Spelling suggestions: "subject:"imp"" "subject:"timp""
11 |
Conception d'organes automobiles par optimisation topologiqueCalvel, Sonia 05 October 2004 (has links) (PDF)
Dans l'industrie automobile, les réductions de masse permettent des économies de matières premières et des gains importants en performance. Cet allégement ne peut cependant pas se faire au détriment des exigences en matière de confort et de sécurité. Dans ce contexte, l'objectif de l'optimisation topologique est de déterminer, en amont des projets, les caractéristiques générales des pièces mécaniques. Les logiciels commerciaux actuels ne permettant pas l'intégration de toutes les contraintes déclinées sur les projets véhicules, notamment les contraintes vibro-accoustiques, nous proposons dans cette thèse une méthodologie et une solution logicielle associée, permettant la prise en compte d'un cahier des charges conforme à ceux utilisés chez Renault. Nous combinons pour cela la méthode d'optimisation topologique SIMP et l'algorithme d'optimisation numérique FSQP. Après avoir évalué notre méthode sur des cas de géométrie simple, nous montrons son potentiel sur le cas d'une face accessoires.
|
12 |
Topology optimization : A comparison between the SIMP and BESO methods using open-source software.Hagnell, Christian, Saidi Mosanen, Kiavosh January 2021 (has links)
Structural optimization is a useful tool for engineers and designers in construction technology as well asvehicle and mechanical engineering. With structure optimization, a computer can, with the help of finiteelement analysis, calculate the smallest possible amount of material needed to meet the requirements onthe part to be produced.The purpose of this report is to use two different implementations for finite element calculations fortopology optimization of a beam. Results from the optimizations will then be 3D printed with differentsettings. The beam will be tested for displacement, stress and strain in a universal testing machine. Theresults from the experiment will be compared with computed simulations of the same beam.For the structural optimization, two methods are used and compared: Solid Isotropic Material withPenalization and Bidirectional Evolutionary Structural Optimization. A total of eight beams, four fromeach method, were printed with a 3D printer with two different positions on the printer bed and withdifferent degrees of infill ratios. These were tested with a machine that could register both pressure anddeformation and were filmed to be able to see the strain. The deformation of the beams was alsosimulated in a software computer program to see what deformation difference there was betweenexperiment and reality.It turned out that the beams that were printed behaved anisotropic even though solid plastic should beincluded among isotropic materials. The deformation of the model looked like the finite elementcalculation, but the actual deformation was significantly larger than what was calculated by the computersoftware.
|
13 |
Studies into the Initial Conditions, Flow Rate, and Containment System of Oil Field Leaks in Deep WaterHolder, Rachel 16 December 2013 (has links)
Oil well blow outs are investigated to determine methods to quickly and accurately respond to an emergency situation. Flow rate is needed to guide containment and dispersal operations. The Stratified Integral Multiphase Plume, SIMP, model was used to investigate the range of initial conditions available to integral modeling. Sensitivity to initial conditions is modest, but without experimental data at the appropriate scale the most accurate condition is unable to be determined. Flow rates are difficult to directly measure in blow out situations, so another method must be determined; therefore, sensitivity of several parameters to flow rate was also evaluated. Methane concentration in the first intrusion can be used in conjunction with velocity and trap height measurements to determine flow rate using an integral model. Plume width and temperature were determined to have little sensitivity. Separately, a containment dome was tested in the laboratory to determine if a full scale dome can be used to contain an oil leak in the field. The dome was found to have satisfactory entrapment in the designed position.
|
14 |
Contributions to the Simulation and Optimization of the Manufacturing Process and the Mechanical Properties of Short Fiber-Reinforced Plastic PartsOspald, Felix 16 December 2019 (has links)
This thesis addresses issues related to the simulation and optimization of the injection molding of short fiber-reinforced plastics (SFRPs).
The injection molding process is modeled by a two phase flow problem.
The simulation of the two phase flow is accompanied by the solution of the Folgar-Tucker equation (FTE) for the simulation of the moments of fiber orientation densities.
The FTE requires the solution of the so called 'closure problem'', i.e. the representation of the 4th order moments in terms of the 2nd order moments.
In the absence of fiber-fiber interactions and isotropic initial fiber density, the FTE admits an analytical solution in terms of elliptic integrals.
From these elliptic integrals, the closure problem can be solved by a simple numerical inversion.
Part of this work derives approximate inverses and analytical inverses for special cases of fiber orientation densities.
Furthermore a method is presented to generate rational functions for the computation of arbitrary moments in terms of the 2nd order closure parameters.
Another part of this work treats the determination of effective material properties for SFRPs by the use of FFT-based homogenization methods.
For these methods a novel discretization scheme, the 'staggered grid'' method, was developed and successfully tested. Furthermore the so called 'composite voxel'' approach was extended to nonlinear elasticity, which improves the approximation of material properties at the interfaces and allows the reduction of the model order by several magnitudes compared to classical approaches. Related the homogenization we investigate optimal experimental designs to robustly determine effective elastic properties of SFRPs with the least number of computer simulations.
Finally we deal with the topology optimization of injection molded parts, by extending classical SIMP-based topology optimization with an approximate model for the fiber orientations.
Along with the compliance minimization by topology optimization we also present a simple shape optimization method for compensation of part warpage for an black-box production process.:Acknowledgments v
Abstract vii
Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Nomenclature 3
Chapter 2. Numerical simulation of SFRP injection molding 5
2.1 Introduction 5
2.2 Injection molding technology 5
2.3 Process simulation 6
2.4 Governing equations 8
2.5 Numerical implementation 18
2.6 Numerical examples 25
2.7 Conclusions and outlook 27
Chapter 3. Numerical and analytical methods for the exact closure of the Folgar-Tucker equation 35
3.1 Introduction 35
3.2 The ACG as solution of Jeffery's equation 35
3.3 The exact closure 36
3.4 Carlson-type elliptic integrals 37
3.5 Inversion of R_D-system 40
3.6 Moment tensors of the angular central Gaussian distribution on the n-sphere 49
3.7 Experimental evidence for ACG distribution hypothesis 54
3.8 Conclusions and outlook 60
Chapter 4. Homogenization of SFRP materials 63
4.1 Introduction 63
4.2 Microscopic and macroscopic model of SFRP materials 63
4.3 Effective linear elastic properties 65
4.4 The staggered grid method 68
4.5 Model order reduction by composite voxels 80
4.6 Optimal experimental design for parameter identification 93
Chapter 5. Optimization of parts produced by SFRP injection molding 103
5.1 Topology optimization 103
5.2 Warpage compensation 110
Chapter 6. Conclusions and perspectives 115
Appendix A. Appendix 117
A.1 Evaluation of R_D in Python 117
A.2 Approximate inverse for R_D in Python 117
A.3 Inversion of R_D using Newton's/Halley's method in Python 117
A.4 Inversion of R_D using fixed point method in Python 119
A.5 Moment computation using SymPy 120
A.6 Fiber collision test 122
A.7 OED calculation of the weighting matrix 123
A.8 OED Jacobian of objective and constraints 123
Appendix B. Theses 125
Bibliography 127 / Diese Arbeit befasst sich mit Fragen der Simulation und Optimierung des Spritzgießens von kurzfaserverstärkten Kunststoffen (SFRPs).
Der Spritzgussprozess wird durch ein Zweiphasen-Fließproblem modelliert.
Die Simulation des Zweiphasenflusses wird von der Lösung der Folgar-Tucker-Gleichung (FTE) zur Simulation der Momente der Faserorientierungsdichten begleitet.
Die FTE erfordert die Lösung des sogenannten 'Abschlussproblems'', d. h. die Darstellung der Momente 4. Ordnung in Form der Momente 2. Ordnung.
In Abwesenheit von Faser-Faser-Wechselwirkungen und anfänglich isotroper Faserdichte lässt die FTE eine analytische Lösung durch elliptische Integrale zu.
Aus diesen elliptischen Integralen kann das Abschlussproblem durch eine einfache numerische Inversion gelöst werden.
Ein Teil dieser Arbeit leitet approximative Inverse und analytische Inverse für spezielle Fälle von Faserorientierungsdichten her.
Weiterhin wird eine Methode vorgestellt, um rationale Funktionen für die Berechnung beliebiger Momente in Bezug auf die Abschlussparameter 2. Ordnung zu generieren.
Ein weiterer Teil dieser Arbeit befasst sich mit der Bestimmung effektiver Materialeigenschaften für SFRPs durch FFT-basierte Homogenisierungsmethoden.
Für diese Methoden wurde ein neuartiges Diskretisierungsschema 'staggerd grid'' entwickelt und erfolgreich getestet. Darüber hinaus wurde der sogenannte 'composite voxel''-Ansatz auf die nichtlineare Elastizität ausgedehnt, was die Approximation der Materialeigenschaften an den Grenzflächen verbessert und die Reduzierung der Modellordnung um mehrere Größenordnungen im Vergleich zu klassischen Ansätzen ermöglicht. Im Zusammenhang mit der Homogenisierung untersuchen wir optimale experimentelle Designs, um die effektiven elastischen Eigenschaften von SFRPs mit der geringsten Anzahl von Computersimulationen zuverlässig zu bestimmen.
Schließlich beschäftigen wir uns mit der Topologieoptimierung von Spritzgussteilen, indem wir die klassische SIMP-basierte Topologieoptimierung um ein Näherungsmodell für die Faserorientierungen erweitern.
Neben der Compliance-Minimierung durch Topologieoptimierung stellen wir eine einfache Formoptimierungsmethode zur Kompensation von Teileverzug für einen Black-Box-Produktionsprozess vor.:Acknowledgments v
Abstract vii
Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Nomenclature 3
Chapter 2. Numerical simulation of SFRP injection molding 5
2.1 Introduction 5
2.2 Injection molding technology 5
2.3 Process simulation 6
2.4 Governing equations 8
2.5 Numerical implementation 18
2.6 Numerical examples 25
2.7 Conclusions and outlook 27
Chapter 3. Numerical and analytical methods for the exact closure of the Folgar-Tucker equation 35
3.1 Introduction 35
3.2 The ACG as solution of Jeffery's equation 35
3.3 The exact closure 36
3.4 Carlson-type elliptic integrals 37
3.5 Inversion of R_D-system 40
3.6 Moment tensors of the angular central Gaussian distribution on the n-sphere 49
3.7 Experimental evidence for ACG distribution hypothesis 54
3.8 Conclusions and outlook 60
Chapter 4. Homogenization of SFRP materials 63
4.1 Introduction 63
4.2 Microscopic and macroscopic model of SFRP materials 63
4.3 Effective linear elastic properties 65
4.4 The staggered grid method 68
4.5 Model order reduction by composite voxels 80
4.6 Optimal experimental design for parameter identification 93
Chapter 5. Optimization of parts produced by SFRP injection molding 103
5.1 Topology optimization 103
5.2 Warpage compensation 110
Chapter 6. Conclusions and perspectives 115
Appendix A. Appendix 117
A.1 Evaluation of R_D in Python 117
A.2 Approximate inverse for R_D in Python 117
A.3 Inversion of R_D using Newton's/Halley's method in Python 117
A.4 Inversion of R_D using fixed point method in Python 119
A.5 Moment computation using SymPy 120
A.6 Fiber collision test 122
A.7 OED calculation of the weighting matrix 123
A.8 OED Jacobian of objective and constraints 123
Appendix B. Theses 125
Bibliography 127
|
Page generated in 0.0415 seconds