• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 36
  • 36
  • 22
  • 11
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Proteomic Analysis of the Heat Shock Response in the Nervous System of Locusta migratoria

DEHGHANI, MEHRNOUSH 25 March 2009 (has links)
There is a thermal range for the operation of neural circuits beyond which nervous system function is compromised. Poikilotherms are particularly vulnerable to thermal stress, since their body temperature can fluctuate with ambient temperature. Animals that experience frequent hyperthermia have various coping mechanisms such as the thermoprotective effect of a prior exposure to sublethal temperatures (heat shock response). The molecular mechanisms of this thermoprotection have yet to be understood. This project studies the changes in protein expression in the nervous system of gregarious Locusta migratoria subjected to heat shock. For this purpose, proteins were extracted from metathoracic ganglia (MTG) by different methods and a proteomic map was subsequently obtained by 2-D gel electrophoresis which was compared between control (CON) and heat-shocked (HS) animals. Additionally, the localization pattern of Hsp70 was studied in the MTG of CON and HS gregarious locusts. Although 2-D gels showed changes in the amount of different isoforms of ATP-synthase β, the overall amount of this protein subunit was found to be unchanged. My experiments also revealed no significant change in the distribution of Hsp70 in the MTG of locusts caused by HS. However, new findings show that this protein is constitutively expressed at higher levels in perineurium, glia and tracheal cells than in neurons. In separate experiments, isolated locusts were also examined in order to measure any stress-associated increase of Hsp70 in the tissues of animals not previously exposed to crowding pressure. Quantitative western blots did not show a consistent change of the Hsp70 level in the MTG of isolated locusts following heat shock. Results of my research suggest that the change in the protein profile of the metathoracic ganglion following heat shock, if it exists, is subtle or occurs in very low-abundance proteins whose monitoring requires the application of special techniques. Alternatively, the thermoprotective effect of heat shock on the nervous system might be promoted through other pathways which can change the protein activity at the post-translational level and may work independently from protein synthesis. / Thesis (Master, Biology) -- Queen's University, 2009-03-20 12:28:32.962
12

Uncovering Transcriptional Activators and Targets of HSF-1 in Caenorhabditis elegans

Brunquell, Jessica 06 April 2017 (has links)
In order to survive, cells must be able to cope with a variety of environmental stressors. The heat shock response (HSR) is a pro-survival mechanism employed by cells in response to protein denaturing stress, such as heat. Since its discovery in 1960, the heat shock response has been found to be regulated by the transcription factor heat shock factor 1 (HSF1). During periods of increased stress, HSF1 undergoes a multi-step process of activation that involves homotrimerization, DNA-binding, and post-translational regulatory modifications, all of which ultimately function to control the transcription of chaperone genes. These chaperone genes encode molecular chaperone proteins which function to promote survival during stress by restoring protein homeostasis to the cell. Although HSF1 is classically studied for its role in regulating the HSR, HSF1 also has roles in regulating metabolism, development, and longevity. Studies in the nematode Caenorhabditis elegans demonstrate the HSF1 homolog, HSF-1, as a global regulator of gene expression that has both stress-dependent and -independent functions. Modulating HSF1 activity therefore has implications beyond stress-induced processes, and has been suggested as a promising therapeutic target for diseases of aging and protein dysfunction. We were interested in determining regulators of the HSR using C. elegans as a model to test for effects on proteostasis and longevity. In these studies, we observed the effects of compound treatment (Chapters 1 and 2), genetic manipulation (Chapters 3 and 4), and environmental stimuli (Chapters 5 and 6), on the HSR in C. elegans. In Chapters 1 and 2, we describe our findings that treatment with the DNA synthesis inhibitor Fluorodeoxyuridine, and treatment with coffee and caffeine, enhance the heat shock response and improve proteostasis in aging worms in an HSF-1-dependent manner. In Chapters 3 and 4, we uncovered that negative regulation of the HSR by the cell cycle and apoptosis regulator CCAR2 is conserved in C. elegans, and is mediated by the CCAR2 ortholog, LST-3. We also uncovered that negative regulation of the HSR by LST-3 requires the SIRT1 homolog Sir-2.1, and knockdown of LST-3 via lst-3 RNAi works through Sir-2.1 to enhance stress-resistance, fitness, proteostasis and longevity. In Chapters 5 and 6, we describe the global impact of HSF-1 in regulating transcriptional processes during a heat stress. The profiling of global HSF-1 mRNA and miRNA targets has allowed us to uncover a heat-dependent and -independent role for HSF-1 in regulating gene expression to impact stress-resistance, proteostasis, and longevity. Altogether, these studies demonstrate the impact of compound treatment, genetic manipulation, and environmental stimuli on the heat shock response, while also uncovering global stress-dependent and -independent roles for HSF-1. This work therefore provides insight into various methods of activating the HSR by modulating HSF-1 activity, and uncovering global HSF-1 target genes, which may be useful for designing therapeutic treatment strategies for diseases of protein dysfunction.
13

Development of Cal Poly's Shock Table

Risner, Christopher D 01 December 2016 (has links)
Shock is one of the environmental tests that a spacecraft must pass before being cleared for launch. Shock testing poses a challenging data acquisition issue and careful selection of equipment is crucial to creating a successful shock test facility. Cal Poly’s CubeSat programs can currently perform all environmental testing other than shock themselves, so a quality shock table would be useful. Previous groups of students had developed a shock table, and this paper details the improvement and characterization of that shock table’s behavior. Several adjustable parameters were tested and documented to discover trends in the shock table’s response to an impact from a pendulum hammer. Then a test meant to mimic an actual shock test was performed. The CubeSat program provided a component to be tested and a requirement to be met. The nominal requirement is proprietary and cannot be given here, and additional stipulations included the test data being within a given tolerance band and at least 50% of the test data having a larger magnitude than the nominal requirement. The requirement needed to be met in all three of the component’s axes. The component was mounted to the shock table and acceleration data was collected and analyzed. A successful test was conducted in one axis, which was the result of impacting the large face of the aluminum shock table plate. The tests in the other two axes, conducted with impacts to the side of the aluminum plate, failed to meet the requirement. A finite element model of the table was developed and correlated to the test data. A new way of attaching the test component to the table was developed that would allow for testing in all three axes to be performed with impacts to the large face of the aluminum plate. A dynamic finite element analysis was performed, and the results indicate that this new attachment method should allow the requirement to be met in all three axes. The shock table is currently fully operational and can be used for testing and teaching purposes. With the implementation of the new attachment method, it is believed that the CubeSat program’s requirements can be met as well.
14

Common Flight Test Module for Multiple Harsh Environments

HILL, BRIAN JAMES 28 August 2008 (has links)
No description available.
15

The combined effects of thermal and radiological stress on the embryonic development of lake whitefish (Coregonus clupeaformis)

Kulesza, Adomas January 2017 (has links)
Lake whitefish (Coregonus clupeaformis; LWF) are a cold-adapted freshwater species that are of both economic and cultural value. These fish spawn in lake areas where their embryos are exposed to thermal power plant effluents that may contain low levels of thermal, radiological and chemical stressors. Many studies on LWF embryonic development have looked at the individual effects of these stressors, but few have looked at the potential for combined effects. The combined effects of thermal and radiological stress were of interest due to growing evidence that mild thermal stress can produce an adaptive response, through the induction of the heat shock response (HSR), when followed with subsequent ionizing radiation stress. This thesis examined the combined impacts of thermal and radiological stress during LWF embryogenesis. LWF embryos were exposed to mild heat shocks (HS; Δ3 or 9°C) prior to a high dose of acute 137Cs gamma rays at 2, 6 and 24 hours post heat shock during the gastrulation or eyed stage. Heat shocked embryos were collected at each developmental stage and assessed for induction of heat shock protein (Hsp) genes. Following exposure, embryos were raised until hatch where mortality, morphometry, and embryo weight were measured. Mild HS induced Hsp70 mRNA expression at gastrulation, but not at the eyed stage. Embryos at hatch were not impacted by thermal or radiological exposure at the gastrulation stage. During the eyed stage, acute radiation treatment increased mortality and decreased body size at hatch. Mild HS prior to radiation did not provide protective effects and no adaptive response was observed. This thesis better defines the combined effects of thermal and radiological stress on the embryonic development of LWF. It also suggests that the ontogeny aspects of heat shock responses and radiosensitivity are important to consider for future adaptive response studies. / Thesis / Master of Science (MSc)
16

Evolutionary Innovations In Ants To Thermally Stressful Environments

Nguyen, Andrew D. 01 January 2017 (has links)
Temperature is a fundamental environmental force shaping species abundance and distributions through its effects on biochemical reaction rates, metabolism, activity, and reproduction. In light of future climate shifts, mainly driven by temperature increases, how will organisms persist in warmer environments? One molecular mechanism that may play an important role in coping with heat stress is the heat shock response (HSR), which protects against molecular damage. To prevent and repair protein damage specifically, Hsps activate and become up-regulated. However, the functional diversity and relevance of heat shock proteins (Hsps) in extending upper thermal limits in taxonomic groups outside marine and model systems is poorly understood. Ants are a good system to understand the physiological mechanisms for coping with heat stress because they have successfully diversified into thermally stressful environments. To identify and characterize the functional diversity of Hsps in ants, I surveyed Hsp orthologues from published ant genomes to test for signatures of positive selection and to reconstruct their evolutionary history. Within Hymenoptera, ants utilize unique sets of Hsps for the HSR. Stabilizing selection was the prevailing force among Hsp orthologues, suggesting that protein activity is conserved. At the same time, regulatory regions (promoters) governing transcriptional up-regulation diversified: species differ in the number and location of heat shock elements (HSEs). Therefore, Hsp expression patterns may be a target for selection in warm environments. I tested whether Hsp expression corresponded with variation in upper thermal limits in forest ant species within the genus Aphaenogaster. Whole colonies were collected throughout the eastern United States and were lab acclimated. There was a positive relationship between upper thermal limits (Critical Thermal maxima, CTmax) and local temperature extremes. Upper thermal limits were also higher in ant species that lived in open habitats (shrub-oak and long-leaf pine savannah) than species occupying closed habitats (deciduous forest). Ant species with higher CTmax expressed Hsps more slowly, at higher temperatures, and at higher maximum levels than those with low CTmax. Because Hsps sense and repair molecular damage, these results suggest the proteomes of open relative to closed canopy forests are more stable. Although deciduous forest ant species may be buffered from temperature stress, it is likely that temperature interacts with other environmental stressors such as water and nutrient availability that may impact upper thermal limits. I measured the influence of dehydration and nutrition stress on upper thermal limits of forest ants from a single population. Ants that were initially starved were much less thermally tolerant than controls and ants that were initially desiccated. Because ants are likely to experience similar combination of stressors in the wild, upper thermal limits may be severely overestimated in single factor experiments. Therefore, realistic forecasting models need to consider multiple environmental stressors. Overall, adaptive tuning of Hsp expression that reflects better protection and tolerance of protein unfolding may have facilitated ant diversification into warm environments. However, additional stressors and mechanisms may constrain the evolution of upper thermal limits.
17

Evaluation and analysis of DDG-81 simulated athwartship shock response

Petrusa, Douglas C. 06 1900 (has links)
Approved for public release; distribution is unlimited / In 2001 the USS WINSTON CHURCHILL (DDG-81) was subjected to three underwater explosions as part of a ship shock trial. Using the actual trial data from experiment and three-dimensional dynamic models of the ship and surrounding fluid very successful comparisons of the vertical motion have been achieved. On average, the magnitude of the vertical motion is three to four times the magnitude of athwartship motion. Previous simulations of this athwartship motion have been less accurate than the vertical motion simulations. This thesis examines recent efforts attempted to improve the simulation results of the athwartship motion including shock spectra analysis, and the reasons behind the disparities that exist between the simulated values and the actual trial data. / Lieutenant, United States Coast Guard
18

The identification of novel regulatory elements in the promoters of heat shock response genes

Ncube, Sifelani January 2010 (has links)
The main objective of this study was to investigate promoter sequences of putative HSR genes for the presence of unique regulatory elements and modules that might be involved in the regulation of HSR. In order to achieve this objective, an in silico promoter analysis strategy was devised, which focused on the identification of promoter sequences and regulatory elements, and modelling of promoter modules by using Genomatix software tools such as MatInspector and ModelInspector. Results showed that two modules (EGRF_SP1F_01 and SP1F_CEBP_01) were conserved in the promoter sequences of three well-known Hsp-genes (Hsp90, Hsp105β and αβ-crystallin). Screening the 60 target gene promoters for the presence of the two modules revealed that 12 genes (20 %) contained both modules. These included Moesin, Proline-4 hydroxylase, Poly(A) binding protein and Formin-binding protein. None of these genes had been previously associated with heat shock response.
19

MEMS reliability in shock environments

Naumann, Michael 03 July 2013 (has links) (PDF)
In der vorliegenden Arbeit wird eine Methode vorgestellt, mit welcher die Zuverlässigkeit mikroelektromechanischer Systeme (MEMS) bezüglich stoßinduzierter Fehlermechanismen bereits in der Entwurfsphase neuer Produkte abgeschätzt bzw. verbessert werden kann. Der Ansatz bezieht sich dabei auf bruch- sowie adhäsionsbedingte Ausfallmechanismen und erfordert zwei wesentliche Schritte. Zuerst werden Systemmodelle der jeweils zu untersuchenden mikromechanischen Systeme erstellt, welche die Berechnung der Stoßantwort wie auch der dabei auftretenden Belastungen in Sinne von Auslenkungen, Deformationen und Aufprallkräften ermöglichen. In einem zweiten Schritt wird die zur Fertigung vorgesehene Technologie bezüglich des Auftretens beider stoßbedingter Ausfallmechanismen sowie deren Abhängigkeit von verschiedenen Umgebungsbedingungen oder Betriebsparametern systematisch untersucht. Die aus der Prozesscharakterisierung resultierenden Daten dienen zur Ableitung prozessspezifischer Fehlerkriterien, welche die Einschätzung der zuvor berechneten Lasten ermöglichen. Auf diese Weise kann abgeschätzt werden, inwieweit die Zuverlässigkeit der betrachteten mikromechanischen Strukturen beeinflusst wird bzw. mit welchen Maßnahmen diese gesteigert werden kann.
20

The identification of novel regulatory elements in the promoters of heat shock response genes

Ncube, Sifelani January 2010 (has links)
The main objective of this study was to investigate promoter sequences of putative HSR genes for the presence of unique regulatory elements and modules that might be involved in the regulation of HSR. In order to achieve this objective, an in silico promoter analysis strategy was devised, which focused on the identification of promoter sequences and regulatory elements, and modelling of promoter modules by using Genomatix software tools such as MatInspector and ModelInspector. Results showed that two modules (EGRF_SP1F_01 and SP1F_CEBP_01) were conserved in the promoter sequences of three well-known Hsp-genes (Hsp90, Hsp105β and αβ-crystallin). Screening the 60 target gene promoters for the presence of the two modules revealed that 12 genes (20 %) contained both modules. These included Moesin, Proline-4 hydroxylase, Poly(A) binding protein and Formin-binding protein. None of these genes had been previously associated with heat shock response.

Page generated in 0.0661 seconds