• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 26
  • 15
  • 10
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 191
  • 191
  • 30
  • 28
  • 26
  • 24
  • 22
  • 21
  • 21
  • 20
  • 18
  • 17
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Spectroscopic analysis of selected silicon ceramics

Leitch, Sam Anthony 17 June 2005
<p>Silicon ceramics are popular in both commercial applications and material research. The purpose of this thesis is to present measurements and analysis of four different silicon ceramics: á, â and ã phases of silicon nitride and silicon oxynitride using soft x-ray spectroscopy, which analyses the electronic structure of materials by measuring the absorption and emission of x-ray radiation. Absorption and emission spectra of these materials are presented, many of which have not be previously documented. The results are compared to model spectra and together they provide information about the electronic structure of the material.</p><p>Assignments of emission features to element, orbital, and site symmetry are performed for each material. Combinations of silicon and nitrogen emission spectra provide insight into the strained bonding structure of nitrogen. It is concluded that p-dð interaction plays a role in the bonding arrangement of nitrogen and oxygen sites within these structures. The emission features of non-equivalent silicon sites within ã-Si3N4 are identified, which represents some of the first analysis of same element, non-equivalent sites in a material.</p><p>Silicon absorption and emission spectra were plotted on the same energy scale to facilitate measurement of the band gap. Since previously measured band gaps are not well represented in literature, the measured band gaps were compared to values predicted using DFT calculations. The band gap values are in reasonable agreement to calculated values, but do not vary as widely as predicted.</p>
82

Spectroscopic analysis of selected silicon ceramics

Leitch, Sam Anthony 17 June 2005 (has links)
<p>Silicon ceramics are popular in both commercial applications and material research. The purpose of this thesis is to present measurements and analysis of four different silicon ceramics: á, â and ã phases of silicon nitride and silicon oxynitride using soft x-ray spectroscopy, which analyses the electronic structure of materials by measuring the absorption and emission of x-ray radiation. Absorption and emission spectra of these materials are presented, many of which have not be previously documented. The results are compared to model spectra and together they provide information about the electronic structure of the material.</p><p>Assignments of emission features to element, orbital, and site symmetry are performed for each material. Combinations of silicon and nitrogen emission spectra provide insight into the strained bonding structure of nitrogen. It is concluded that p-dð interaction plays a role in the bonding arrangement of nitrogen and oxygen sites within these structures. The emission features of non-equivalent silicon sites within ã-Si3N4 are identified, which represents some of the first analysis of same element, non-equivalent sites in a material.</p><p>Silicon absorption and emission spectra were plotted on the same energy scale to facilitate measurement of the band gap. Since previously measured band gaps are not well represented in literature, the measured band gaps were compared to values predicted using DFT calculations. The band gap values are in reasonable agreement to calculated values, but do not vary as widely as predicted.</p>
83

Understanding and Implementation of Hydrogen Passivation of Defects in String Ribbon Silicon for High-Efficiency, Manufacturable, Silicon Solar Cells

Yelundur, Vijay Nag 22 November 2003 (has links)
Photovoltaics offers a unique solution to energy and environmental problems simultaneously. However, widespread application of photovoltaics will not be realized until costs are reduced by about a factor of four without sacrificing performance. Silicon crystallization and wafering account for about 55% of the photovoltaic module manufacturing cost, but can be reduced significantly if a ribbon silicon material, such as String Ribbon Si, is used as an alternative to cast Si. However, the growth of String Ribbon leads to a high density of electrically active bulk defects that limit the minority carrier lifetime and solar cell performance. The research tasks of this thesis focus on the understanding, development, and implementation of defect passivation techniques to increase the bulk carrier lifetime in String Ribbon Si in order to enhance solar cell efficiency. Hydrogen passivation of defects in Si can be performed during solar cell processing by utilizing the hydrogen available during plasma-enhanced chemical vapor deposition (PECVD) of SiNx:H films. It is shown in this thesis that hydrogen passivation of defects during the simultaneous anneal of a screen-printed Al layer on the back and a PECVD SiNx:H film increases the bulk lifetime in String Ribbon by more than 30 ?A three step physical model is proposed to explain the hydrogen defect passivation. Appropriate implementation of the Al-enhanced defect passivation treatment leads to String Ribbon solar cell efficiencies as high as 14.7%. Further enhancement of bulk lifetime up to 92 ?s achieved through in-situ NH3 plasma pretreatment and low-frequency (LF) plasma excitation during SiNx:H deposition followed by a rapid thermal anneal (RTA). Development of an optimized two-step RTA firing cycle for hydrogen passivation, the formation of an Al-doped back surface field, and screen-printed contact firing results in solar cell efficiencies as high as 15.6%. In the final task of this thesis, a rapid thermal treatment performed in a conveyer belt furnace is developed to achieve a peak efficiency of 15.9% with a bulk lifetime of 140 ?Simulations of further solar cell efficiency enhancement up to 17-18% are presented to provide guidance for future research.
84

High quality integrated silicon nitride nanophotonic structures for visible light applications

Shah Hosseini, Ehsan 16 May 2011 (has links)
High quality nanophotonic structures fabricated on silicon nitride substrates and operating in the visible range of the spectrum are investigated. As most biological sensing applications, such as Raman and fluorescence sensing, require visible light pumping and analysis, extending the nanophotonics concepts to the visible range is essential. Traditionally, CMOS compatible processes are used to make compact silicon nanophotonics structures. While the high index contrast of silicon on insulator (SOI) wafers offer a high integration capability, the high absorption loss of silicon renders it unusable in the visible range. In this research high quality factor microdisk and photonic crystal resonators and high resolution arrayed waveguide grating and superprism spectrometers are fabricated and characterized in the visible range and integrated with fluidic structures and their application in biosensing and athermal operations is investigated.
85

High-k gate dielectric for 100 nm MOSFET application /

Jeon, Yongjoo. January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 111-119). Available also in a digital version from Dissertation Abstracts.
86

Characterization of Dielectric Films for Electrowetting on Dielectric Systems

Rajgadkar, Ajay 12 July 2010 (has links)
Electrowetting is a phenomenon that controls the wettability of liquids on solid surfaces by the application of electric potential. It is an interesting method to handle tiny amounts of liquid on solid surfaces. In recent times, researchers have been investigating this phenomenon and have reported some unexplained behavior and degradation in the Electrowetting system performance. Electrowetting systems include the presence of electric field and different materials from metals to dielectrics and electrolytes that create an environment in which corrosion processes play a very important role. With the small dimensions of the electrodes, corrosion can cause failure quickly when the dielectric fails. In this work, commonly used dielectric films such as silicon dioxide and silicon nitride were deposited using Plasma Enhanced Chemical Vapor Deposition and characterized on the basis of thickness uniformity, etch rate measurements, Dry current – voltage measurements and Wet current – voltage measurements. Sputtered silicon dioxide films were also characterized using the same methods. The correlation between Dry I – V and Wet I – V measurements was studied and a comparison of dielectric quality of films based on these measurements is presented. Also, impact of different liquids on the dielectric quality of films was studied.
87

Selective silicon and germanium nanoparticle deposition on amorphous surfaces

Coffee, Shawn Stephen, 1978- 28 August 2008 (has links)
This dissertation describes the development of a process for the precise positioning of semiconductor nanoparticles grown by hot wire chemical vapor deposition and thermal chemical vapor deposition on amorphous dielectrics, and it presents two studies that demonstrate the process. The studies entailed growth and characterization using surface science techniques and scanning electron microscopy. The two systems, Ge nanoparticles on HfO₂ and Si nanoparticles on Si₃N₄, are of interest because their electronic properties show potential in flash memory devices. The positioning technique resulted in nanoparticles deposited within 20 nm diameter feature arrays having a 6x10¹⁰ cm⁻² feature density. Self-assembling diblock copolymer poly(styrene-b-methyl methacrylate) thin films served as the patterning soft mask. The diblock copolymer features were transferred using a CHF₃/O₂ reactive ion etch chemistry into a thin film SiO₂ hard mask to expose the desired HfO₂ or Si₃N₄ deposition surface underneath. Selective deposition upon exposed pore bottoms was performed at conditions where adatom accumulation occurred on the HfO₂ or Si₃N₄ surfaces and not upon the SiO₂ mask template. The selective deposition temperatures for the Ge/HfO₂ and Si/Si₃N₄ systems were 700 to 800 K and 900 to 1025 K, respectively. Germanium nucleation on HfO₂ is limited from hot wire chemical vapor deposition by depositing nanoparticles within 67% of the available features. Unity filling of features with Ge nanoparticles was achieved using room temperature adatom seeding before deposition. Nanoparticle shape and size are regulated through the Ge interactions with the SiO₂ feature sidewalls with the adatom removal rate from the features being a function of temperature. The SiO₂ mask limited Ge nanoparticle growth laterally to within ~5 nm of the hard mask at 800 K. Silicon deposition on patterned Si₃N₄ has multiple nanoparticles, up to four, within individual 20 nm features resulting from the highly reactive Si₃N₄ deposition surface. Silicon nucleation and continued nanoparticle growth is a linear function of deposition flux and an inverse function of sample temperature. Diblock copolymer organization can be directed into continuous crystalline domains having ordered minority phases in a process known as graphoepitaxy. In graphoepitaxy forced alignment within microscopic features occurs provided certain dimensional constraints are satisfied. Graphoepitaxy was attempted to precisely locate 20 nm diameter features for selective Ge or Si deposition and initial studies are presented. In addition to precise nanoparticle positioning studies, kinetic studies were performed using the Ge/HfO₂ material system. Germanium hot wire chemical vapor deposition on unpatterned HfO₂ surfaces was interpreted within the mathematical framework of mean-field nucleation theory. A critical cluster size of zero and critical cluster activation energy of 0.4 to 0.6 eV were estimated. Restricting HfO₂ deposition area to a 200 nm to 100 [mu]m feature-width range using SiO₂ decreases nanoparticle density compared to unpatterned surfaces. The studies reveal the activation energies for surface diffusion, nucleation, and Ge etching of SiO₂ are similar in magnitude. Comparable activation energies for Ge desorption, surface diffusion and cluster formation obscure the change with temperature an individual process rate has on nanoparticle growth characteristics as the feature size changes. / text
88

Densely integrated photonic structures for on-chip signal processing

Li, Qing 20 September 2013 (has links)
Microelectronics has enjoyed great success in the past century. As the technology node progresses, the complementary metal-oxide-semiconductor scaling has already reached a wall, and serious challenges in high-bandwidth interconnects and fast-speed signal processing arise. The incorporation of photonics to microelectronics provides potential solutions. The theme of this thesis is focused on the novel applications of travelling-wave microresonators such as microdisks and microrings for the on-chip optical interconnects and signal processing. Challenges arising from these applications including theoretical and experimental ones are addressed. On the theoretical aspect, a modified version of coupled mode theory is offered for the TM-polarization in high index contrast material systems. Through numerical comparisons, it is shown that our modified coupled mode theory is more accurate than all the existing ones. The coupling-induced phase responses are also studied, which is of critical importance to coupled-resonator structures. Different coupling structures are studied by a customized numerical code, revealing that the phase response of symmetric couplers with the symmetry about the wave propagating direction can be simply estimated while the one of asymmetric couplers is more complicated. Mode splitting and scattering loss, which are two important features commonly observed in the spectrum of high-Q microresonators, are also investigated. Our review of the existing analytical approaches shows that they have only achieved partial success. Especially, different models have been proposed for several distinct regimes and cannot be reconciled. In this thesis, a unified approach is developed for the general case to achieve a complete understanding of these two effects. On the experimental aspect, we first develop a new fabrication recipe with a focus on the accurate dimensional control and low-loss performance. HSQ is employed as the electron-beam resist, and the lithography and plasma etching steps are both optimized to achieve vertical and smooth sidewalls. A third-order temperature-insensitive coupled-resonator filter is designed and demonstrated in the silicon-on-insulator (SOI) platform, which serves as a critical building block element in terabit/s on-chip networks. Two design challenges, i.e., a broadband flat-band response and a temperature-insensitive design, are coherently addressed by employing the redundant bandwidth of the filter channel caused by the dispersion as thermal guard band. As a result, the filter can accommodate 21 WDM channels with a data rate up to 100 gigabit/s per wavelength channel, while providing a sufficient thermal guard band to tolerate more than ±15°C temperature fluctuations in the on-chip environment. In this thesis, high-Q microdisk resonators are also proposed to be used as low-loss delay lines for narrowband filters. Pulley coupling scheme is used to selectively couple to one of the radial modes of the microdisk and also to achieve a strong coupling. A first-order tunable narrowband filter based on the microdisk-based delay line is experimentally demonstrated in an SOI platform, which shows a tunable bandwidth from 4.1 GHz to 0.47 GHz with an overall size of 0.05 mm². Finally, to address the challenges for the resonator-based delay lines encountered in the SOI platform, we propose to vertically integrate silicon nitride to the SOI platform, which can potentially have significantly lower propagation loss and higher power handling capability. High-Q silicon nitride microresonators are demonstrated; especially, microresonators with a 16 million intrinsic Q and a moderate size of 240 µm radius are realized, which is one order of magnitude improvement compared to what can be achieved in the SOI platform using the same fabrication technology. We have also successfully grown silicon nitride on top of SOI and a good coupling has been achieved between the silicon nitride and the silicon layers.
89

Metal to ceramic joining for high temperature applications

Ammer Khan, Ammer Khan January 2003 (has links)
The phenomenal growth rate for the use of engineering ceramics is attributed to successful scientific responses to industrial demand. These materials are replacing metal and its alloys in diverse applications from cutting tools and heat engine components to integrated circuits. Joining technology plays a vital role in this changing and evolving technology as success and failure comes with breaking new barriers. It is important to improve existing techniques and to develop new techniques that reliably join simple shape components to form complex assemblies or join dissimilar materials such as metal to ceramic. Joining of ceramics is not simple due to their high chemical stability and low coefficient of thermal expansion (CTE). Joining between metal and ceramic is usually carried out at elevated temperatures and upon cooling thermal residual stresses are induced that lead to joint failure or poor strength. Most metal-ceramic joints cannot be used over 500°C primarily due to the low melting temperature of the interlayer. This investigation was concerned with the successful joining for higher temperature applications (above 500°C) of two dissimilar high temperature oxidation and corrosion resistant materials, Fecralloy and silicon nitride. The primary focus was on the effects of process conditions upon the microstructure and mechanical properties of the joint and to also study/identify the joining mechanism. Two novel techniques were employed to join successfully the metal to ceramic. The first was by use of a thin Cu foil that did not remain after joining. Joining occurs by a process that results in partial melting of the Fecralloy interface, where Fe, Cr, Al and Cu reactively infiltrate into the silicon nitride. This liquid mixture causes partial dissolution of the silicon nitride interface, where Si and N diffuse into the Fecralloy. A thin reaction product layer was formed at the silicon nitride interface and our results suggested that this was AIN. The free surface Si and porosity of the silicon nitride along with the eutectic temperatures above 1100°C are all vital for this joining process. The highest average shear strength of a Fecralloy-silicon nitride joint produced by the method was 67.5 MPa. The second route was that of a powder metallurgy one, where cold pressed Ni-Al (1:1 molar) compacts were used to join successfully the Fecralloy to silicon nitride. The formation of NiAl from its constituents is highly exothermic and this is initiated between 500-650°C. The high temperature reached causes partial melting of the Fecralloy interface and dissolution/reactive wetting at the silicon nitride interface. Mostly Fe infiltrates the NiAl improving room temperature ductility, fracture toughness and yield strength. Molten Al from the interlayer reacts and wets the silicon nitride interface with small amount of infiltration and no reaction product forming. The reaction synthesis of NiAl was studied using DTA and TGA, where the effects of Ni particle size and heating rate were investigated. This joining process is highly dependant upon process conditions, the most important of which are applied pressure, heating rate and Ni/A1 particle size. The highest average shear strength attained was 94.30 MPa and this is attributed to good interfacial bonding, high pressure, moderate process temperature and dwell time. The exothermic formation of the NiAl interlayer that is densified and monophase was paramount for this joining process. The Bansal-Doremus kinetic model for evaluating the kinetic parameters from non-isothermal DTA data was shown to be valid. The results obtained were identical to those by other authors who used a different model and approach.
90

ショットピーニングしたセラミックスの表面下の残留応力分布

田中, 啓介, TANAKA, Keisuke, 秋庭, 義明, AKINIWA, Yoshiaki, 森下, 裕介, MORISHITA, Yusuke 12 1900 (has links)
No description available.

Page generated in 0.0416 seconds