptive material, it also accounts for the full structural coupling in the entire structure due to the piezoelectric material being attached to the host structure. The other significant improvement of TODL is that it is applicable to structures which are relatively thick whereas existing models are based on thin beam / plate theories. Consequently, transverse shearing effects are automatically accounted for in TODL and unlike first order shear deformation theories, shear correction factors are not required. The second major section of this thesis uses the TODL formulation in static shape control. Shape control is defined here as the determination of shape control parameters, including actuation voltage and actuator orientation configuration, such that the structure that is activated using these parameters will conform as close as possible to the desired shape. Several shape control strategies and consequently algorithms were developed here. Initial investigations in shape control has revealed many interesting issues which have been used in later investigations to improve shape controllability and also led to the development of improved algorithms. For instance, the use of discrete actuator patches has led to greater shape controllability and the use of slopes and curvatures as additional control criteria have resulted in significant reduction in internal stresses. The significance of optimizing actuator orientation and its relation to piezoelectric anisotropy in improving shape controllability has also been presented. Thus the major facets of shape control has been brought together and the algorithms developed here represent a comprehensive strategy to perform static shape control.
|
28 |
Synthèse et propriétés catalytiques de nanoparticules de platine de formes contrôlées / synthesis and catalytic properties of shape controlled platinum nanoparticlesPeres, Laurent 06 March 2018 (has links)
La synthèse par voie chimique en solution permet d’obtenir des nanoparticules de caractéristiques structurales bien contrôlées. Elle offre ainsi la possibilité d’exploiter les propriétés spécifiques qui sont associées aux caractéristiques de ces nano-objets (taille, forme, structure cristalline …), dans des domaines applicatifs très diverses. Parmi eux, la catalyse, a un rôle important à jouer au cœur de la transition écologique/énergétique. En effet, pour de nombreuses réactions, l’utilisation de nanoparticules permet de réduire les quantités de métaux employés. De plus, certains métaux révèlent de nouvelles propriétés à cette échelle. Phénomène de surface, la catalyse implique ainsi de plus en plus l’utilisation de nanocristaux de tailles et formes contrôlées. La littérature démontre qu’il est possible de moduler la sélectivité et l’activité des catalyseurs en fonction de l’orientation cristallographique présentée par les facettes des nanocristaux. Dans la première partie de cette thèse, des nanoparticules de platine ont été synthétisées en utilisant comme précurseur principal un simple sel de Pt(II). En fonction des paramètres de la réaction, des formes très variées ont été obtenues. Nous avons essayé de comprendre le mécanisme de formation des différentes morphologies de nanoparticules de platine auxquelles nous avons pu accéder : cubes concaves exposant des facettes (110), multipodes exposant un mélange de facettes (111) et (001), ainsi que des cubes exposant des facettes (001). La deuxième partie vise à étudier l’impact de la forme de nano-objets de platine dans une réaction catalytique modèle. Des cubes concaves et des multipodes ont été testés dans l’hydrogénation d’un aldéhyde α,β-insaturé, le cinnamaldéhyde, réaction modèle permettant de sonder la chimiosélectivité. Des nano-objets libres en solution ainsi que des nano-objets immobilisés sur deux types de supports différents, la silice et le graphène ont été utilisés. Enfin, l’extension d’une méthode de synthèse de nanocristaux épitaxiés sur films minces, nous a permis de produire, par croissance directe en solution, des nano-objets de platine, cristallographiquement orientés, de morphologies originales (cubes concaves, fils) sur différents types de couches minces, de nature et d’orientations cristallographique spécifiques. / Solution chemistry allows obtaining nanoparticles with well-controlled structural characteristics. It offers therefore the possibility to exploit the specific properties associated to the nano-objects characteristics (size, shape, crystal phase …), in diverse applications. Among them, catalysis plays an important role for the ecologic/energetic transition. Indeed, for numerous reactions, the use of nanoparticles allows to reduce the amount of metals employed. Moreover, some metals present new properties at this scale. As a surface phenomenon, catalysis thus implies more and more the use of size and shape controlled nanocrystals. Indeed, literature has shown that it is possible to modulate catalyst activity and selectivity depending on the crystallographic orientation of the nanocrystal facets.In the first part of this thesis, platinum nanoparticles have been produced using a simple Pt(II) salt as a principal precursor. Depending on the parameters employed, various shapes have been obtained. We have tried to understand the formation mechanism of the different platinum nanoparticle morphologies obtained: concave cubes enclosed by (110) facets, multipods enclosed by a mix of (111) and (100) and cubes enclosed by (100) facets. The second chapter aims at studying the impact of the nano-object shape in a model catalytic reaction. Concaves cubes and multipods have been tested in the hydrogenation of an α,β-unsaturated aldehyde, the cinnamaldéhyde, as a model reaction to probe chemoselectivity. Free nanoparticles in solution and nanoparticles supported on silica and graphène have been used. Finally, the extension of a method for the epitaxial growth of nanocrystals on thin films, allowed the elaboration of, crystallographically oriented, shape controlled platinum nano-objects (concave cubes, wires) by a direct solution-growth, over different thin films of specific nature and crystalline orientation.
|
29 |
Contrôle de forme d'un miroir spatial par actionneurs piézoélectriques / Shape control of a deformable spatial mirror with piezoelectric actuatorsWang, Xuan 16 December 2013 (has links)
La prochaine génération de télescopes spatiaux devra repousser les limites des technologies actuelles afin d’accroitre les performances techniques et opérationnelles. Dans le cas d’observations difficiles, l'utilisation de plus grandes ouvertures des miroirs primaires est essentielle pour obtenir la résolution optique et la sensibilité requises. Toutefois, les grandes ouvertures primaires induisent un certain nombre de défis techniques tels que la masse, le volume et la raideur du miroir. La masse et le volume doivent rester acceptables par rapport au lanceur et la raideur du miroir, qui diminue avec l’augmentation du diamètre du miroir, doit être suffisante afin que les performances ne soient pas altérées par les déformations statiques et dynamiques. Pour surmonter ces limitations, des configurations de miroirs déformables comportant des éléments de contrôle actifs sont étudiées pour les futurs télescopes spatiaux. Les actionneurs piézoélectriques, qui répondent aux exigences de puissance massique et de bande passante, peuvent être utilisés comme éléments de contrôle actifs intégrés dans la structure de miroir. Toutefois, ces actionneurs montrent en fonctionnement en boucle ouverte des comportements non linéaires indésirables, comme le fluage et l'hystérésis, qui peuvent conduire à des inexactitudes indésirables et limiter les performances des systèmes. Par conséquent, pour les miroirs déformables activés par des actionneurs piézoélectriques, la compensation des non linéarités dans les actionneurs piézoélectriques est indispensable.La conception d’un miroir léger, compact et déformable à raideur adéquate est un défi très important pour les télescopes spatiaux mais n'est pas abordée dans cette thèse. Cette thèse porte sur le contrôle de surfaces de miroirs déformables actionnés par des actionneurs piézoélectriques et en particulier sur la compensation du fluage et de l'hystérésis dans les actionneurs piézoélectriques. La technologie de miroir actif étudié (avec des pieds activés, type miroir fakir) requiert un grand nombre d’actionneurs afin de tenir les exigences en termes de planéité de surface et ne permet pas un contrôle en boucle fermée de chaque actionneur (ce type de contrôle est trop exigeant en nombre de capteurs). La compensation du fluage et de l’hystérésis est donc réalisée en boucle ouverte et s’appuie sur des modèles précis des non linéarités à compenser et sur l’implémentation de modèles inverses. Un support d’étude expérimental a été élaboré au cours de la thèse afin de valider les études théoriques par des résultats expérimentaux. Il représente une partie d’un miroir de grande taille et consiste en une plaque de verre circulaire de diamètre 300mm dont la surface peut être actionnée par 7 actionneurs piézoélectriques annulaires.Les premières chapitres de la thèse concernent l’étude de la compensation en boucle ouverte du fluage et de l’hystérésis dans un seul actionneur qui est alors considéré comme un système SISO (single input – single output). Dans le dernier chapitre de la thèse, le fluage et de l’hystérésis sont compensés dans 3 actionneurs simultanément, ceux-ci formant un système MIMO (multi input – multi output). Les apports de la thèse concernent le développement de nouveaux modèles directs et inverses de fluage et d’hystérésis qui ont été validés par des expérimentations réalisées dans un contexte difficile de par la faible étendue des amplitudes de déplacement ( de l’ordre du micromètre). / The next generation of space-based observation systems will make use of larger primary mirrors to achieve higher image resolution. Large primary mirrors lead to the increase of structural flexibility and are more susceptible to distortions. Thus maintaining optical tolerances across the mirror surface becomes increasingly difficult. The techniques of active shape control may be required for spatial mirror surfaces in future space observation systems. Piezoelectric actuators are often studied as embedded elements for the active control of mirror structures due to their excellent properties. However, unwanted nonlinear effects in piezoelectric actuators, i.e., hysteresis and creep, severely limit the service performance. This thesis aims at developing openloopcontrol laws to compensate hysteresis and creep effects in piezoelectric actuators. The studies led during this thesis are applied to the shape control of spatial mirror surfaces. An experimental setup with a small-scale mirror test structure involving multiple piezoelectric actuators is first developed and is used as support for all the measurements conducted during this thesis. Then the open-loop control methodologies of creep compensation, hysteresis compensation, and simultaneous compensation of both the nonlinear effects in a single piezoelectric actuator are respectively developed. To compensate creep, a nonlinear viscoelastic model is used to portray creep, and a new inverse model of creep based on the concept of “voltage relaxation” is proposedRegarding the hysteresis compensation, the classical Preisach model is modified by adding a derivative term in parallel to describe hysteresis more accurately with relatively few measurements, and the new inverse model is constructed in the similar way. For the simultaneous compensation of the two nonlinear effects, the hysteresis is first compensated and then, the creepof the hysteresis-compensated piezoelectric actuator is attenuated by open-loop control. The methodology is first developed for a single actuator. Finally, the shape control of a mirror surface with several piezoelectric actuators is achieved by actuating the points on the mirror surface in such a way as to reach the required displacements. The mirror test structure involving multiplepiezoelectric actuators compensated in hysteresis and creep is considered as a linear system on which the superposition principle can be applied. The influence coefficients characterizing the coupling effect between the piezoelectric actuators are determined by measurements. The influence coefficient matrix is first constructed using the superposition principle, and is then inverted. By insertion of the inverse matrix in cascade with multiple piezoelectric actuators with hysteresis and creep compensation, a feed-forward control approach to actuate the multiple interesting points of the mirror surface is developed. A number of experimental results demonstrate that the developed control methodologies are effective and feasible in practice.
|
30 |
Návrh a implementácia systému kontroly plazmy pre tokamak COMPASS / Design and implementation of the plasma control system for the COMPASS tokamakJanky, Filip January 2016 (has links)
Design and implementation of the plasma control system Mgr. Filip Janky The COMPASS tokamak was recommissioned in 2007 and it needed new digital controllers for its experimental research. This thesis presents the design and imple- mentation of control of main plasma parameters such as plasma current, plasma position, plasma shape and electron density. Improved plasma current control with resetting set points suppresses overshooting and thus increases the length of the flat top phase. A method for estimating the plasma position, gain tuning for the controller and decreasing latencies and delays to obtain robust position control are presented. Lower delays improve plasma stability and decrease the frequency of disruptions. The plasma shape controller is a feedforward controller with a method to suppress oscillations which are coming from mutual inductance between power supplies controlling plasma horizontal position, plasma shape and plasma current, which all use the same coil. Averaged electron density is corrected in real-time according to the interferometer line of sight and a non-linearity of measurement. Controllers and their improvements described here, played a major role in achiev- ing H-mode scenario and fulfilling the experimental program. Keywords: tokamak, plasma current control, plasma position...
|
Page generated in 0.0524 seconds