• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 66
  • 66
  • 20
  • 19
  • 19
  • 15
  • 15
  • 15
  • 15
  • 12
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Multi-robot System in Coverage Control: Deployment, Coverage, and Rendezvous

Shaocheng Luo (8795588) 04 May 2020 (has links)
<div>Multi-robot systems have demonstrated strong capability in handling environmental operations. In this study, We examine how a team of robots can be utilized in covering and removing spill patches in a dynamic environment by executing three consecutive stages: deployment, coverage, and rendezvous. </div><div> </div><div>For the deployment problem, we aim for robot allocation based on the discreteness of the patches that need to be covered. With the deep neural network (DNN) based spill detector and remote sensing facilities such as drones with vision sensors and satellites, we are able to obtain the spill distribution in the workspace. Then, we formulate the allocation problem in a general optimization form and provide solutions using an integer linear programming (ILP) solver under several realistic constraints. After the allocation process is completed and the robot team is divided according to the number of spills, we deploy robots to their computed optimal goal positions. In the robot deployment part, control laws based on artificial potential field (APF) method are proposed and practiced on robots with a common unicycle model. </div><div> </div><div>For the coverage control problem, we show two strategies that are tailored for a wirelessly networked robot team. We propose strategies for coverage with and without path planning, depending on the availability of global information. Specifically, in terms of coverage with path planning, we partition the workspace from the aerial image into pieces and let each robot take care of one of the pieces. However, path-planning-based coverage relies on GPS signals or other external positioning systems, which are not applicable for indoor or GPS-denied circumstances. Therefore, we propose an asymptotic boundary shrink control that enables a collective coverage operation with the robot team. Such a strategy does not require a planned path, and because of its distributedness, it shows many advantages, including system scalability, dynamic spill adaptability, and collision avoidance. In case of a large-scale patch that poses challenges to robot connectivity maintenance during the operation, we propose a pivot-robot coverage strategy by mean of an a priori geometric tessellation (GT). In the pivot-robot-based coverage strategy, a team of robots is sent to perform complete coverage to every packing area of GT in sequence. Ultimately, the entire spill in the workspace can be covered and removed.</div><div> </div><div>For the rendezvous problem, we investigate the use of graph theory and propose control strategies based on network topology to motivate robots to meet at a designated or the optimal location. The rendezvous control strategies show a strong robustness to some common failures, such as mobility failure and communication failure. To expedite the rendezvous process and enable herding control in a distributed way, we propose a multi-robot multi-point rendezvous control strategy. </div><div> </div><div>To verify the validity of the proposed strategies, we carry out simulations in the Robotarium MATLAB platform, which is an open source swarm robotics experiment testbed, and conduct real experiments involving multiple mobile robots.</div>
52

Computational Modeling of Hypersonic Turbulent Boundary Layers By Using Machine Learning

Abhinand Ayyaswamy (9189470) 31 July 2020 (has links)
A key component of research in the aerospace industry constitutes hypersonic flights (M>5) which includes the design of commercial high-speed aircrafts and development of rockets. Computational analysis becomes more important due to the difficulty in performing experiments and reliability of its results at these harsh operating conditions. There is an increasing demand from the industry for the accurate prediction of wall-shear and heat transfer with a low computational cost. Direct Numerical Simulations (DNS) create the standard for accuracy, but its practical usage is difficult and limited because of its high cost of computation. The usage of Reynold's Averaged Navier Stokes (RANS) simulations provide an affordable gateway for industry to capitalize its lower computational time for practical applications. However, the presence of existing RANS turbulence closure models and associated wall functions result in poor prediction of wall fluxes and inaccurate solutions in comparison with high fidelity DNS data. In recent years, machine learning emerged as a new approach for physical modeling. This thesis explores the potential of employing Machine Learning (ML) to improve the predictions of wall fluxes for hypersonic turbulent boundary layers. Fine-grid RANS simulations are used as training data to construct a suitable machine learning model to improve the solutions and predictions of wall quantities for coarser meshes. This strategy eliminates the usage of wall models and extends the range of applicability of grid sizes without a significant drop in accuracy of solutions. Random forest methodology coupled with a bagged aggregation algorithm helps in modeling a correction factor for the velocity gradient at the first grid points. The training data set for the ML model extracted from fine-grid RANS, includes neighbor cell information to address the memory effect of turbulence, and an optimal set of parameters to model the gradient correction factor. The successful demonstration of accurate predictions of wall-shear for coarse grids using this methodology, provides the confidence to build machine learning models to use DNS or high-fidelity modeling results as training data for reduced-order turbulence model development. This paves the way to integrate machine learning with RANS to produce accurate solutions with significantly lesser computational costs for hypersonic boundary layer problems.
53

Optimization of Product Placement and Pickup in Automated Warehouses

Abeer Abdelhadi (9047177) 24 July 2020 (has links)
<div>Smart warehouses have become more popular in these days, with Automated Guided Vehicles (AGVs) being used for order pickups. They also allow efficient cost management with optimized storage and retrieval. Moreover, optimization of resources in these warehouses is essential to ensure maximum efficiency. In this thesis, we consider a three dimensional smart warehouse system equipped with heterogeneous AGVs (i.e., having different speeds). We propose scheduling and placement policies that jointly consider all the different design parameters including the scheduling decision probabilities and storage assignment locations. In order to provide differentiated service levels, we propose a prioritized probabilistic scheduling and placement policy to minimize a weighted sum of mean latency and latency tail probability (LTP). Towards this goal, we first derive closed-form expressions for the mean latency and LTP. Then, we formulate an optimization problem to jointly optimize a weighted sum of both the mean latency and LTP. The optimization problem is solved efficiently over the scheduling and decision variables. For a given placement of the products, scheduling decisions of customers’ orders are solved optimally and derived in closed forms. Evaluation results demonstrate a significant improvement of our policy (up to 32%) as compared to the state of other algorithms, such as the Least Work Left policy and Join the Shortest Queue policy, and other competitive baselines.</div>
54

Accelerated In-situ Workflow of Memory-aware Lattice Boltzmann Simulation and Analysis

Yuankun Fu (10223831) 29 April 2021 (has links)
<div>As high performance computing systems are advancing from petascale to exascale, scientific workflows to integrate simulation and visualization/analysis are a key factor to influence scientific campaigns. As one of the campaigns to study fluid behaviors, computational fluid dynamics (CFD) simulations have progressed rapidly in the past several decades, and revolutionized our lives in many fields. Lattice Boltzmann method (LBM) is an evolving CFD approach to significantly reducing the complexity of the conventional CFD methods, and can simulate complex fluid flow phenomena with cheaper computational cost. This research focuses on accelerating the workflow of LBM simulation and data analysis.</div><div><br></div><div>I start my research on how to effectively integrate each component of a workflow at extreme scales. Firstly, we design an in-situ workflow benchmark that integrates seven state-of-the-art in-situ workflow systems with three synthetic applications, two real-world CFD applications, and corresponding data analysis. Then detailed performance analysis using visualized tracing shows that even the fastest existing workflow system still has 42% overhead. Then, I develop a novel minimized end-to-end workflow system, Zipper, which combines the fine-grain task parallelism of full asynchrony and pipelining. Meanwhile, I design a novel concurrent data transfer optimization method, which employs a multi-threaded work-stealing algorithm to transfer data using both channels of network and parallel file system. It significantly reduces the data transfer time by up to 32%, especially when the simulation application is stalled. Then investigation on the speedup using OmniPath network tools shows that the network congestion has been alleviated by up to 80%. At last, the scalability of the Zipper system has been verified by a performance model and various largescale workflow experiments on two HPC systems using up to 13,056 cores. Zipper is the fastest workflow system and outperforms the second-fastest by up to 2.2 times.</div><div><br></div><div>After minimizing the end-to-end time of the LBM workflow, I began to accelerate the memory-bound LBM algorithms. We first design novel parallel 2D memory-aware LBM algorithms. Then I extend to design 3D memory-aware LBM that combine features of single-copy distribution, single sweep, swap algorithm, prism traversal, and merging multiple temporal time steps. Strong scalability experiments on three HPC systems show that 2D and 3D memory-aware LBM algorithms outperform the existing fastest LBM by up to 4 times and 1.9 times, respectively. The speedup reasons are illustrated by theoretical algorithm analysis. Experimental roofline charts on modern CPU architectures show that memory-aware LBM algorithms can improve the arithmetic intensity (AI) of the fastest existing LBM by up to 4.6 times.</div>
55

Frequency based efficiency evaluation - from pattern recognition via backwards simulation to purposeful drive design

Starke, Martin, Beck, Benjamin, Ritz, Denis, Will, Frank, Weber, Jürgen 23 June 2020 (has links)
The efficiency of hydraulic drive systems in mobile machines is influenced by several factors, like the operators’ guidance, weather conditions, material respectively loading properties and primarily the working cycle. This leads to varying operation points, which have to be performed by the drive system. Regarding efficiency analysis, the usage of standardized working cycles gained through measurements or synthetically generated is state of the art. Thereby, only a small extract of the real usage profile is taken into account. This contribution deals with process pattern recognition (PPR) and frequency based efficiency evaluation to gain more precise information and conclusion for the drive design of mobile machines. By the example of an 18 t mobile excavator, the recognition system using Hidden – Markov - Models (HMM) and the efficiency evaluation process by means of backwards simulation of measured operation points will be described.
56

A FRAMEWORK TO INVESTIGATE KEY CHARACTERISTICS OF DIGITAL TWINS AND THEIR IMPACT ON PERFORMANCE

Edwin S Kim (8974793) 29 April 2022 (has links)
<p>The modern world of manufacturing is in the middle of an industrial revolution with the digital and physical worlds integrating through cyber-physical systems.  Through a virtual model that is able to communicate with its physical system known as the Digital Twin, catered decisions can be made based on the current state of the system.  The digital twin presents immense opportunities and challenges as there is a greater need to understand how these new technologies work together. </p> <p><br></p> <p>This thesis is an experimental investigation of the characteristics of the essential components of the Digital Twin.  A Digital Twin Framework is developed to explore the impacts of model accuracy and update frequency on the system’s performance measure. A simple inventory management system and a more complex manufacturing plant is modeled through the framework providing a method to study the interactions of the physical and digital systems with empirical data.</p> <p><br></p> <p><br></p> <p>As the decision policies are affected by the state changes in the system, designing the Digital Twin must account for the direct and indirect impact of its components. </p> <p>Furthermore, we show the importance of communication and information exchange between the Digital Twin and its physical system.  A key characteristic for developing and applying a digital twin is to monitor the update frequency and its impact on performance.  Through the study there are implications of optimal combinations of the digital twin components and how the physical system responds.  There are also limits to how effective the Digital Twin can be in certain instances and is an area of research that needs further investigation.  </p> <p><br></p> <p>The goal of this work is to help practitioners and researchers implement and use the Digital Twin more effectively.  Better understanding the interactions of the model components will help guide designing Digital Twins to be more effective as they become an integral part of the future of manufacturing.</p>
57

A model of pulsed signals between 100MHz and 100GHz in a Knowldege-Based Environment

Fitch, Phillip January 2009 (has links)
The thesis describes a model of electromagnetic pulses from sources between 100MHz and 100GHz for use in the development of Knowledge-Based systems. Each pulse, including its modulations, is described as would be seen by a definable receiving system. The model has been validated against a range of Knowledge-Based systems including a neural network, a Learning systems and an Expert system.
58

USING REINFORCEMENT LEARNING FOR ACTIVE SHOOTER MITIGATION

Robert Eugen Bott (11791199) 20 December 2021 (has links)
This dissertation investigates the value of deep reinforcement learning (DRL) within an agent-based model (ABM) of a large open-air venue. The intent is to reduce civilian casualties in an active shooting incident (ASI). There has been a steady increase of ASIs in the United States of America for over 20 years, and some of the most casualty-producing events have been in open spaces and open-air venues. More research should be conducted within the field to help discover policies that can mitigate the threat of a shooter in extremis. This study uses the concept of dynamic signage, controlled by a DRL policy, to guide civilians away from the threat and toward a safe exit in the modeled environment. It was found that a well-trained DRL policy can significantly reduce civilian casualties as compared to baseline scenarios. Further, the DRL policy can assist decision makers in determining how many signs to use in an environment and where to place them. Finally, research using DRL in the ASI space can yield systems and policies that will help reduce the impact of active shooters during an incident.
59

Multiscale Modeling of the Mechanical Behaviors and Failures of Additive Manufactured Titanium Metal Matrix Composites and Titanium Alloys Based on Microstructure Heterogeneity

Mohamed G Elkhateeb (8802758) 07 May 2020 (has links)
<p>This study is concerned with the predictive modeling of the machining and the mechanical behaviors of additive manufactured (AMed) Ti6AlV/TiC composites and Ti6Al4V, respectively, using microstructure-based hierarchical multiscale modeling. The predicted results could constitute as a basis for optimizing the parameters of machining and AM of the current materials.</p> <p>Through hierarchical flow of material behaviors from the atomistic, to the microscopic and the macroscopic scales, multiscale heterogeneous models (MHMs) coupled to the finite element method (FEM) are employed to simulate the conventional and the laser assisted machining (LAM) of Ti6AlV/TiC composites. In the atomistic level, molecular dynamics (MD) simulations are used to determine the traction-separation relationship for the cohesive zone model (CZM) describing the Ti6AlV/TiC interface. Bridging the microstructures across the scales in MHMs is achieved by representing the workpiece by macroscopic model with the microscopic heterogeneous structure including the Ti6Al4V matrix, the TiC particles, and their interfaces represented by the parameterized CZM. As a result, MHMs are capable of revealing the possible reasons of the peculiar high thrust forces behavior during conventional machining of Ti6Al4V/TiC composites, and how laser assisted machining can improve this behavior, which has not been conducted before.</p> <p>Extending MHMs to predict the mechanical behaviors of AMed Ti6Al4V would require including the heterogeneous microstructure at the grain level, which could be computational expensive. To solve this issue, the extended mechanics of structure genome (XMSG) is introduced as a novel multiscale homogenization approach to predict the mechanical behavior of AMed Ti6Al4V in a computationally efficient manner. This is realized by embedding the effects of microstructure heterogeneity, porosity growth, and crack propagation in the multiscale calculations of the mechanical behavior of the AMed Ti6Al4V using FEM. In addition, the XMSG can predict the asymmetry in the Young’s modulus of the AMed Ti6Al4V under tensile and compression loading as well as the anisotropy in the mechanical behaviors. The applicability of XMSG to fatigue life prediction with valid results is conducted by including the energy dissipations associated with cyclic loading/unloading in the calculations of the cyclic response of the material.</p>
60

Experimentelle und numerische Untersuchungen zu entladungsbasierten Elektronenstrahlquellen hoher Leistung

Feinäugle, Peter 19 June 2012 (has links)
Entladungsbasierte Elektronenquellen mit Kaltkathode waren gegen Ende des 19. Jahr hunderts weithin genutzte Forschungswerkzeuge und ermöglichten die Entdeckung des Elektrons und der Röntgenstrahlung. In jüngster Zeit erfahren sie erneutes Interesse in Wissenschaft und Industrie, motiviert durch ihre Fähigkeit, Elektronenstrahlen hoher Leistung für Produktionsprozesse (wie das Schweißen, die Materialverdampfung in der Vakuum beschichtung oder die Vakuum-Schmelzveredlung in der Metallurgie) basierend auf einem robusten Design sowie einfachen Versorgungs- und Steuerungssystemen zu erzeugen. Entladungsbasierte Elektronenquellen könnten also eine wirtschaftlich attraktive Alternative zu den gegenwärtig noch etablierten Elektronenstrahlkanonen mit Glühkathoden bieten. Trotz der langen Geschichte und vieler empirischer Ansätze, Gasentladungen zur Elektronenstrahlerzeugung für diverse Anwendungen zu nutzen, sind die bestimmenden Mechanismen bei dieser Art von Elektronenquellen immer noch unzulänglich verstanden. Es war deshalb das Ziel der für die vorliegende Dissertation durchgeführten experimentellen und theoretischen Arbeiten, nicht nur die technologischen Potentiale und Limitierungen entladungsbasierter Elektronenstrahlquellen zu untersuchen, sondern auch die Kenntnis grundlegender physikalischer Effekte zu verbessern. Analysiert wurden zunächst verschiedene, im Fraunhofer FEP vorhandene Kaltkathoden-Strahlquellen, die - ungeachtet der Tatsache, dass sie für unterschiedliche Anwendungen konstruiert wurden - sämtlich auf demselben Funktionsprinzip beruhen: Innerhalb des Gerätes wird eine Hochspannungs-Glimmentladung (HSGE) unterhalten. Ionen erfahren im Kathodenfall einen Energiezuwachs, treffen auf die Kathode und setzen dort Sekundärelektronen frei. Diese Elektronen werden in Richtung des Plasmas be schleu nigt und verlassen schließlich die Strahlquelle, um am Prozessort die beabsichtigte Wirkung zu erzielen. Zur Optimierung der Stabilität der die Ionen produzierenden Entladung, der Effizienz der Strahlerzeugung sowie der Strahlleistungsdichte und Kathodenlebensdauer wurden verschiedene Kombinationen von Kathodenmaterialien und Plasma-Arbeitsgasen experimentell untersucht. Die Abhängigkeit der Ausdehnung des Kathodenfalls von Strom und Spannung der Entladung wurde gemessen und konnte durch ein analytisches Modell erklärt werden. Emittanz und Richtstrahlwert sind wichtige Kenngrößen zur Charakterisierung der Qualität von Elektronenstrahlen. Beide wurden in dieser Arbeit für den Elektronenstrahl einer HSGE-basierten Kaltkathoden-Schweißstrahlquelle bestimmt, wobei zwei Ansätze verfolgt wurden: Zum einen konnte die Emittanz aus der Randstrahlgleichung gewonnen werden, die den experimentell beobachteten Verlauf des Strahldurchmessers entlang der Ausbreitungsachse analytisch beschreibt. Zum anderen wurde die Emittanz anhand des aus der numerischen Simulation berechneten Phasenraumprofils ermittelt. Eine Kernaufgabe dieser Arbeit war es, Software-Werkzeuge zur Simulation der Strahl erzeugung in verschiedenen geometrischen Konfigurationen zu entwickeln und zu validieren, mit denen künftig die Konstruktion und Optimierung neuer entladungsbasierter Strahlerzeuger unterstützt werden sollte. Da kommerziell verfügbare Programme zur Simulation der Erzeugung und Führung von Elektronenstrahlen grundlegende Effekte plasma basierter Quellen, wie z. B. die Raumladung der Ionen oder die ioneninduzierte Sekundär elektronen-Freisetzung, nicht berücksichtigen, wurde für diese Arbeit eine neue Herangehensweise favorisiert: „Particle-in-Cell“ (PIC)-Algorithmen werden in der Plasma forschung üblicherweise zur Modellierung von Entladungen sowie zum Studium nichtlinearer Probleme, wie z. B. Instabilitäten, verwendet. Deshalb wurde nun eine PIC-Simulations umgebung zur Modellierung der HSGE und der damit verbundenen Strahlerzeugung entwickelt. Die Simulation reproduziert experimentelle Ergebnisse, wie etwa die Charakteristik der Entladung, die Emittanz des Strahls oder die Ausdehnung des Kathodendunkelraums, in befriedigender Weise. Schließlich wurde im Rahmen dieser Arbeit eine entladungsbasierte Elektronenstrahlquelle neuen Typs entwickelt und charakterisiert, die die Einfachheit der bekannten Kaltkathoden-Strahler und vorteilhafte Leistungsparameter, z. B. eine hohe Strahlleistungsdichte und niedrige Arc-Rate, wie sie bisher nur mit traditionellen Glühkathodenstrahlern erreichbar waren, in sich vereinigt. Die Kathode bestand aus LaB6 - einem Material, das sowohl eine hohe Sekundärelektronen-Ausbeute als auch eine niedrige Austrittsarbeit aufweist - und wurde gegen die Halterung thermisch isolierend montiert. Dadurch kann sie von Ionen aus einer HSGE auf hohe Betriebstemperaturen geheizt werden und in erheblichem Maße thermisch freigesetzte Elektronen emittieren. Neben technisch nützlichen Gebrauchs eigenschaften weist diese so genannte „Hybrid-Kathode“ auch ein physikalisch interessantes Verhalten auf. Einige neuartige Effekte, die von Entladungen mit kalten Kathoden nicht bekannt waren, konnten beobachtet und erklärt werden, wie z.B. die auffällige „N-förmige“ Druck-Strom-Charakteristik, die bei plötzlicher Abschaltung der Entladung nur langsam und ungleichmäßig abklingende Elektronenemission, die Limitierung des erreichbaren Strahl stromes und eine Fülle von Kathodenverschleiß-Mechanismen. Physikalische Modelle zur Beschreibung verschiedener Aspekte der Hybridkathoden-Entladung wurden erarbeitet und mit den experimentellen Befunden verglichen.:1 Einleitung 1.1 Hintergrund und Motivation 1.2 Aufgabenstellung und Gliederung 2 Grundlagen 2.1 Erzeugung freier Elektronen 2.1.1 Elektronenfreisetzung durch Glüheffekt und Feldemission 2.1.2 Elektronenfreisetzung durch Teilchenbeschuss 2.2 Hochspannungsglimmentladungen 2.3 Kathodenverschleiß 2.4 Hochspannungsüberschläge 2.5 Aspekte der Strahlphysik 2.5.1 Strahlgüte 2.5.2 Strahlinstabilitäten 3 Experimentelle Basis 3.1 Elektronenstrahlquellen 3.1.1 CCGD-5/30 3.1.2 CCDG-EXP 3.1.3 CCGD-60/30 3.1.4 CCGD-400/40 3.1.5 EasyBeam-60/40 3.2 Messmethoden 3.2.1 Messung von Strom und Spannung 3.2.2 Druck- und Gasflussmessung 3.2.3 Messung des Kathodendunkelraums 3.3 Strahlstromregelung 4 Experimente mit Kaltkathoden-Elektronenstrahlquellen 4.1 Vermessung und Modellierung der Ausdehnung des Kathodendunkelraums 4.2 Untersuchungen zur Effizienz der Strahlerzeugung 4.3 Untersuchungen zum Kathodenverschleiß 5 Untersuchung und Charakterisierung der Strahlqualität 5.1 Überblick über etablierte Messmethoden 5.2 Eigene Messmethode 5.2.1 Aufbau und Messprinzip 5.2.2 Datenauswertung 5.2.3 Bestimmung der Emittanz 5.2.4 Diskussion 6 Numerische Simulation von Kaltkathoden-Elektronenstrahlquellen 6.1 Grundlagen zur Simulation von Plasmen und Elektronenstrahlen 6.2 Literaturübersicht zur Simulation von Hochspannungsglimmentladungen 6.3 Plasmasimulation mit Particle-in-Cell-Programmen 6.3.1 Skalierungsregeln und Stabilitätskriterien 6.3.2 Eingesetztes Simulationsprogramm und implementierte Modelle 6.4 Vergleich von Simluationsergebnissen und Experimenten 6.5 Fazit 7 Strahlerzeugung mit einer entladungsgeheizten thermionischen Kathode 7.1 Motivation 7.2 Funktionsweise und Wahl der Materialien 7.3 Experimentelle Ergebnisse 7.4 Erarbeitung und Diskussion von Modellvorstellungen 8 Zusammenfassung und Ausblick A Häufig verwendete Abkürzungen und Symbole A.1 Abkürzungen und Indizes A.2 Symbole A.3 Konstanten Tabellenverzeichnis Abbildungsverzeichnis Literaturverzeichnis / Discharge-based, cold-cathode electron sources were routinely used as research tools at the end of the 19th century and facilitated then the discovery of the electron and of the x-rays. In recent time, they experience a renewed interest in science and industry due to their capability of generating high power electron beams for production processes (like welding, evaporation of materials for vapor deposition, and vacuum melt refining in metallurgy) relying on rugged mechanic designs as well as simple supply and control systems. Hence, discharge-based electron sources could provide an economically attractive alternative to the currently established electron beam guns with thermionic cathodes. Despite the long history and many empirical trials to utilize electron beam generation by gas discharges in several applications, the mechanisms governing this kind of electron sources are far from being well understood. Therefore, it was the purpose of the theoretical and experimental work performed for this thesis not only to investigate in the technological potentials and limitations of discharge-based electron beam guns but also to improve the knowledge of physical basic effects. At first, several cold-cathode beam sources existing at Fraunhofer FEP were analyzed. Regardless that they were designed for different applications, all were based on the same function principle: A high-voltage glow-discharge (HVGD) is sustained inside the device. Ions gain energy in the cathode fall, hit the cathode and release secondary electrons. These electrons will be accelerated towards the plasma then and can finally leave the beam source to perform the desired action at the process site. In order to optimize stability of the ions generating discharge, efficiency of the beam generation, beam power density and longevity of the cathode, different combinations of cathode materials and plasma forming gases have been investigated experimentally. The dependence of the cathode dark space width on current and discharge voltage was measured and could be explained by an analytic model. Emittance and brightness are important measures which quantify the quality of electron beams. In this work, both were determined for the beam originating from a HVGD based cold-cathode electron gun designed for welding following two approaches: First the emittance could be extracted from the envelope equation which analytically describes the evolution of the experimentally observed beam diameter along the propagation axis. Second the emittance was calculated from numerically simulated traces in the phase space. It was a core purpose of this work to develop and validate software tools capable of simulating the beam formation in various geometric configurations. This task was aimed at supporting the design and optimization of new discharge-based beam sources. Since commercially available software for modeling electron beam generation and transport do not consider the key mechanisms of plasma-based sources like the ion space charge or the ion-dependent production of free electrons, a new attempt was favored for this work: Particle-in-Cell (PIC) are being used in plasma research for studying nonlinear problems like instabilities. Therefore, a PIC simulation environment was utilized to numerically model the HVGD and the related beam generation. The simulation satisfactorily reproduces experimental findings, like the characteristics of the discharge, the emittance of the beam or the cathode dark space dimension. Finally, a discharge-based electron-beam sources of a new type was developed and characterized in the frame of this work. It merges the simplicity of known cold cathode devices with beneficial performance parameters, like high beam power density and low arcing rate, which have been reached so far with traditional thermionic electron sources only. The cathode of the new beam source consists of LaB6 - a material with a high secondary electron yield and a low thermionic work function - and was mounted thermally insulated against the holder. Then, an elevated operation temperature resulting in considerable thermionic emission was maintained by ions extracted from a HVGD. Besides to technically advantageous features, this so called “hybrid“ cathode mode of beam generation shows a physically interesting behaviour. Several new effects - not known from traditional cold-cathode discharges - could be observed, like a peculiar “N-shaped“ appearance of the pressure-current characteristic, the slowly and irregularly decreasing electron emission after a sudden discharge cutoff, a limitation of achievable beam current, and a multitude of possible cathode wear mechanisms. Physical models describing various features of the hybrid cathode discharge were elaborated and compared with the experimental findings.:1 Einleitung 1.1 Hintergrund und Motivation 1.2 Aufgabenstellung und Gliederung 2 Grundlagen 2.1 Erzeugung freier Elektronen 2.1.1 Elektronenfreisetzung durch Glüheffekt und Feldemission 2.1.2 Elektronenfreisetzung durch Teilchenbeschuss 2.2 Hochspannungsglimmentladungen 2.3 Kathodenverschleiß 2.4 Hochspannungsüberschläge 2.5 Aspekte der Strahlphysik 2.5.1 Strahlgüte 2.5.2 Strahlinstabilitäten 3 Experimentelle Basis 3.1 Elektronenstrahlquellen 3.1.1 CCGD-5/30 3.1.2 CCDG-EXP 3.1.3 CCGD-60/30 3.1.4 CCGD-400/40 3.1.5 EasyBeam-60/40 3.2 Messmethoden 3.2.1 Messung von Strom und Spannung 3.2.2 Druck- und Gasflussmessung 3.2.3 Messung des Kathodendunkelraums 3.3 Strahlstromregelung 4 Experimente mit Kaltkathoden-Elektronenstrahlquellen 4.1 Vermessung und Modellierung der Ausdehnung des Kathodendunkelraums 4.2 Untersuchungen zur Effizienz der Strahlerzeugung 4.3 Untersuchungen zum Kathodenverschleiß 5 Untersuchung und Charakterisierung der Strahlqualität 5.1 Überblick über etablierte Messmethoden 5.2 Eigene Messmethode 5.2.1 Aufbau und Messprinzip 5.2.2 Datenauswertung 5.2.3 Bestimmung der Emittanz 5.2.4 Diskussion 6 Numerische Simulation von Kaltkathoden-Elektronenstrahlquellen 6.1 Grundlagen zur Simulation von Plasmen und Elektronenstrahlen 6.2 Literaturübersicht zur Simulation von Hochspannungsglimmentladungen 6.3 Plasmasimulation mit Particle-in-Cell-Programmen 6.3.1 Skalierungsregeln und Stabilitätskriterien 6.3.2 Eingesetztes Simulationsprogramm und implementierte Modelle 6.4 Vergleich von Simluationsergebnissen und Experimenten 6.5 Fazit 7 Strahlerzeugung mit einer entladungsgeheizten thermionischen Kathode 7.1 Motivation 7.2 Funktionsweise und Wahl der Materialien 7.3 Experimentelle Ergebnisse 7.4 Erarbeitung und Diskussion von Modellvorstellungen 8 Zusammenfassung und Ausblick A Häufig verwendete Abkürzungen und Symbole A.1 Abkürzungen und Indizes A.2 Symbole A.3 Konstanten Tabellenverzeichnis Abbildungsverzeichnis Literaturverzeichnis

Page generated in 0.1204 seconds