Spelling suggestions: "subject:"shoot apical meristem"" "subject:"hoot apical meristem""
1 |
Meristem Maintenance in Arabidopsis thalianaPara, Alessia January 2004 (has links)
The shoot apical meristem (SAM) is the structure that shapes the aerial architecture of the plant, by producing lateral organs throughout development. In the model plant Arabidopsis thaliana, the SAM is always identifiable as a characteristic dome, whether it is found in the centre of a rosette of leaves or at the tip of an inflorescence. When senescence occurs and organogenesis ceases, the now inactive SAM still retains its characteristic appearance and it is never consumed into a terminal structure, such as a flower. Mutant plants that undergo termination represent a valuable tool to understand how the SAM structure and function are maintained during plant life. The aim of this work was to investigate the dynamics of meristem development through morphological and genetic studies of three Arabidopsis mutants that exhibit distinct modes of SAM termination: distorted architecture 1 (dar1), adenosine kinase 1 (adk1) and terminal flower 2 (tfl2). The dar1 mutation is characterised by a severely distorted cellular architecture within the SAM. We propose that dar1 affects the pattern of cell differentiation and/or cell proliferation within the SAM apical dome, resulting in termination by meristem consumption. Instead, the adk1 mutation affects the organogenic potential of the SAM, without altering its structure. The adk1 mutant has increased levels of cytokinins and, as a consequence of this, cell division is enhanced and cell differentiation is prevented in the apex, causing termination by meristem arrest. Finally, tfl2 is mutated in the conserved chromatin remodelling factor HP1, a transcriptional repressor with multiple roles during plant development. The tfl2 SAM terminates by conversion into a floral structure, due to de-repression of floral identity genes. Interestingly, tfl2 mutants also show an altered response to light, an indication that TFL2 might act as a repressor also in the context of light signalling.
|
2 |
An Analysis of the Development of Shoot Apices in Excised Immature Zygotic Cotton Embryos (Gossypium hirsutum cv Texas Marker-1)Arnold, Marianne 2011 December 1900 (has links)
Although cottonseed is an important source of oil and fiber, the development of cotton embryos has not been investigated as well as development of cotton fiber. The development of cotton embryos in late heart-stage and early cotyledonary stage is less well investigated than the first 10-14 days after anthesis, or the late stages of embryo development during seed-fill and desiccation. This analysis focused on cotton embryos in the late heart-stage and early cotyledonary stage of development (1.5-4.0 mm or about 13-18 DPA).
In vitro analyses are important tools for studying embryos in isolation from the endosperm and fiber and when it is necessary to monitor the developing embryo continuously. The original goal of this work was to develop an in vitro culture method that would support continued development of excised zygotic embryos from the early cotyledonary stage into complete plants with true shoots, i.e. true leaves or visible buds and then to use this method to study aspects of developmental regulation during cotyledonary stage and the transition to later stages. Not all embryos were competent to develop true shoots (an apical bud or a leaf plus a bud) in culture. A number of cultural variables were tested and eliminated. Embryo maturity at the time embryos were excised and the presence or absence of light during the first 14 days of culture affected the competence of immature embryos to developed true shoots. The effect of light was verified in several large replicated experiments. Morphological changes occurring during in vivo development were examined microscopically. The transition from heart-stage to early cotyledonary stage and the development of the first leaf from initials to a large structure were identified. Embryonic shoot apices continued to grow in cultured 1-3 mm embryos. The size and shape of light-treated and dark-treated embryonic apices was compared. A germination test of mature seeds identified seedlings with a similar phenotype occurring at similar rates in seedlings and light-cultured embryos and possible causes were discussed.
|
3 |
Effects of DNA mismatch repair inhibition in Arabidopsis thalianaWilcox, Buck W. L. 13 March 2012 (has links)
Genomic instability underlies diseases of unregulated cell growth that result in
cancers and developmental abnormalities in humans. Similar genome destabilizing
mechanisms are used to create genetic variety in crops for use in breeding and trait
development. Errors that occur during DNA replication may cause mutations if
they are not corrected before further cell divisions. DNA mismatch repair
(MMR) corrects misinsertions and insertion/deletion DNA loop-outs that arise
during DNA replication in plants, animals, prokaryotes, and some archaea, all of
which incur mutations at rates 100 to 1,000-fold greater when subjected to
inherited or somatic-mismatch repair deficiencies. An understanding of the
effects of mismatch repair on somatic and germ-line cells in Arabidopsis thaliana is
critical to the development of this plant as a model system for the study of
genomic instability. Insertions and deletions of multiples of two base pairs in
dinucleotide repeat sequences (microsatellites) occur more frequently in the
absence of mismatch repair, and the mismatch-repair status of an individual,
tissue, or cell may be inferred on the basis of microsatellite mutation frequency.
Single-template PCR analysis measured microsatellite mutation frequencies in
leaves and shoot-apical-meristem stem cells, and allowed me to address for the
first time an important question: Do plants relax mismatch repair in vegetative
tissues relative to meristematic germ-line and floral tissue? Analyses of four
microsatellite loci in mismatch repair-deficient and wild type plants surprisingly
suggest that there is little difference in mismatch repair activity between leaves and
seeds. Mismatch-repair-deficient leaves displayed only two-fold higher
microsatellite mutation frequency compared to wild type, and wild-type leaves also
displayed a two-fold higher microsatellite mutation frequency compared to shoot-apical-
meristems. The high frequency of microsatellite mutation in these wildtype
tissues is unexpected, and it suggests that plants relax mismatch repair in
differentiated tissues while maintaining genetic fidelity in a small set of stem cells
in the shoot apical meristem (SAM). Genome sequencing of msh2⁻/⁻ mutation
accumulation A. thaliana lines provides an estimated germ-line mutation rate of
3.9 × 10⁻⁷ in the absence of mismatch repair. Comparison of the rates of base
substitution mutation per chromosome in mismatch repair-deficient plants with
rates reported for wild-type plants suggests mismatch repair is more efficient on
chromosome 5 than on chromosomes 1-4. Bias towards G:C → A:T mutations
among transitions is maintained but increased nearly 100-fold in the absence of
mismatch repair. / Graduation date: 2012
|
4 |
Quantitative Analyse der Beteiligung genetisch verschiedener internaler Sprossscheitelschichten (L2, L3) an der Bildung des BlattmesophyllsMonteiro, Octave William Ademola 31 July 2002 (has links)
Die vorliegende Arbeit liefert neue Kenntnisse über das Konkurrenzverhalten der Sprossscheitelschichten bei der Blattmesophyllbildung und trägt dadurch zum Verständnis der Entwicklungsgeschichte höherer Pflanzen bei. Weißbunte Pflanzen von Peperomia serpens SW. LOUD, Sedum rubrotinctum R. T. CLAUSEN, Pedilanthus tithymaloides (L.) POIT. und Plectranthus coleoides BENTH wurden verwendet, um den Bau des Sprossscheitels und die chimärische Natur des Laubblattes zu analysieren. Durch die Untersuchungen zum Bau des Sprossscheitels und zur Blattanatomie wurden die Anzahl initialer Sprossscheitelschichten und die periklinalchimärische Natur der untersuchten Pflanzen bestätigt. Mit Hilfe von Mittelwertvergleichen der Mächtigkeit L2- und L3-bürtiger Mesophyllgewebe wurde die Beteiligung genetisch verschiedener internaler Sprossscheitelschichten an der Bildung des Blattmesophylls bei Sedum rubrotinctum, Pedilanthus tithymaloides und Peperomia serpens erfasst. Die Existenz histogenetisch grüner L2- oder L3-bürtiger Gewebe verursacht eine Zunahme der Blattquerschnittfläche (Sedum rubrotinctum) und eine Vergrößerung der Blattmesophyllhöhe (Peperomia serpens und Pedilanthus tithymaloides). Es wurden Regenerationsversuche an Blattstecklingen der Periklinalchimäre von Peperomia serpens und Sedum rubrotinctum durchgeführt. Durch In-vivo-Provozierung von Adventivsprossen an Blattstücken und achselknospenfreien Sprossen gelang es, die zwei untersuchten heterohistischen Musterpflanzen von Peperomia serpens ('GGW' und 'GWG') in grüne und weiße Nachkommen zu zerlegen. An Blattstecklingen bildeten sich in der Mehrzahl L3-bürtige Regenerate (ca. 75 %). Eine Beteiligung der L2-bürtigen Gewebe bei der Regeneration war an den Blattrandexplantaten zu beobachten. Das L1-bürtige Hypoderm konnte nur in der In-vitro-Blattregeneration deutlich seine Fähigkeit zur Adventivsprossbildung zeigen. Die Blattregenerationsergebnisse bei Peperomia serpens demonstrieren deutlich, dass sich alle drei Sprossscheitelschichten (L1, L2, L3) an der Blattmesophyllbildung beteiligen können. An Blattstecklingen von Periklinalchimären bei Sedum rubrotinctum bildeten sich grüne, weiße und neue chimärische Adventivsprosse. Aus den Regenerationsergebnissen lässt sich die entscheidende Rolle der L2-bürtigen Gewebe bei der Adventivsprossbildung ablesen. Die Regenerationsergebnisse sprechen dafür, dass die Bildung der Adventivsprosse durch die Beteiligung der L2- und L3-bürtigen Gewebe hervorgerufen wurde und die L1-bürtigen Gewebe an der Adventivsprossbildung nicht beteiligt sein konnten. Demzufolge sind tiefer liegende Gewebe (L2- und L3-bürtige) des Laubblattes beider Arten bei der Bildung der Adventivsprosse entscheidender als die L1-bürtige Epidermis. Das Ausmaß der Beteiligung an der Adventivsprossbildung bei Peperomia serpens und Sedum rubrotinctum wird nicht von der genetischen Herkunft (weiß oder grün) des L2- bzw. L3-bürtigen Gewebes gesteuert, sondern durch die Lage und damit durch die Abstammung der Gewebe aus der entsprechenden Sprossscheitelschicht bestimmt. Die abschließenden Untersuchungen an Plectranthus coleoides, dessen Chlorophyll- und Ploidiechimären quantitativ analysiert wurden, verdeutlichen die Erkenntnisse über die Beteiligung der Sprossscheitelschichten an der Bildung des Blattmesophylls. Es wurde deutlich, dass die Gewebekonkurrenz im Beisein einer doppelten Markierung nicht lagebedingt sein kann, sondern aufgrund verschiedener Ploidiestufen stattfindet. / The studies presented in this thesis provide new insights into the competitive reaction of the shoot apical layers during the foliar mesophyll formation and thus contribute to understanding of plant development. The variegated plants of Peperomia serpens SW. LOUD, Sedum rubrotinctum R. T. CLAUSEN, Pedilanthus tithymaloides (L.) POIT. and Plectranhus coleoides BENTH were used to analyse the cellular organisation of shoot apex and the histogenetic constitution of the leaf. Shoot apex and leaves structural analyses confirm the number of initial shoot apical layers and the periclinal chimeric nature of investigated plants. Quantitative analysis of foliar mesophyll of Sedum rubrotinctum, Peperomia serpens and Pedilanthus tithymaloides have been used to deduce patterns of meristem layers intercellular interaction during mesophyll formation. The expression of the histogenetic green meristem layer (L2 or L3) causes a increase of "mesophyll area" (Sedum rubrotinctum) and a enlargement of "mesophyll height" (Peperomia serpens and Pedilanthus tithymaloides) in leaves. Four periclinal chimeric forms of Peperomia serpens ('GGW' and 'GWG') and of Sedum rubrotinctum ('GGW' and 'GWG'), each of which possesses normal green cell layers but a genetically different chlorophyll-deficient cell layer, were utilized to study the effect of genotype on the ability of the cell layers of in vivo and in vitro leaf cutting to regenerate adventitious shoots and to analyse the competition between apical layers and their derivatives in the plant ontogeny. Among the in vivo adventitious shoots of the leaf cuttings and leaf of Peperomia serpens, shoots were green, white and variegated. The L3-derived cell layer is alone responsible for the formation of ca. 75 % of adventitious shoots. The relative significant contribution of L2-derived cell layers to mesophyll formation increases in margin of leaf. The L1-derived hypoderm in foliar mesophyll of Peperomia serpens were apparently incapable of shoot regeneration of in vivo leaf cutting, yet in both periclinal forms clearly produced green shoots in vitro. Results demonstrate that all initial apical meristem layers in Peperomia serpens can contribute with different ability to foliar mesophyll formation. Adventitious shoots were in vivo induced on leaf of periclinal chimeric plants of Sedum rubrotinctum. Plants derived from leaf culture were three types: green, white and variegated. Among the adventitious shoots of green- and white-margined leaf of Sedum rubrotinctum, most adventitious shoots (ca. 90 %) were L2-derived, a few were L3-derived. Results demonstrate that the L1 derivatives can not contribute to foliar mesophyll formation. According to these results the internal tissues (L2- and L3-derived cell layers) of leaf are more competitive than the epidermis. The lineage of adventitious shoot is not controlled by the genetic origin of L2- and L3-derived tissues, but by the position of these derived tissues according to the shoot apical meristem layer. The last experiments on Plectranthus coleoides which have combined quantitative analysis of variegated- leaf chimeras with quantitative analysis of cytochimeras have begun to shed more light on the contribution of apical meristem layers to foliar mesophyll formation. It has revealed how the ploidy degree of apical layers derivatives in a cytochimera control leaf cell fate more than their position in the meristem.
|
5 |
Caractérisation du lien entre croissance et patterning dans la morphogenèse chez Arabidopsis / Linking patterning to growth changes during morphogenesis in Arabidopsis shoot meristemLandrein, Benoit 14 March 2014 (has links)
Le contrôle moléculaire du patterning au cours des processus développementaux est aujourd’hui bien décrit chez les organismes multicellulaires. A l’inverse, la contribution de la croissance dans l’émergence des patterns reste peu explorée, et est souvent réduite à un rôle passif. Au cours de cette thèse, j’ai étudié cette question en utilisant le méristème apical caulinaire (MAC) d’Arabidopsis comme modèle. Le méristème est un groupe de cellules en divisions situé à l’extrémité de toutes les tiges et les branches et qui génère tous les organes aériens de la plante selon un patron stéréotypé, aussi appelé phyllotaxie. Dans une première partie, j’ai étudié comment la croissance de la tige pouvait influencer le patron phyllotactique. Plus précisément, en découplant dépôt de la cellulose dans la paroi et l’orientation des microtubules, j’ai montré que le patron de phyllotaxie devenait bimodal en raison de l’induction d’une torsion lors de la croissance de la tige. Dans une seconde partie, j’ai analysé le lien entre forme du MAC et expression génétique. En particulier, j’ai pu corréler l’expression d’un gène maître : SHOOTMERISTEM LESS (STM) au degré de courbure dans le MAC. De plus, en utilisant des approches de micromécaniques, j’ai aussi pu montrer que l’expression de STM pouvait être induite par le patron de contraintes localement généré par la courbure. Pour finir, j’ai aussi étudié comment la taille du méristème influence la robustesse du pattern de phyllotaxie sur la tige en modulant la fréquence d’initiation des organes. L’ensemble de ce travail met ainsi en avant le rôle de la croissance dans le patterning, notamment via des mécanismes de rétrocontrôles géométriques et mécaniques. / The molecular mechanisms behind the emergence of patterns during developmental processes have been well described in multicellular organisms. However, the contribution of growth in patterning is still poorly understood; growth is often seen as a passive output of the activity of the patterning signals. In this PhD, I have studied the relation between growth and patterning using the shoot apical meristem of Arabidopsis as a model system. The meristem is a group of dividing cells located at the tip of every stems and branches that generates all the aerial organs of the plant following a typical spatio-temporal pattern also called phyllotaxis. In a first part, the influence of post-meristematic growth on phyllotaxis was assessed. More precisely, by uncoupling cellulose deposition from the orientation of the microtubule array, I showed that the resulting stem torsion induces the emergence of a new and robust bimodal phyllotactic pattern. In a second part, the relation between meristem shape and gene expression was analyzed. More precisely, I correlated the expression of a master regulatory gene: SHOOT MERISTEMLESS (STM) to tissue curvature in the boundary domain that separates the emerging organ from the meristem. Furthermore, I showed that STM expression can be induced by micromechanical perturbations thus suggesting that shape-derived mechanical stresses in the meristem boundary contribute to STM expression. Finally, I also studied how meristem size can influence the robustness of the pattern of phyllotaxis along the stem through a modulation of the frequency of organ initiation. Altogether, this work highlights the important contribution of growth in patterning, notably thanks to the existence of geometrical and mechanical feedbacks.
|
6 |
A Morphological and Anatomical Investigation of Shoot Apical Meristems Expressing Ring Fasciation in Clarkia tembloriensisTysonMayer, Kilian 26 November 2019 (has links)
No description available.
|
7 |
Interpreting Cytokinin Action as Anterograde Signaling and BeyondIkeda, Yoshihisa, Zalabák, David, Kubalová, Ivona, Králová, Michaela, Brenner, Wolfram G., Aida, Mitsuhiro 30 March 2023 (has links)
Among the major phytohormones, the cytokinin exhibits unique features for its ability
to positively affect the developmental status of plastids. Even early on in its research,
cytokinins were known to promote plastid differentiation and to reduce the loss of
chlorophyll in detached leaves. Since the discovery of the components of cytokinin
perception and primary signaling, the genes involved in photosynthesis and plastid
differentiation have been identified as those directly targeted by type-B response
regulators. Furthermore, cytokinins are known to modulate versatile cellular processes
such as promoting the division and differentiation of cells and, in concert with auxin,
initiating the de novo formation of shoot apical meristem (SAM) in tissue cultures.
Yet how cytokinins precisely participate in such diverse cellular phenomena, and
how the associated cellular processes are coordinated as a whole, remains unclear.
A plausible presumption that would account for the coordinated gene expression is
the tight and reciprocal communication between the nucleus and plastid. The fact
that cytokinins affect plastid developmental status via gene expression in both the
nucleus and plastid is interpreted here to suggest that cytokinin functions as an
initiator of anterograde (nucleus-to-plastid) signaling. Based on this viewpoint, we first
summarize the physiological relevance of cytokinins to the coordination of plastid
differentiation with de novo shoot organogenesis in tissue culture systems. Next, the role
of endogenous cytokinins in influencing plastid differentiation within the SAM of intact
plants is discussed. Finally, a presumed plastid-derived signal in response to cytokinins
for coupled nuclear gene expression is proposed.
|
8 |
Microarray Analysis of Differential Expression of Genes in Shoot Apex and Young Leaf of English Ivy (<i>Hedera helix</i> L. cv. Goldheart)Shin, Seung-Geuk 15 July 2010 (has links)
No description available.
|
9 |
Contrôle épigénétique de la plasticité de l’appareil végétatif du peuplier en réponse à des variations de la disponibilité en eau / Epigenetic control of shoot phenotypic plasticity towards variations in water availability in poplarLafon Placette, Clément 21 December 2012 (has links)
Au vu de l’impact croissant du changement climatique global et en particulier de la sécheresse sur les forêts, il est nécessaire de comprendre les mécanismes de réponse des arbres face à des variations de disponibilité en eau. Ces dernières années, des études ont montré un contrôle épigénétique et notamment par la méthylation de l’ADN de la plasticité phénotypique des plantes en réponse aux variations environnementales. Dans ce contexte, cette thèse visait à évaluer le rôle de la méthylation de l’ADN des cellules du méristème apical caulinaire dans la plasticité développementale de la tige feuillée en réponse à des variations de disponibilité en eau chez le peuplier, un arbre modèle. A cette fin, le méthylome de la chromatine non condensée dans le méristème apical caulinaire de Populus trichocarpa a été caractérisé. Ensuite, l’impact de variations de disponibilité en eau sur la méthylation de l’ADN a été étudié dans l’apex caulinaire de différents hybrides (P. × euramericana). Les loci et les réseaux de gènes affectés pour leur expression et leur méthylation ont ainsi été identifiés. Ces travaux ont montré que dans le méristème apical caulinaire, la majorité des gènes étaient dans un état non condensé de la chromatine et méthylés dans leur corps. Ils ont également mis en évidence une forte variation de la méthylation globale de l’ADN selon les génotypes et en réponse à des variations de disponibilité en eau. De plus, des corrélations ont été établies entre les niveaux de croissance des arbres et de méthylation globale de l’ADN dans l’apex caulinaire. Enfin, les variations de la méthylation de l’ADN en réponse aux variations de la disponibilité en eau s’accompagnent de variations d’expression et ont ciblé particulièrement des gènes impliqués dans la signalisation par les phytohormones ou la morphogenèse. Ainsi, les travaux effectués lors de cette thèse suggèrent un rôle de la méthylation de l’ADN dans la plasticité phénotypique en réponse à des variations de disponibilité en eau chez le peuplier via le contrôle de l’expression de réseaux de gènes dans le méristème apical caulinaire. / Predicted climate changes and particularly drought represent a major threat to forest health. Therefore, understanding mechanisms that control trees response to variations in water availability is of great interest. These last years, epigenetic marks such as DNA methylation have been involved in plant phenotypic plasticity in response to environmental stresses. In this context, this work aimed at assessing the role of shoot apical meristem cells DNA methylation in the shoot developmental plasticity towards variations in water availability in poplar, a model tree. For this purpose, the methylome of non condensed chromatin in Populus trichocarpa shoot apical meristem was characterized. Then, the impact of variations in water availability on shoot apex DNA methylation in different hybrids (P. × euramericana) was studied. Loci and gene networks affected by DNA methylation and expression changes were thus identified. This work showed that in shoot apical meristem, most of the genes was in non condensed chromatin state with DNA methylation in their body. A strong variation in DNA methylation depending on genotypes and water availability was highlighted. Moreover, correlations between trees growth and shoot apex DNA methylation levels were established. Lastly, DNA methylation changes in response to variations in water availability correlated to expression variations were identified for genomic loci and gene networks. Thus, the work performed during this thesis suggests a role for DNA methylation in poplar phenotypic plasticity in response to variations in water availability through the control of gene networks transcription in the shoot apical meristem.
|
10 |
Genetic And Biochemical Studies On Genes Involved In Leaf MorphogenesisAggarwal, Pooja 02 1900 (has links)
Much is known about how organs acquire their identity, yet we are only beginning to learn how their shape is regulated. Recent work has elucidated the role of coordinated cell division & expansion in determining plant organ shape. For instance, in Antirrhinum, leaf shape is affected in the cincinnata (cin) mutant because of an alteration in the cell division pattern. CIN codes for a TCP transcription factor and controls cell proliferation. It is unclear how exactly CIN-like genes regulate leaf morphogenesis. We have taken biochemical and genetic approach to understand the TCP function in general and the role of CIN-like genes in leaf morphogenesis in Antirrhinum and Arabidopsis.
Targets of CINCINNATA
To understand how CIN controls Antirrhinum leaf shape, we first determined the consensus target site of CIN as GTGGTCCC by carrying out RBSS assay. Mutating each of this target sequence, we determined the core binding sequence as TGGNCC. Hence, all potential direct targets of CIN are expected to contain a TGGNCC sequence.
Earlier studies suggested that CIN activates certain target genes that in turn repress cell proliferation. To identify these targets, we compared global transcripts of WT and cin leaves by differential display PCR and have identified 18 unique, differentially expressed transcripts. To screen the entire repertoire of differentially expressed transcripts, we have carried out extensive micro-array analysis using 44K Arabidopsis chips as well as 13K custom-made Antirrhinum chips. Combining the RBSS data with the results obtained from the micro-array experiments, we identified several targets of CIN. In short, CIN controls expression of the differentiation-specific genes from tip to base in a gradient manner. In cin, such gradient is delayed, thereby delaying differentiation. We also find that gibberellic acid, cytokinin and auxin play important role in controlling leaf growth.
Genetic characterization of CIN-homologues in Arabidopsis
Arabidopsis has 24 TCP genes. Our work and reports from other groups have shown that TCP2, 4 and 10 are likely to be involved in leaf morphogenesis. These genes are controlled by a micro RNA miR319. To study the role of TCP4, the likely orthologue of CIN, we generated both stable and inducible RNAi lines. Down-regulation of TCP4 transcript resulted in crinkly leaves, establishing the role of TCP4 in leaf shape. To study the function of TCP2, 4 & 10 in more detail, we isolated insertion mutants in these loci. The strongest allele of TCP4 showed embryonic lethal phenotype, indicating a role for TCP4 in embryo growth. All other mutants showed mild effect on leaf shape, suggesting their redundant role. Therefore, we generated and studied various combinations of double and triple mutants to learn the concerted role of these genes on leaf morphogenesis.
To further study the role of TCP4 in leaf development, we generated inducible RNAi and miRNA-resistant TCP4 transgenic lines and carried out studies with transient down-regulation and up-regulation of TCP4 function. Upon induction, leaf size increased in RNAi transgenic plants whereas reduced drastically in miR319 resistant lines, suggesting that both temporal & spatial regulation of TCP4 is required for leaf development.
Biochemical characterization of TCP domain
To study the DNA-binding properties of TCP4, random binding site selection assay (RBSS) was carried out and it was found that TCP4 binds to a consensus sequence of GTGGTCCC. By patmatch search and RT-PCR analysis, we have shown that one among 74 putative targets, EEL (a gene involved in embryo development), was down regulated in the RNAi lines of TCP4. This suggests that EEL could be the direct target of TCP4. We have tested this possibility in planta by generating transgenic lines in which GUS reporter gene is driven by EEL upstream region with either wild type or mutated TCP4 binding site. GUS analysis of embryos shows that transgenic with mutated upstream region had significantly reduced reporter activity in comparison to wild type, suggesting that EEL is a direct target of TCP4. We have further shown that TCP4 also binds to the upstream region of LOX2, a gene involved in Jasmonic acid (JA) biosynthesis (in collaboration with D. Weigel, MPI, Tubingen, Germany).
TCP domain has a stretch of basic residues followed by a predicted helix-loop-helix region (bHLH), although it has little sequence homology with canonical bHLH proteins. This suggests that TCP is a novel and uncharacterized bHLH domain. We have characterized DNA-binding specificities of TCP4 domain. We show that TCP domain binds to the major groove of DNA with binding specificity comparable to that of bHLH proteins. We also show that helical structure is induced in the basic region upon DNA binding. To determine the amino acid residues important for DNA binding, we have generated point mutants of TCP domain that bind to the DNA with varied strength. Our analysis shows that the basic region is important for DNA binding whereas the helix-loop-helix region is involved in dimerization. Based on these results, we have generated a molecular model for TCP domain bound to DNA (in Collaboration with Prof. N. Srinivasan, IISc, Bangalore). This model was validated by further site-directed mutagenesis of key residues and in vitro assay.
Functional analysis of TCP4 in budding yeast
To assess TCP4 function in regulation of eukaryotic cell division, we have introduced TCP4 in S. cerevisiae under the GAL inducible promoter. TCP4 induction in yeast cells always slowed down its growth, indicative of its detrimental effect on yeast cell division. Flow cytometry analysis of synchronized cells revealed that TCP4 arrests yeast cell division specifically at G1→S boundary. Moreover, induced cells showed distorted cell morphology resembling shmoo phenotype. Shmooing is a developmental process which usually happened when the haploid cells get exposed to the cells of opposite mating type and get arrested at late G1 phase due to the inhibition of cdc28-cln2 complex. This suggested that TCP4-induced yeast cells are arrested at late G1 phase probably by the inhibition of cdc28-cln2 complex. To further investigate how TCP4 induce G1→S arrest, we carried out microarray analysis and found expression of several cell cycle markers significantly altered in TCP4-induced yeast cells.
Studies on crinkly1, a novel leaf mutant in Arabidopsis
To identify new genes involved in leaf morphogenesis, we have identified crinkly1 (crk1), a mutant where leaf shape and size are altered. We observed that crk1 also makes more number of leaves compared to wild type. Phenotypic analysis showed that crk1 leaf size is ~5 times smaller than that of wild type. Scanning electron microscopy (SEM) showed that both cell size and number are reduced in the mutant leaf, which explains its smaller size. We have mapped CRK1 within 3 cM on IV chromosome.
|
Page generated in 0.0954 seconds